Способ изготовления ионообменной двухслойной мембраны

Использование: изобретение относится к мембранной технике, в частности к способам получения ионообменных асимметричных мембран. Раствор перфторсульфополимера в литиевой форме в растворителе - диметилформамиде с массовой долей в растворе 7,2%, объемом 15-25 мл - заливают в стеклянную форму с плоским дном и выдерживают в течение 2-6 часов до равномерного распределения жидкости по поверхности формы с последующим удалением пузырьков воздуха. Затем форму с жидкостью подвергают нагреву при температуре 50-80°С до полного испарения растворителя с получением первого слоя мембраны. Далее смешивают раствор перфторсульфополимера в литиевой форме в растворителе - диметилформамиде с массовой долей в растворе 7,2%, объемом 4-10 мл, модификатор в виде нанотрубок галлуазита и дополнительную порцию растворителя - диметилформамида объемом 4-10 мл - с получением суспензии. На полученный первый слой мембраны, нагретый до температуры 50-80°С, с помощью аэрографа производят распыление полученной суспензии со скоростью 0,1-0,5 мл/мин при давлении 1,5-3,0 атм. Затем полученную двухслойную мембрану высушивают при температуре 80-120°С до постоянной массы мембраны для удаления остаточного растворителя в течение 1-5 часов и удаляют с поверхности стеклянной формы сформированную двухслойную мембрану с толщиной первого слоя, превышающей толщину второго слоя. Технический результат достигается за счет формирования четкой межфазной границы слоев мембраны, обеспечивающей высокое физическое сродство слоев мембраны, следствием чего является достижение низких значений коэффициента диффузионной проницаемости. 1 ил., 3 табл., 2 пр.

 

Изобретение относится к мембранной технике, в частности к способам получения ионообменных асимметричных мембран с улучшенными электрохимическими характеристиками, и может найти применение, например, в топливных элементах, электродиализных аппаратах, сенсорных устройствах, а также в качестве мембранных диодов.

Известен способ получения композитной ионообменной мембраны, состоящей из перфторированной сульфокатионитовой ионообменной мембраны (Nafion) и слоя полианилина, образованного путем последовательного воздействия 1 М раствора протонированного анилина в течение 1 часа и инициатора полимеризации 0,1 М персульфата аммония (NH4)2S2O8 в течение 1 часа (S.Tan, D.Belanger Characterization and transport properties of Nafion/polyaniline composite membranes // J. Phys. Chem. 2005, V. 109, p. 23480-23490). Недостаток известного способа заключается в том, что описываемое техническое решение обеспечивает градиентное распределение слоя полианилина, однако, в данном случае, не достигается асимметрия транспортных свойств.

Известен способ получения композитной мембраны с фиксированной толщиной слоя полианилина, включающий синтез полианилина в матрице путем последовательного воздействия 1 М раствора протонированного анилина (C6H5NH3+) в течение 1 ч и инициатора полимеризации 0,1 М персульфата аммония (NH4)2S2O8 в течение 1 ч. При этом в качестве исходной матрицы берут инертную непроводящую пленку сополимера тетрафторэтилена и перфтор(3,6-диокса-4-метил-7-октен)сульфонилфторида и подвергают кипячению в растворе 10% NaOH в течение 10-40 мин, с образованием заряженного сульфированного слоя в полученной пленке, которую отмывают дистиллированной водой, переводят в Н+-форму, для последующего осуществления синтеза полианилина в заряженном сульфированном слое, а затем кипятят в водном растворе аммиака, для мягкого щелочного омыления оставшейся инертной непроводящей пленки сополимера тетрафторэтилена и перфтор(3,6-диокса-4-метил-7-октен)сульфонилфторида. (RU №2481885, 2013). При этом известное техническое решение обеспечивает градиентное распределение слоя полианилина, однако, в данном случае, не достигается асимметрия транспортных свойств.

Более близким к описываемому изобретению является способ получения композиционной ионообменной мембраны, модифицированной градиентно распределенными по толщине мембраны наночастицами допанта, причем в качестве допанта используют мелкодисперсный гидратированный кислый фосфат циркония Zr(HPO4)2⋅H2O, или мелкодисперсный гидратированный оксид циркония ZrO2 H2O, или мелкодисперсный гидратированный оксид кремния SiO2H2O, или мелкодисперсный полианилин. При этом градиентное распределение неорганического допанта получают путем его синтеза непосредственно в полимерной матрице, в которую вводят один из компонентов синтезируемого допанта, а вторым компонентом обрабатывают одну из поверхностей полимерной матрицы (RU №2352384, 2009). Недостатком известного решения является деструкция основного слоя мембраны, обусловленная проникновением второго слоя мембраны в первый, приводящая к образованию микротрещин в структуре, следствием чего является увеличение коэффициента диффузионной проницаемости. Последнее отражается на стабильности структуры мембраны и приводит к снижению воспроизводимости ее транспортных свойств.

Вышесказанное негативно отражается при использовании мембран в топливных элементах, электродиализных аппаратах, сенсорных устройствах, а также в качестве мембранных диодов.

Технической проблемой, на решение которой направлено предлагаемое изобретение, является обеспечение воспроизводимости характеристик мембраны при многократном использовании с одновременной возможностью регулирования степени асимметрии диффузионной проницаемости.

Указанная техническая проблема решается описываемым способом изготовления ионообменной двухслойной мембраны, заключающимся в том, что раствор перфторсульфополимера в литиевой форме в растворителе -диметилформамиде с массовой долей в растворе 7,2%, объемом 15-25 мл заливают в стеклянную форму с плоским дном и выдерживают в течение 2-6 часов до равномерного распределения жидкости по поверхности формы с последующим удалением пузырьков воздуха, затем форму с жидкостью подвергают нагреву при температуре 50-80°С до полного испарения растворителя с получением первого слоя мембраны, после чего смешивают раствор перфторсульфополимера в литиевой форме в растворителе -диметилформамиде с массовой долей в растворе 7,2%, объемом 4-10 мл, модификатор в виде нанотрубок галлуазита и дополнительную порцию растворителя - диметилформамида объемом 4-10 мл с получением суспензии, на полученный первый слой мембраны, нагретый до температуры 50-80°С, с помощью аэрографа производят распыление полученной суспензии со скоростью 0,1-0,5 мл/мин при давлении 1,5-3,0 атм., затем полученную двухслойную мембрану высушивают при температуре 80-120°С до постоянной массы мембраны для удаления остаточного растворителя в течение 1-5 часов и удаляют с поверхности стеклянной формы сформированную двухслойную мембрану с толщиной первого слоя, превышающей толщину второго слоя.

Технический результат достигается за счет формирования четкой межфазной границы слоев мембраны, обеспечивающей высокое физическое сродство слоев мембраны, следствием чего является достижение низких значений коэффициента диффузионной проницаемости.

Описываемый способ изготовления ионообменной двухслойной мембраны проводят следующим образом.

Раствор перфторсульфополимера в литиевой форме (МФ-4СК) в растворителе - диметилформамиде с массовой долей в растворе 7,2% объемом 15-25 мл заливают в стеклянную форму с плоским дном и выдерживают в течение 2-6 часов до равномерного распределения жидкости по поверхности формы с последующим удалением пузырьков воздуха. Затем форму с жидкостью подвергают нагреву при температуре 50-80°С до полного испарения растворителя с получением первого слоя мембраны.

Далее смешивают раствор перфторсульфополимера в литиевой форме в растворителе - диметилформамиде с массовой долей в растворе 7,2%, объемом 4-10 мл, модификатор в виде нанотрубок галлуазита, взятый в количестве, предпочтительно, 1-10% от массы используемого перфторсульфополимера и дополнительную порцию растворителя - диметилформамида объемом 4-10 мл с получением суспензии.

На полученный первый слой мембраны, нагретый до температуры 50-80°С, с помощью аэрографа производят распыление полученной суспензии со скоростью 0,1-0,5 мл/мин при давлении 1,5-3,0 атм. Данные условия проведения распыления приводят к предотвращению растворения первого слоя мембраны растворителем, содержащимся в указанной суспензии.

Затем полученную двухслойную мембрану высушивают при температуре 80-120°С до достижения постоянной массы мембраны. При этом удаляется остаточный растворитель. Указанное высушивание проводят в течение 1-5 часов. Затем сформированную двухслойную мембрану удаляют с поверхности стеклянной формы. Проведение описываемого способа вышеуказанным образом приводит к получению двухслойной мембраны с толщиной первого слоя, превышающей толщину второго слоя.

Варьируя соотношения толщин слоев мембраны можно регулировать степень асимметрии диффузионной проницаемости, что обусловлено несимметричным распределением концентрации электролита в слоях мембраны при разной ориентации мембраны по отношению к потоку электролита. Несимметричные профили концентрации являются следствием различия в коэффициентах диффузии и равновесного распределения молекул электролита в слоях, а также разных обменных емкостей слоев. Изменения соотношения толщин слоев выбирается в зависимости от цели использования мембраны. Например, мембрана с коэффициентами диффузионной проницаемости, достигнутыми описываемым способом, с толщиной первого слоя, превышающей толщину второго слоя в 4-5 раз может использоваться в сенсорных устройствах.

Ниже представлены примеры, иллюстрирующие, но не ограничивающие описываемый способ.

Пример 1.

Раствор перфторсульфополимера в литиевой форме (МФ-4СК) в растворителе диметилформамиде с массовой долей в растворе 7,2% объемом 20 мл помещают в стеклянную форму с плоским дном и выдерживают в течение 2 часов до равномерного распределения жидкости по поверхности формы с последующим удалением пузырьков воздуха. После этого форму с жидкостью нагревают при температуре 80°С до полного испарения растворителя с получением первого слоя мембраны.

Затем раствор перфторсульфополимера в литиевой форме (МФ-4СК) в растворителе диметилформамиде с массовой долей в растворе 7,2% объемом 4 мл смешивают с модификатором - нанотрубками галлуазита, взятых в количестве 2,0% от массы используемого перфторсульфополимера и дополнительной порцией растворителя диметилформамида объемом 4 мл для снижения вязкости начального раствора с получением суспензии. Далее на первый слой мембраны, нагретый до температуры 80°С с помощью аэрографа производят распыление полученной суспензии со скоростью 0,1 мл/мин при давлении 1,5атм. Затем образованную двухслойную мембрану высушивают при температуре 120°С в течение часа до достижения постоянной массы мембраны за счет удаления остаточного растворителя и удаляют с поверхности стеклянной формы сформированную двухслойную мембрану. При этом получают ионообменную двухслойную мембрану, имеющую толщину первого слоя, превышающую толщину второго слоя в 5раз.

Для доказательства асимметрии диффузионной проницаемости полученной мембраны проведены электрохимические измерения в измерительной диффузионной ячейке в зависимости от положения мембраны по отношению к направлению потока электролита (NaCl), и на основании математической модели переноса электролита через бислойную мембрану (Filippov, A.N.; Starov, V.M.; Kononenko, N.A.; Berezina, N.P. Asymmetry of diffusion permeability of bi-layer membranes. Adv. Colloid Interface Sci. 2008, 139, 29-44) найдены коэффициенты диффузии и равновесного распределения его молекул в слоях.

Пример 2.

Раствор перфторсульфополимера в литиевой форме (МФ-4СК) в растворителе диметилформамиде с массовой долей в растворе 7,2% объемом 15 мл помещают в стеклянную форму с плоским дном и выдерживают в течение 4 часов до равномерного распределения жидкости по поверхности формы с последующим удалением пузырьков воздуха. После этого форму с жидкостью нагревают при температуре 60°С до полного испарения растворителя с получением первого слоя мембраны.

Затем раствор перфторсульфополимера в литиевой форме (МФ-4СК) в растворителе диметилформамиде с массовой долей в растворе 7,2% объемом 6 мл смешивают с модификатором - нанотрубками галлуазита, взятых в количестве 1,0% от массы используемого перфторсульфополимера и дополнительной порцией растворителя диметилформамида объемом 6 мл для снижения вязкости начального раствора с получением суспензии. Далее на первый слой мембраны, нагретый до температуры 60°С с помощью аэрографа производят распыление полученной суспензии со скоростью 0,1 мл/мин при давлении 1,5 атм. Затем образованную двухслойную мембрану высушивают при температуре 120°С в течение часа до достижения постоянной массы мембраны за счет удаления остаточного растворителя и удаляют с поверхности стеклянной формы сформированную двухслойную мембрану.

При этом получают ионообменную двухслойную мембрану, имеющую толщину первого слоя, превышающую толщину второго слоя в 3 раза.

Для доказательства асимметрии диффузионной проницаемости полученной мембраны проведены электрохимические измерения в измерительной диффузионной ячейке в зависимости от положения мембраны по отношению к направлению потока электролита (NaCl) и на основании математической модели переноса электролита через данную бислойную мембрану найдены коэффициенты диффузии и равновесного распределения его молекул в слоях.

В Таблице 1 приведены значения коэффициентов диффузии молекулы электролита NaCl (мкм2/с) в слоях композиционных ионообменных мембран: индекс (1) относится к модифицированному (более тонкому) слою мембраны, индекс (2) - к немодифицированному (более толстому) слою мембраны.

В Таблице 2 приведены значения интегральных коэффициентов диффузионной проницаемости, полученные при различном положении мембраны примера 1 в измерительной ячейке: «s» означает ориентацию модифицированного и более тонкого слоя к раствору электролита, «w» -ориентацию модифицированного и более тонкого слоя к камере с чистой водой, при различной концентрации раствора NaCl.

Как видно из полученных данных, композиционные ионообменные мембраны обладают асимметрией диффузионной проницаемости, т.е. неэквивалентными транспортными свойствами в разных направлениях при диффузии раствора NaCl через них.

Асимметричные по диффузионной проницаемости мембраны обладают асимметрией и других транспортных свойств, в частности, вольтамперной характеристики (ВАХ). Так, на нижеприведенной фиг. 1 показаны вольтамперные кривые, полученные при различном положении мембраны (пример 1) в электродиализной ячейке, где «s» - ориентация модифицированного (более тонкого) слоя к аноду, «w» - ориентация данного слоя к катоду.

В таблице 3 приведены значения параметров вольтамперных кривых мембраны по примеру 1, свидетельствующие об асимметрии ВАХ.

Как видно из представленной фиг.1 и таблицы 3, отношение предельных токов и длин их плато на вольтамперной кривой составляет 0,86, что свидетельствует о степени асимметрии этих характеристик равной 14%. Степень асимметрии наклона омического участка несколько ниже - 7%, как и степень асимметрии наклона запредельного участка, которая составляет около 12%. Таким образом, указанные данные подтверждают, что синтезированная мембрана обладает также и асимметрией ВАХ.

Из сравнения данных, представленных в таблице 2 и данных, указанных в известном способе получения мембраны, при концентрации 0,1 М NaCl следует, что интегральный коэффициент диффузионной проницаемости для мембраны, полученной согласно известному способу, составляет Ps=138 мкм2/с и Pw=187 мкм2/с, а для мембраны, полученной по способу согласно описываемому изобретению - Ps=5.84 мкм2/с и Pw=5.23 мкм2/с. Таким образом, значения интегрального коэффициента диффузионной проницаемости для мембраны, полученной описываемым способом, существенно ниже.

Осуществление описываемого способа с применением иных режимных условий, входящих в оговоренные выше интервалы приводит к аналогичным результатам.

Таким образом, проведение описываемого способа позволяет получить ионообменную двухслойную мембрану, имеющую более низкие значения коэффициента диффузионной проницаемости по сравнению с мембраной, полученной известным способом.

Способ изготовления ионообменной двухслойной мембраны, заключающийся в том, что раствор перфторсульфополимера в литиевой форме в растворителе - диметилформамиде с массовой долей в растворе 7,2%, объемом 15-25 мл - заливают в стеклянную форму с плоским дном и выдерживают в течение 2-6 часов до равномерного распределения жидкости по поверхности формы с последующим удалением пузырьков воздуха, затем форму с жидкостью подвергают нагреву при температуре 50-80°С до полного испарения растворителя с получением первого слоя мембраны, после чего смешивают раствор перфторсульфополимера в литиевой форме в растворителе - диметилформамиде с массовой долей в растворе 7,2%, объемом 4-10 мл, модификатор в виде нанотрубок галлуазита и дополнительную порцию растворителя - диметилформамида объемом 4-10 мл - с получением суспензии, на полученный первый слой мембраны, нагретый до температуры 50-80°С, с помощью аэрографа производят распыление полученной суспензии со скоростью 0,1-0,5 мл/мин при давлении 1,5-3,0 атм, затем полученную двухслойную мембрану высушивают при температуре 80-120°С до постоянной массы мембраны для удаления остаточного растворителя в течение 1-5 часов и удаляют с поверхности стеклянной формы сформированную двухслойную мембрану с толщиной первого слоя, превышающей толщину второго слоя.



 

Похожие патенты:

Изобретение относится к блок-сополиимиду, к вариантам способа его получения, к асимметричной цельной мембране или асимметричной цельной плоской мембране, к модулям на основе такой мембраны, а также к способу разделения газов и устройству для разделения газов.

Изобретение относится к технической области фильтрующих элементов. Способ изготовления мембраны для тангенциальной фильтрации текучей среды, при этом указанная мембрана содержит: подложку, имеющую трехмерную структуру и образованную монолитным керамическим пористым телом, в котором выполнены пути для циркуляции фильтруемой текучей среды и разделительный фильтрующий слой, нанесенный на стенку циркуляционных путей, в котором трехмерную структуру подложки получают посредством аддитивной технологии, согласно которой трехмерную структуру подложки рассекают на участки при помощи программы компьютерного проектирования, при этом указанные участки создают поочередно в форме элементарных пластов, расположенных друг над другом и последовательно связанных между собой, при помощи повторения следующих двух этапов, на которых: а) наносят однородный сплошной слой порошка постоянной толщины, предназначенного для формирования керамического пористого тела на площади, превышающей рисунок сечения указанного формируемого пористого тела на уровне пласта; b) в соответствии с рисунком, определенным для каждого пласта, локально уплотняют часть нанесенного материала для создания элементарного пласта, при этом указанные два этапа повторяют для того, чтобы при каждом повторении одновременно связывать сформированный таким образом элементарный пласт с предыдущим пластом, постепенно наращивая требуемую трехмерную форму.

Изобретение относится к пористой мембране для фильтрации белковых растворов. Пористая мембрана содержит гидрофобный полимер и нерастворимый в воде гидрофильный полимер, причем данная пористая мембрана имеет: плотный слой с выходной стороны мембраны по направлению фильтрации; градиентную асимметричную структуру, в которой средний диаметр мелких пор увеличивается от выходной части в направлении фильтрации к входной части в направлении фильтрации и индекс градиента среднего диаметра пор от плотного слоя к крупнопористому слою составляет от 0,5 до 12,0.
Изобретение относится к области фильтрации. Способ получения трубчатого фильтрующего элемента с фторопластовой мембраной включает растворение фторопласта в легколетучем растворителе, смешение полученного раствора с порообразователем с получением рабочего раствора, нанесением его на внутреннюю поверхность открытопористой трубки, испарение растворителя, приводящее к отверждению фторопласта с образованием полупроницаемой мембраны.

Изобретение относится к мембране на подложке, к способу получению мембраны и способу выделению с помощью указанной мембраны твердых частиц и катионов металлов, более точно, к способу фильтрации твердых частиц и экстракции катионов металлов, в частности радиоактивных, содержащихся в жидкости.

Изобретение относится к полиолефиновому материалу, который образуют вытягиванием в твердом состоянии термопластичной композиции, содержащей непрерывную фазу, которая включает полиолефиновый матричный полимер и добавку нановключения и добавку микровключения, диспергированные в непрерывной фазе в форме дискретных доменов.

Изобретение касается способов разделения потока текучей эмульсии на углеводородный поток и водный поток. Способ разделения потока текучей эмульсии, имеющей непрерывную водную фазу, на углеводородный поток и водный поток, в котором пропускают поток текучей эмульсии через микропористую мембрану с получением потока углеводородного продукта и потока водного продукта, мембрана содержит по существу гидрофобную, полимерную матрицу и по существу гидрофильный, тонкоизмельченный мелкозернистый, по существу нерастворимый в воде наполнитель, распределенный по матрице.

Изобретение относится к формованию полимерной трековой мембраны. Техническим результатом является расширение арсенала технических средств при формовании полимерной трековой мембраны с полостью заданной кривизны.

Изобретение относится к микроструктурным технологиям. В способе изготовления мембранного фильтра согласно изобретению электролит, перемещаясь по замкнутому контуру – траектории, последовательно проходит электролизную камеру, где происходит разделение ионов от электролита, причем положительные ионы металла или ионы смеси нескольких металлов при перемещении их от анода до заготовки для увеличения их кинетической энергии разгоняются суммарным магнитным полем, при этом покрытие и уплотнение осуществляются посредством регулируемого значения суммарного вектора напряженности магнитного поля, для установления требуемой кинетической энергии внедрения запасенной ими кинетической энергии производить слоевое на заданную глубину покрытие токопроводящей или изоляционной заготовки с последующим уплотнением его за счет увеличения плотности ускоряющий ионы магнитной энергии, а также с помощью электрического статического поля, вектор напряженности которого направлен параллельно оси движения ионов, производится пробой плоскостной заготовки для изготовления мембранного фильтра.

Изобретение относится к созданию селективных мембран, функционирующих за счет «сродства» гидридообразующего наполнителя к водороду. Описан способ получения композиционных мембранных материалов для выделения водорода из газовых смесей на основе гидридообразующих интерметаллических соединений и полимерных связующих, включающий механоактивационную обработку порошка гидридообразующего интерметаллического соединения в шаровой мельнице, последующую кратковременную совместную механоактивационную обработку порошка гидридообразующего интерметаллического соединения с добавлением барьерного полимерного материала продолжительностью 1-5 мин, прессование металлополимерных композиционных порошков и последующую прокатку полученного металлополимерного компакта.

Использование: изобретение относится к мембранной технике, в частности к способам получения ионообменных асимметричных мембран. Раствор перфторсульфополимера в литиевой форме в растворителе - диметилформамиде с массовой долей в растворе 7,2, объемом 15-25 мл - заливают в стеклянную форму с плоским дном и выдерживают в течение 2-6 часов до равномерного распределения жидкости по поверхности формы с последующим удалением пузырьков воздуха. Затем форму с жидкостью подвергают нагреву при температуре 50-80°С до полного испарения растворителя с получением первого слоя мембраны. Далее смешивают раствор перфторсульфополимера в литиевой форме в растворителе - диметилформамиде с массовой долей в растворе 7,2, объемом 4-10 мл, модификатор в виде нанотрубок галлуазита и дополнительную порцию растворителя - диметилформамида объемом 4-10 мл - с получением суспензии. На полученный первый слой мембраны, нагретый до температуры 50-80°С, с помощью аэрографа производят распыление полученной суспензии со скоростью 0,1-0,5 млмин при давлении 1,5-3,0 атм. Затем полученную двухслойную мембрану высушивают при температуре 80-120°С до постоянной массы мембраны для удаления остаточного растворителя в течение 1-5 часов и удаляют с поверхности стеклянной формы сформированную двухслойную мембрану с толщиной первого слоя, превышающей толщину второго слоя. Технический результат достигается за счет формирования четкой межфазной границы слоев мембраны, обеспечивающей высокое физическое сродство слоев мембраны, следствием чего является достижение низких значений коэффициента диффузионной проницаемости. 1 ил., 3 табл., 2 пр.

Наверх