Устройство для контроля диаметра критического сечения регулируемого сопла реактивного двигателя

Изобретение относится к области машиностроения и предназначено для контроля диаметра критического сечения регулируемого сопла при производстве авиационных или ракетных реактивных двигателей. Устройство для контроля диаметра критического сечения регулируемого сопла реактивного двигателя включает контрольный калибр, а также средства его перемещения и измерения усилия перемещения. Контрольный калибр посредством сферического подшипника закреплен на элементе средства измерения усилия перемещения с осевым и радиальным зазорами, обеспечивающими возможность его углового и линейного перемещения, ограниченного допусками на размеры сопла. При этом контрольный калибр содержит сферическую поверхность, выполненную с возможностью контакта со створками регулируемого сопла и имеющую диаметр, равный диаметру критического сечения регулируемого сопла. Изобретение позволяет обеспечить перемещение контрольного калибра соосно диаметру фактического положения створок в критическом сечении регулируемого сопла реактивного двигателя, за счет чего исключается повреждение створок и кинематических звеньев привода сопла, повышается надежность реактивного двигателя и изделий с его применением, улучшается качество контроля и точность измерения диаметра критического сечения сопла реактивного двигателя. 3 ил.

 

Изобретение относится к области машиностроения и предназначено для контроля диаметра критического сечения регулируемого сопла при производстве авиационных или ракетных реактивных двигателей.

В случае, когда применить стандартные средства контроля параметров при производстве продукции не представляется возможным, применяются специальные способы и устройства для контроля параметров.

Известно одно из таких устройств [1. Пат. RU 2 419 762 С1, МПК G01B 3/46. Калибр типа СФЕРЕЯР, способ настройки мерного стержня калибра, способ тонкой доводки рабочего размера мерного стержня калибра, способ определения действительного размера мерного стержня калибра / П.П. Яровой, В.М. Кудрявицкий. (17.11.2009) Опубл. 27.05.2011. Бюл. №15.] - калибр для измерения внутренних диаметров, содержащий мерный стержень с измерительными наконечниками, каждый из которых имеет сферический рабочий торец, установленный на подвесе из двух пружинных лент и содержащий определитель усилия сопротивления развороту (ОУСР) мерного стержня внутри контролируемого отверстия.

Основные недостатки указанного устройства следующие:

- декларируется повышение точности устройства за счет оснащения его ОУСР, выполненным в виде лент, которые схлопываются между собой при достижении заданного измерительного усилия по указателю и тарировочным обозначениям на шкале, то есть для индикации нужен натяг, что противоречит п. 7 формулы [1.], где предварительное значение устанавливают меньше предполагаемого действительного значения. Даже если значение устанавливают до 5 мкм, то, учитывая непостоянство жесткости пружинных лент и прокладки между ними, есть основание считать эти опосредованные замеры необъективными;

- стопорение настраиваемого измерительного наконечника по легко сминаемому материалу не исключит «случайных самоизменений» [1.], ввиду обязательно происходящей в уплотнении релаксации напряжений с соответствующим изменением настроенного контрольного размера;

- в описании «…процесс измерения представляет собой как бы сравнение с шаром известного диаметра размера контролируемого отверстия в том сечении, в котором происходит сопряжение указанных деталей. При этом мерный стержень представляет собой не полный шар, а цилиндрическую высечку из него» рассматривается как преимущество, однако притирка сферических измерительных наконечников во взаимно перпендикулярных плоскостях по цилиндру [1. Фиг. 5; фиг. 6] даст огранку, но не сферу, равную диаметру замеряемого размера, что однозначно скажется на достоверности измерений, усугубляемой еще тем, что притертые поверхности от образующей цилиндра и диаметра на сфере стержня меньшего диаметра будут разными, а способ по п. 6 формулы [1.] приведет к еще большим искажениям замеров от настроечных.

Из упомянутых недостатков следует, что заявленная простота доведения устройства до рабочего состояния, тем более повышенной точности, -недостоверна, и никак не обойтись «…без включения органов зрения и напряжения сознания» [1.]. В серийном производстве применение данного устройства нецелесообразно: нужно ловить серединные показания размера, возможна нестабильность и недостоверность измерений.

В качестве прототипа к предложенному изобретению принято устройство для измерения выходного диаметра реактивного сопла [2. А.с. SU 186146, МПК G01B 13/08, G01B 3/30. Устройство для измерения выходного диаметра реактивного сопла / Н.И. Богатырев и др. (27.01.1965) Опубл. 12.09.1966. Бюл. №18.]. Измерительные стержни помещены в блок радиально расположенных в одной плоскости цилиндров, к которым подведена рабочая среда, например, воздух, а количество стержней равно количеству створок реактивного сопла.

Недостатки указанного устройства следующие:

- как правило, предусматривается ограничение усилия при контакте устройства со створками, и, несмотря на наличие жиклера, обеспечивающего плавность перемещения стержней, проблема повреждения створок и кинематических звеньев привода сопла сохраняется в связи с тем, что по уплотнениям цилиндров трение покоя отличается от трения движения в несколько раз, а добиться стабильного трения в каждом из цилиндров маловероятно, движение стержней может быть скачкообразным - с чередованием проскальзывания с остановками [3. Башта Т.М. Машиностроительная гидравлика: справ, пособие. - М.: Машиностроение, 1971. - С. 605, 606, рис. 376] и возможным динамическим воздействием на створки;

- устройство не обеспечивает комплексного замера круглости в критическом сечении сопла с учетом податливости створок при определенном усилии воздействия на них;

- «…устройство располагается, примерно, в центре замеряемого диаметра…» [3.], - это оставляет открытым вопрос об обеспечении контроля требования концентричности критического сечения выходному диаметру в связи с тем, что поршни и, следовательно, измерительные стержни займут положение с погрешностью, которая отразится на точности измерения.

Целью настоящего изобретения является предотвращение повреждения створок и кинематических звеньев привода сопла за счет обеспечения перемещения контрольного калибра соосно диаметру фактического исполнения положения створок в критическом сечении регулируемого сопла реактивного двигателя с измерением усилия перемещения, повышение надежности реактивного двигателя и изделий с его применением, а также улучшение качества контроля диаметра сопла критического сечения реактивного двигателя.

Предлагаемое устройство для контроля диаметра критического сечения регулируемого сопла реактивного двигателя включает контрольный калибр, а также средства его перемещения и измерения усилия перемещения. Контрольный калибр посредством сферического подшипника закреплен на элементе средства измерения усилия перемещения с осевым и радиальным зазорами, обеспечивающими возможность его углового и линейного перемещения, ограниченную допусками на размеры сопла. При этом контрольный калибр содержит сферическую поверхность, выполненную с возможностью контакта со створками регулируемого сопла и имеющую диаметр, равный диаметру критического сечения регулируемого сопла.

Конструктивные особенности заявляемого устройства заключаются в следующем. Устройство (фиг. 1, 2, 3) состоит из контрольного калибра 1, закрепленного посредством сферического подшипника 2 на элементе 3 средства измерения усилия перемещения 4 (одно из известных устройств, в данной заявке не рассматривается) контрольного калибра 1 с осевым и радиальным зазорами 5, 6 соответственно. На противоположной стороне средства измерения усилия перемещения 4 установлена двуручная державка 7 и переходник 8 для крепления на устройстве перемещения (винтовое, рычажное, гидропривод и др. - в данной заявке не рассматривается). Контрольный калибр содержит сферическую поверхность 9, равную диаметру критического сечения Dкр регулируемого сопла.

Устройство для контроля диаметра критического сечения регулируемого сопла по настоящему изобретению предполагает два варианта применения: с перемещением в ручном режиме и от привода (механического, гидравлического и др.). В каждом из указанных применений основным требованием операции контроля является обеспечение перемещения контрольного калибра 1 соосно диаметру фактического исполнения положения створок в критическом сечении регулируемого сопла с измерением усилия перемещения.

Крепление контрольного калибра 1 в устройстве обеспечивает возможность его углового и линейного перемещения в пределах зазоров 5, 6, а сферическая поверхность 9 защищает от заклинивания по Dкр. Замер усилия перемещения контрольного калибра осуществляется известным универсальным способом, например, с помощью тензометра и компьютера в зависимости от схемы средства замера усилия перемещения контрольного калибра 1.

Заявляемое изобретение совпадает с устройством по прототипу по следующему признаку: контроль диаметра реактивного сопла критического сечения реактивного двигателя посредством специального устройства. Главным отличием настоящего изобретения от прототипа является контрольный калибр, посредством сферического подшипника закрепленный на элементе средства измерения усилия перемещения с осевым и радиальным зазорами, с обеспечением линейных и угловых перемещений, ограниченных допусками на размеры сопла. При этом контрольный калибр содержит сферическую поверхность, выполненную с возможностью контакта со створками регулируемого сопла и имеющую диаметр, равный диаметру критического сечения регулируемого сопла.

Технический результат заключается в улучшении качества контроля диаметра сопла критического сечения реактивного двигателя, повышении точности измерения, а также в повышении надежности реактивного двигателя и изделий с его применением.

Предлагаемое устройство может быть изготовлено с помощью стандартного оборудования и материалов отечественного производства. Таким образом, оно соответствует критерию «промышленная применимость».

Источники информации

1. Пат.RU 2 419 762 С1, МПК G01B 3/46. Калибр типа СФЕРЕЯР, способ настройки мерного стержня калибра, способ тонкой доводки рабочего размера мерного стержня калибра, способ определения действительного размера мерного стержня калибра / П.П. Яровой, В.М. Кудрявицкий. (17.11.2009) Опубл. 27.05.2011. Бюл. №15.

2. А.с. SU 186146, МПК G01B 13/08, G01B 3/30. Устройство для измерения выходного диаметра реактивного сопла / Н.И. Богатырев и др. (27.01.1965) Опубл. 12.09.1966. Бюл. №18.

3. Башта Т.М. Машиностроительная гидравлика: справ, пособие. - М.: Машиностроение, 1971.

4. Пат.US 4227310, МПК G01B 3/46, G01B 3/52. Heads for gaging devices and fixture for setting same / Frank E. Vanderwal. (27.03.1978) Опубл. 14.10.1980.

5. Пат.US 4200987, МПК G01B 3/42, G01B 3/46, G01B 5/08. Gauge / Marvin G. Schmitt. (10.10.1978) Опубл. 06.05.1980.

6. Патент CH 703905 / Daniel Rochat. Опубл. 13.04.2012.

Устройство для контроля диаметра критического сечения регулируемого сопла реактивного двигателя, включающее контрольный калибр, а также средства его перемещения и измерения усилия перемещения, отличающееся тем, что контрольный калибр посредством сферического подшипника закреплен на элементе средства измерения усилия перемещения с осевым и радиальным зазорами, обеспечивающими возможность его углового и линейного перемещения, ограниченного допусками на размеры сопла, при этом контрольный калибр содержит сферическую поверхность, выполненную с возможностью контакта со створками регулируемого сопла и имеющую диаметр, равный диаметру критического сечения регулируемого сопла.



 

Похожие патенты:

Изобретение относится к измерительной технике и может быть использовано для безразборной диагностики двигателей внутреннего сгорания в эксплуатационных условиях, при управлении и оптимизации двигателей, при доводочных испытаниях и исследованиях рабочего процесса двигателя, в том числе на переходных и неустановившихся режимах работы.

Изобретение относится к области эксплуатации и диагностики авиационных газотурбинных двигателей и может найти применение в способах определения периодичности контроля деталей авиационных газотурбинных двигателей (ГТД) с помощью вихретокового метода обнаружения подповерхностных дефектов.

Изобретение относится к области испытания и технического диагностирования машин, в частности к способу определения эффективной мощности двигателя внутреннего сгорания.

Изобретение относится к области контроля машин. Способ акустического анализа машины, включающий в себя получение, по меньшей мере, одного акустического сигнала, вызываемого, по меньшей мере, одним микрофоном, установленным внутри машины, при этом способ дополнительно содержит этапы, на которых: разделяют, по меньшей мере, один акустический сигнал на множество исходных источников звука, при этом указанный сигнал моделируют как смесь составляющих, каждая из которых соответствует одному исходному источнику звука, по меньшей мере, для одного из исходных источников звука определяют характеристическую акустическую сигнатуру, по меньшей мере, одну характеристическую акустическую сигнатуру сравнивают, по меньшей мере, с одной контрольной акустической сигнатурой, записанной в базе контрольных данных.

Способ определения температуры газа перед турбиной на форсажном режиме турбореактивного двигателя (ТРД) относится к авиадвигателестроению. Предварительно расчетно-экспериментальным методом определяют коэффициент К, учитывающий изменение температуры газа перед турбиной при изменении частоты вращения ротора высокого давления на 1%, и коэффициент С, учитывающий увеличение температуры газа перед турбиной при включении форсажного насоса на полном форсированном режиме, а при испытаниях двигателей измеряют на максимальном режиме работы двигателя частоту вращения ротора высокого давления n2М, затем выводят двигатель на форсажный режим работы, измеряют частоту ротора высокого давления n2ф, суммарный расход воздуха через двигатель GВΣ, суммарный расход топлива Gт.

Изобретение относится к области диагностики двигателя внутреннего сгорания с использованием лазерной системы зажигания. Технический результат заключается в снижении сложности и трудоемкости диагностики двигателя.

Изобретение относится способам и системам для использования лазерной системы зажигания для выполнения визуального контроля двигателя и диагностирования различных компонентов и условий цилиндра на основании позиционных измерений в двигателе.

Изобретение относится способам и системам для использования лазерной системы зажигания для выполнения визуального контроля двигателя и диагностирования различных компонентов и условий цилиндра на основании позиционных измерений в двигателе.

Изобретение относится к области авиации, в частности к способам контроля и диагностики технического состояния агрегатов авиационных приводов по вибрации их корпусов при работающих двигателях.

Изобретение относится к области технических средств диагностирования двигателей внутреннего сгорания по акустическим сигналам и предназначено для упрощения процесса диагностики, повышения ее точности с указанием причины поломки, а также указанием узла или элемента, приведшего к ухудшению работы двигателя.

Комплект шаблонов для контроля допустимых размеров дефектов в виде раковин на поверхности отливок состоит из восьми металлических прутков, используемых в качестве шаблонов.

Комплект шаблонов для контроля допустимой глубины дефектов в виде раковин на поверхности отливок состоит из пяти металлических прутков, используемых в качестве шаблонов.

Изобретение относится к измерительной технике и может быть использовано для контроля предельных или измерения действительных значений внутренних диаметров деталей в машиностроении.

Изобретение относится к измерительной технике и может быть использовано для контроля предельных или измерения действительных размеров в машиностроении. .

Изобретение относится к приспособлениям для измерения диаметра внутренних проточек и может быть использовано при изготовлении изделий цилиндрической формы. .

Изобретение относится к измерительной технике и может быть использовано в машиностроении для определения рабочих размеров деталей, особенно для рассортировки деталей, на размерные группы при многодиапазонной селективной сборке.

Изобретение относится к измерительной технике и может найти применение в приборостроении и машиностроении. .

Изобретение относится к измерительной технике и предназначено для контроля отверстий. .

Изобретение относится к инструментальной промышленности и может быть использовано при изготовлении калибров для контроля цилиндрических и конических резьб. .

Изобретение относится к измерительной технике в машиностроении. .

Изобретение относится к области ракетной и измерительной техники и может быть использовано при огневых стендовых испытаниях ракетных двигателей твердого топлива (РДТТ).
Наверх