Неподвижный каскадный линзовый концентратор солнечного излучения с оптическим способом наведения

Неподвижный каскадный линзовый концентратор солнечного излучения с оптическим способом наведения светового потока содержит три плоские радиальные линзы Френеля. В фокусе первой сужающей радиальной линзы Френеля расположена вторая расширяющая короткофокусная радиальная линза Френеля, за которой расположена третья сужающая линза Френеля, за которой расположен приемный элемент. Вторая расширяющая линза имеет меньшее фокусное расстояние, чем первая, и они обе образуют коллиматор, а приемный элемент расположен в фокусе всей оптической системы трех линз концентратора. Технический результат - увеличение плотности выходного светового потока, снижение массы концентратора, отсутствие электромеханических следящих систем, снижение ветровой нагрузки, увеличение времени работы в течение дня, срока службы и надежности. 1 ил.

 

Изобретение относится к области солнечной энергетики, или солнечным оптоволоконным осветительным приборам, а именно к приборам, увеличивающим концентрацию солнечного излучения. Данное изобретение может найти широкое применение в солнечной энергетике при разработке и изготовлении концентраторов в установках с фотоэлектрическими модулями, требующими постоянного наведения на Солнце в режиме реального времени, а также, в солнечных оптоволоконных осветительных устройствах.

Известно, что экологически чистую солнечную световую энергию, можно преобразовывать в электроэнергию с помощью солнечных батарей или фотоэлектронных преобразователей (ФЭП). Для эффективного сбора солнечной энергии могут использоваться солнечные концентраторы на основе, радиальных линз Френеля. Такие линзовые концентраторы (панели) часто применяются для увеличения продуктивности солнечных батарей или солнечных печей. Они значительно увеличивают коэффициент полезного действия (КПД) ФЭП (например, РФ 2353865, или Журнал технической физики, 2016, том 86, вып. 12, с. 87-94, или https://rodovid.me/solar_power/linzovye-solnechnye-paneli.html). Однако, при перемещении солнца по небосводу, у таких концентраторов происходит смещение фокусного пятна концентрированного света. Поэтому, их нужно постоянно наводить на солнце, в связи с чем, они всегда используются только совместно с механическими системами слежения. Механические системы слежения, это сложные, громоздкие, дорогостоящие и малонадежные устройства, обычно, основанные на применении электрического привода, требующие электропитания, смазки редукторов, их герметизации для защиты от дождя и пыли (https://youtu.be/apihVOKdOPw). Такие концентраторы не могут быть изготовлены больших размеров из-за большого веса и ветровой нагрузки, они дорогие, малонадежные, сложные в эксплуатации.

В последние годы для освещения помещений естественным светом, стали применяться гибридные оптоволоконные устройства. Концентратор в этих устройствах, фокусирует солнечные лучи во входной торец оптоволоконного кабеля, по которому свет далее транспортируется в освещаемое помещение. Для концентрации света в солнечных оптоволоконных осветительных приборах, чаще всего используют систему Кассегрена на основе зеркал в форме параболоида (Energies 2015, 8, 7185-7201). Такие устройства, также содержат механическую систему позиционирования, которая поворачивает зеркала в течение дня, постоянно направляя их на солнце, как это делает всем известный подсолнух. Наличие электроприводной системы слежения за солнцем (например, РФ 2579169), требует внешнего электропитания подводимого от сети, или получаемого от преобразования световой энергии в энергию электрическую. Такие устройства являются сложными и дорогостоящими. Стоимость этих систем достигает 16 тыс.долларов, а их установка колеблется от 500 до 2000 долларов. Высокая цена, сложность обслуживания, необходимость во внешнем электропитании, не большая мощность из-за ограниченной площади концентратора, большой вес концентратора, и существенная ветровая нагрузка, являются основными недостатками данных систем. Тем не менее, несмотря на внушительные цены, по прогнозам экспертов, к 2020 г. в США планируется продать более 5000 гибридных оптоволоконных систем освещения.

Известны термомеханические системы позиционирования, работающие на эффекте температурного расширения материалов (РФ 2468288). Они проще электроприводных систем, однако, обеспечивают малый угол поворота концентратора, очень чувствительны к ветру, и другим внешним механическим воздействиям.

Известны простые конструкции неподвижных концентраторов, (например, United States Patent 3,780,722, или US 2012/0154941 А1). Для упрощения, в таких концентраторах, применяются фоконы, либо специальные призмы, образующие матричные поверхности для сбора света, и его дальнейшей транспортировки по оптическим каналам. Однако такие концентраторы обладают большой массой, и низкой эффективностью. Они не могут обеспечить высокую плотность светового потока, из-за ограниченной числовой апертуры фоконов. При большой входной, и малой выходной площадях торцов, в фоконе большая часть лучей разворачиваются в обратном направлении, и выходит через входной торец, а не достигает выходного торца. Поэтому, такие концентраторы не позволяют обеспечивать передачу больших световых потоков по тонкому оптоволокну.

Прототипом для заявляемого устройства является неподвижный концентратор (коллектор), в котором для увеличения плотности светового потока, совместно с фоконом используется сужающая линза, (патент РФ на ПМ №102747). Однако такой концентратор имеет не большой угол слежения по азимуту, т.е. обеспечивает малое время работы концентратора в течение дня. Он хорошо работает только в полуденное время. Фокусное световое пятно у него вытянуто в форме ромба, и оно все равно смещается в течение дня по фокусной линии при перемещении солнца по небосводу. В этом концентраторе практически отсутствует его наведение на солнце по углу места (в вертикальной плоскости). Другими словами, отсутствует сезонная коррекция концентратора. Это также приводит к смещению концентрированного светового пятна из-за сезонного изменения высоты солнца над горизонтом. Поэтому, входной торец фокона, следовательно, и выходной торец в этом концентраторе должны иметь большие размеры. Это увеличивает площадь сечения оптического волокна, или снижает плотность светового потока на приемном элементе ФЭП, а значит, снижает его КПД. Такие концентраторы, так же имеют большую массу, и большой расход материала при изготовлении линз.

Техническим результатом заявляемого изобретения является, снижение стоимости неподвижного концентратора, существенное увеличение плотности выходного светового потока, снижение массы концентратора и материалов на его изготовление. При его использовании, отпадает необходимость применения электромеханических следящих систем, уменьшается стоимость, снижается ветровая нагрузка на концентратор, увеличивается время работы осветительного устройства в течение дня, увеличивается срок службы и надежность, при полной независимости от сети электропитания.

Сущность изобретения.

Технический результат достигается тем, что в заявляемом неподвижном каскадном концентраторе, применено трехкаскадное сужение светового потока, и оптический способ наведения этого потока на приемный элемент - входной торец фокона или ФЭП (Фиг. 1). Этот способ основан на применении трех радиальных линз Френеля (двух собирающих и одной рассеивающей). Две первые радиальные линзы Френеля (одна собирающая или сужающая - 2, а другая рассеивающая или расширяющая - 5), образуют концентратор - коллиматор (устройство для получения параллельного концентрированного пучка лучей света). Рассеивающая линза (5) расположена немного ближе от фокуса собирающей линзы (2), причем, оси симметрии этих линз совпадают между собой, и направлены, строго на солнце в полдень в период весеннего равноденствия. Падающий световой поток, проходя через собирающую линзу (2), сужается, а затем, проходя через рассеивающую линзу (5) снова становится параллельным, но концентрированным. Затем, этот узконаправленный световой поток (6) проходит через длиннофокусную собирающую линзу (7), и окончательно сужается до размеров входного торца фокона (9). Собирающая линза (7), также, направляет световой поток на входной торец фокона, или ФЭП (9). Фокон удален от фокуса данной линзы (7), на такое расстояние, что любой световой луч, выходящий из точки (3), пройдя через третью длиннофокусную собирающую линзу Френеля (7), непременно попадает в фокон (9), независимо от того, через какую точку на линзе он прошел. Таким образом, при перемещении солнца по небосводу, угол падения его лучей на линзу (2) изменяется, и концентрированный параллельный поток, смещается от центра линзы (7) к ее краю, но при этом у линзы, увеличивается угол преломления этого потока, и свет обязательно попадает на входной торец фокона или ФЭП (9). Причем, данный механизм оптического наведения светового потока, работает как в плоскости суточного движения солнца (наведение по азимуту), так и в плоскости сезонного перемещения солнца (наведение по углу места), поскольку, в конструкции концентратора используются радиальные линзы Френеля.

Такая конструкция концентратора, позволяет изготавливать неподвижные сотовые энергетические панели, пригодные для использования их в качестве кровли зданий с энергосберегающими системами. Кроме того, за счет наличия трех воздушных прослоек (камер), это техническое решение позволяет обеспечить хорошую теплоизоляцию кровли. Для наиболее эффективной работы таких концентраторов, просто необходимо кровлю здания расположить перпендикулярно солнечному световому потоку в полуденное время, в период весеннего равноденствия. В этом случае, в южных регионах России, концентратор будет эффективно работать при смещении солнца на угол 120°, (60° влево + 60° вправо), т.е. 8 часов в сутки во время наиболее активного солнца (с 8 до 16 часов). Эксперименты показали, что при использовании монолитного поликарбоната (0,6 мм), или оконного стекла (3 мм), потери световой энергии от эффекта отражения линз Френеля, не превысят 1-2%. Данный концентратор обеспечивает и сезонную коррекцию в вертикальной плоскости, когда солнце перемещается на угол (угол места), примерно 41° (зима - лето). Поэтому, от сезонного перемещения солнца, потери на отражение, будут еще меньше. При этом не нужно поворачивать концентратор, постоянно направляя его на солнце, как это предусматривается в концентраторах - аналогах (например, Energies 2015, 8, 7185-7201 или https://rodovid.me/solar_power/linzovye-solnechnye-paneli.html).

На фиг. 1. показано движение световых потоков в концентраторе утром, в полдень и вечером. Фокусные расстояния двух первых линз (F1 и F2) должны быть пропорциональны диаметрам падающих на них световых потоков. Причем, чем меньше фокусное расстояние второй рассеивающей линзы, тем эффективнее будет работать концентратор.

Такие неподвижные многослойные концентраторы имеют малый вес, и небольшую цену из-за малого расхода прозрачного материала и отсутствия систем механического наведения на солнце. Они могут быть реализованы в многокамерных оконных блоках или в стеклопакетах для кровли зданий. Совместно с фотоэлектронными преобразователями (ФЭП) они найдут широкое применение в южных регионах, и средней полосе России, для генерации электроэнергии, например, в генерирующих электрическую энергию крышах домов. Также их можно применять для дополнительного оптоволоконного освещения солнечным светом помещений на северной стороне дома, подвалов, подземных автостоянок, станций метро, и других объектов.

Цифровые обозначения элементов на фиг. 1.

1 - Осевая линия падающего вечером солнечного светового потока

2 - обирающая (сужающая) линза Френеля

3 - Точка пересечения осевых линий падающего света при суточном движении солнца по небосводу

4 - Сужающийся световой поток (утром) после первой линзы Френеля

5 - Рассеивающая (расширяющая) короткофокусная линза Френеля

6 - Узкий концентрированный световой поток (в полдень) после второй линзы Френеля

7 - Собирающая (сужающая) длиннофокусная линза Френеля

8 - Окончательно сужающийся световой поток (в полдень) после третьей собирающей линзы Френеля

9 - Приемный элемент - фотоэлектронный преобразователь (ФЭП), или входной торец фокона

Неподвижный каскадный линзовый концентратор солнечного излучения с оптическим способом наведения светового потока, содержащий фокусирующие линзы, приемный элемент (фокон или ФЭП), отличающийся тем, что он содержит три плоские радиальные линзы Френеля, в фокусе первой сужающей радиальной линзы Френеля расположена вторая расширяющая короткофокусная радиальная линза Френеля, за которой расположена третья сужающая линза Френеля, за которой расположен приемный элемент, причем, вторая расширяющая линза имеет меньшее фокусное расстояние, чем первая, и они обе образуют коллиматор, а приемный элемент расположен в фокусе всей оптической системы трех линз концентратора.



 

Похожие патенты:

Изобретение относится к устройствам автономного энергоснабжения маломощных потребителей. Устройство автономного энергоснабжения с модулем светового ограждения, содержащее, по меньшей мере, две солнечные панели из монокристаллических или поликристаллических фотогальванических модулей, ветрогенератор, по меньшей мере, одну аккумуляторную батарею, блок управления и контроля, состоящий из контроллера заряда аккумуляторной батареи с функцией отслеживания точки максимальной мощности и контроллера заряда аккумуляторной батареи широтно-импульсной модуляции и/или гибридного контроллера заряда аккумуляторной батареи, совмещающего функции контроллера заряда аккумуляторной батареи с функцией отслеживания точки максимальной мощности и контроллера заряда аккумуляторной батареи широтно-импульсной модуляции и позволяющего одновременно использовать ветрогенератор и фотогальванические модули, климатический модуль, исполнительный модуль светового ограждения, включающий модуль автоматики включения/отключения с возможностью подключения контроллера управления по GSM каналам и выносные сдвоенные заградительные огни.

Cистема, использующая энергию солнца для генерирования энергии, включает в себя фотоэлектрический модуль, преобразователь энергии и устройство управления. Преобразователь энергии сконфигурирован, чтобы управлять выходным напряжением фотоэлектрического модуля так, чтобы выходное напряжение соответствовало целевому выходному напряжению.

Солнечный генератор (10) содержит генератор (20) на основе термоэлектронной эмиссии, усиленной фотонами, имеющий катод (22) для приема солнечного излучения (70) и анод (24), который вместе с катодом генерирует первый ток (26) и сбросное тепло (28) из солнечного излучения (70); дополнительный источник тепла, создающий дополнительное тепло; термоэлектрический генератор (30), имеющий тепловую связь с анодом (24) и дополнительным источником тепла для преобразования сбросного тепла (28) от анода (24) и дополнительного тепла во второй ток (36); и схему, подключенную к генератору (20) на основе термоэлектронной эмиссии, усиленной фотонами, и к термоэлектрическому генератору (30) для объединения первого и второго токов (26, 36) в выходной ток (16).

Изобретение относится к гелиотехнике, в частности к солнечным установкам с системой ориентации солнечных концентраторов, и может быть использовано для нагрева различных теплоносителей, производства электроэнергии, в опреснительных и других установках, преобразующих солнечную энергию в тепловую.

Изобретение относится к автономным гелиосистемам для получения, накопления и использования электрической и тепловой энергии. Солнечный конвертер выполнен со снабженной выходными проводниками фотоэлектрической поверхностью, совмещенной с верхней крышкой теплового аккумулятора, корпус которого снабжен введенной в систему эластичной липучей, вакуумной или магнитной присоской, а также с лобовым и тыловым спойлерами, передней и задней торцевыми стенками теплового аккумулятора.

Неподвижный концентратор солнечного излучения реализует наведение светового потока на входной торец фокона за счет сужения светового потока в двух перпендикулярных плоскостях и содержит три фокусирующие плоские линейные линзы Френеля, в фокусе первой короткофокусной линейной линзы Френеляторая линза Френеля, за которой расположена третья линейная короткофокусная линза Френеля, в фокусе которой расположен фокон.

Изобретение относится к области возобновляемой энергетики, в частности к атмосферным энергетическим гелиоустановкам, содержащим наполненный гелием и удерживаемый с земли аэростат/баллон, на котором размещены солнечные панели.

Изобретение относится к установкам, непрерывно следящим за Солнцем, и может быть использовано для питания потребителей в районах ненадежного электроснабжения. Технический результат заключается в повышении мощности солнечной электростанции.

Изобретение направлено на получение электроэнергии экологически чистым способом в условиях комплексного и системного сочетания солнечной световой и тепловой энергии и сил, связанных с перепадом температуры и давления воздуха в зависимости от высоты, более полное и эффективное использование солнечной потенциальной энергии и кинетической энергии перемещения воздушных масс для получения электроэнергии, повышения ее мощности и создания условий для обеспечения оптимизации и устойчивости процесса энерготрансформаций на основе механизмов и эффектов образования статического электричества.

Изобретение относится к области возобновляемой энергетики. Атмосферная энергетическая установка содержит удерживаемую с земли тросом-кабелем плавующую в воздухе ветроустановку с горизонтальной осью вращения, включающую наполненный гелием цилиндрический баллон, снабженный лопатками и осью, на концах которой расположены электрогенератор и стабилизаторы, выполненный из пленки и принимающий в результате надува гелием цилиндрическую форму баллон, внутри которого вдоль его диаметральной плоскости закреплена тонкопленочная солнечная батарея, образующая плоскость, при этом верхняя часть баллона прозрачная, к нижней части прикреплен груз в виде рейки, а на его торцах имеются диски с полуосями, которыми баллон крепится к оси ветроустановки с помощью тросов-кабелей, соединенных электрически с тонкопленочной солнечной батареей.

Коллимационная оптическая система содержит отражающий коллиматор, имеющий чашеобразную форму, содержит первое отверстие в центре нижней стороны чаши для приема светодиодного источника света, второе отверстие в верхнем отверстии чаши для обеспечения возможности исходящему свету выходить из упомянутого отражающего коллиматора и элемент стенки, проходящий от первого отверстия ко второму отверстию и имеющий внутреннюю отражающую поверхность, первую выпуклую линзу, соединенную с отражающим коллиматором через крепежное средство и размещенную на расстоянии от первого отверстия между первым и вторым отверстиями, вторую выпуклую линзу, размещенную на поверхностной пластине, которая покрывает по меньшей мере часть второго отверстия.

Осветительное устройство (1) содержит линейку (100) лазерных диодов с несколькими излучателями (101, 102, 103), расположенными в первом направлении рядом друг с другом с возможностью излучения частичных лучей (10, 11, 12) при работе; коллиматор (2) быстрой оси; средство (3) преобразования луча, расположенное за коллиматором (2) быстрой оси в направлении распространения луча и выполненное с возможностью поворота частичных лучей (10, 11, 12) на 90º при их прохождении через указанное средство и решетку (4) призм, которая расположена за средством (3) преобразования луча в направлении распространения луча и включает в себя множество призм (40, 40’), соответствующее числу излучателей (101, 102, 103).

Изобретение относится к оптическим изделиям с коническим зеркалом. Оптический узел (31) включает коллимационную линзу (14), которая коллимирует расходящийся лазерный луч (12), коническое зеркало (15), которое имеет отражающую боковую поверхность (23) и трансформирует лазерный луч, распространяющийся в направлении оси конуса (26), в плоскости распространения (25) перпендикулярно оси конуса (26), в кольцевой луч (24), держатель оптики (32) с первым несущим элементом (33), на котором закреплена коллимационная линза (14), и вторым несущим элементом (34), на котором закреплено коническое зеркало (15), а также соединительное устройство (35) по меньшей мере с одним соединительным элементом (36, 37, 38, 39), соединяющим друг с другом первый и второй несущие элементы (33, 34).

Изобретение относится к способу и устройству предохранения от обрастания поверхности в то время, когда указанная поверхность по меньшей мере частично погружена в жидкую окружающую среду, в частности, к предохранению от обрастания корпусов судов.

Изобретение относится к осветительным устройствам. Устройство (1) содержит множество источников (2) света и первую вторичную оптику (3) и вторую вторичную оптику.

Неподвижный концентратор солнечного излучения реализует наведение светового потока на входной торец фокона за счет сужения светового потока в двух перпендикулярных плоскостях и содержит три фокусирующие плоские линейные линзы Френеля, в фокусе первой короткофокусной линейной линзы Френеляторая линза Френеля, за которой расположена третья линейная короткофокусная линза Френеля, в фокусе которой расположен фокон.

Устройство для формирования лазерного излучения содержит: конструктивный элемент (1) с входной (2) и выходной (3) поверхностями, первую группу (4) линз на входной поверхности (2), содержащую множество линз (5a, 5b, …), расположенных рядом друг с другом в первом направлении (Х), и вторую группу (6) линз на выходной поверхности (3), содержащую множество линз (7a, 7b, …), расположенных рядом друг с другом во втором направлении (Y), перпендикулярном направлению (Х).

Изобретение относится к области светотехники и касается оптической системы для коллимации света. Оптическая система включает в себя тело и выемку, сформированную на первой стороне тела.

Изобретение может использоваться в гелиотехнике, в частности, в концентраторах солнечной энергии. Концентратор содержит симметричную отражающую поверхность, выполненную в виде фоклина, и прямоугольное выходное окно для размещения приемника излучения, совпадающее с фокальным пятном концентратора.

Осветительное устройство включает в себя светодиод, блок собирающих линз, на который падает свет от светодиода, и элемент преобразования поляризации. Линзой, образующей поверхность выхода света в блоке собирающих линз, является асферическая линза, имеющая осесимметричную форму и сечение асферической формы при сечении плоскостью, параллельной световой оси.

Изобретение относится к области гелиотехники и касается солнечного модуля с асимметричным параболоцилиндрическим концентратором и фотоприемником с треугольным профилем.

Неподвижный каскадный линзовый концентратор солнечного излучения с оптическим способом наведения светового потока содержит три плоские радиальные линзы Френеля. В фокусе первой сужающей радиальной линзы Френеля расположена вторая расширяющая короткофокусная радиальная линза Френеля, за которой расположена третья сужающая линза Френеля, за которой расположен приемный элемент. Вторая расширяющая линза имеет меньшее фокусное расстояние, чем первая, и они обе образуют коллиматор, а приемный элемент расположен в фокусе всей оптической системы трех линз концентратора. Технический результат - увеличение плотности выходного светового потока, снижение массы концентратора, отсутствие электромеханических следящих систем, снижение ветровой нагрузки, увеличение времени работы в течение дня, срока службы и надежности. 1 ил.

Наверх