Микрополосковый фильтр верхних частот

Изобретение относится к технике сверхвысоких частот и может быть использовано в селективных трактах приемных и передающих систем. Микрополосковый фильтр верхних частот содержит диэлектрическую подложку, одна поверхность которой полностью металлизирована и служит заземляемым основанием, а на другой поверхности расположен прямоугольный полосковый металлический проводник. Новым является то, что полосковый проводник, обладающий осевой симметрией, свернут в форме «шпильки» вдоль оси симметрии и соединен с заземляемым основанием через перпендикулярно состыкованный протяженный отрезок полоскового проводника. Техническим результатом изобретения является расширение относительной полосы пропускания микрополоскового фильтра верхних частот, а также улучшение его частотно-селективных свойств, в частности рост крутизны спада частотной характеристики, повышение технологичности изготовления и миниатюрности конструкции. 1 з.п. ф-лы, 4 ил.

 

Изобретение относится к технике сверхвысоких частот и может быть использовано в селективных трактах приемных и передающих систем.

Известен полосковый широкополосный фильтр верхних частот диапазона СВЧ (Полезная модель РФ №142052, Н01Р 1/205), выполненный на диэлектрической подложке, на нижнем основании которой нанесен экранный проводник и содержащий три последовательно включенных емкостных элемента, реализованных в виде тонкопленочных конденсаторов, и два параллельно включенных индуктивных элемента. Диэлектрическая подложка выполнена трехслойной, при этом на верхнем слое расположены входные и выходные микрополосковые подводящие линии, последовательно включенные емкостные элементы в виде тонкопленочных конденсаторов, параллельно включенные индуктивные элементы, реализованные в виде прямоугольных стековых спиралей, расположены на верхнем и втором внутреннем слое и соединены с экранным проводником на нижнем основании подложки через металлизированные отверстия. Частота среза полоскового широкополосного фильтра верхних частот диапазона СВЧ (Фиг. 3) - ƒc~1.2 ГГц.

Недостатком описанного полоскового широкополосного фильтра верхних частот диапазона СВЧ является использование в конструкции сосредоточенных элементов, что обуславливает его низкую технологичность, а также с ростом частоты среза фильтра их габариты уменьшаются настолько, что изготовление последних становится невозможным.

Наиболее близким по совокупности существенных признаков является микрополосковый фильтр верхних частот (Полезная модель РФ №154063, Н01Р 1/203, Н01Р 1/205), содержащий диэлектрическую подложку, одна поверхность которой полностью металлизирована и служит заземляемым основанием, а на другой поверхности расположен прямоугольный полосковый металлический проводник, который одним своим широким краем соединен с экраном, а внешние линии передачи подключены к его узким краям с противоположных сторон.

Фильтр выполнен на подложке с диэлектрической проницаемостью ε=80 и толщиной 1 мм; подложка размещена в металлическом корпусе-экране, при этом высота верхней стенки экрана над поверхностью подложки составляет 5 мм. Внутренние размеры корпуса - 27×5×6 мм3. Частота среза микрополоскового фильтра верхних частот (Фиг. 4) ~ 2.6 ГГц, до частоты 7 ГГц на его амплитудно-частотной характеристике наблюдается полоса пропускания.

Недостатком описанного микрополоскового фильтра верхних частот является недостаточно широкая полоса пропускания, низкая технологичность и малая миниатюрность фильтра, вследствии использования в конструкции металлического корпуса-экрана. Также у такого фильтра нет возможностей для существенного наращивания крутизны спада частотной характеристики.

Задачей изобретения является расширение полосы пропускания микрополоскового фильтра верхних частот, улучшение его частотно-селективных свойств, а также уменьшение размеров и повышение технологичности изготовления конструкции.

Указанная задача достигается тем, что в микрополосковом фильтре верхних частот, содержащем диэлектрическую подложку, одна поверхность которой полностью металлизирована и служит заземляемым основанием, а на другой поверхности расположен полосковый металлический проводник, согласно техническому решению, отрезки полоскового проводника свернуты в форме «шпильки» вдоль оси симметрии и в центральной части соединены с заземляемым основанием, через перпендикулярно состыкованный протяженный отрезок полоскового проводника. В этом случае увеличивается взаимодействие между модами колебаний, что позволяет сформировать широкую полосу пропускания фильтра, используя семь резонансов конструкции. Улучшение частотно-селективных свойств микрополоскового фильтра верхних частот, а в частности рост крутизны спада частотной характеристики, осуществляется наращиванием числа n полосковых проводников, состыкованных друг с другом в виде меандровой линии, где n=2, 3, 4…, что также сопровождается увеличением числа резонансов, формирующих полосу пропускания фильтра на 2(n-1).

Техническим результатом изобретения является расширение полосы пропускания микрополоскового фильтра верхних частот, за счет заявляемого расположения на диэлектрической подложке полоскового проводника, а также улучшение его частотно-селективных свойств, в частности рост крутизны спада частотной характеристики, благодаря наращиванию числа n полосковых проводников, повышение миниатюрности и технологичности изготовления конструкции за счет отсутствия в ней металлического корпуса-экрана.

Изобретение поясняется чертежами: Фиг. 1 - устройство микрополоскового фильтра верхних частот, Фиг. 2 - его амплитудно-частотная характеристика (S21, S11) - Фиг. 3 - устройство микрополоскового фильтра верхних частот (n=3), Фиг. 4 - его амплитудно-частотная характеристика (S21, S11).

Заявляемый микрополосковый фильтр верхних частот (Фиг. 1), содержащей диэлектрическую подложку (1), одна поверхность которой полностью металлизирована и служит заземляемым основанием (2), а на другой поверхности расположен полосковый металлический проводник (3-5), отрезки полоскового проводника (3-4) свернуты в форме «шпильки» вдоль оси симметрии и в центральной части соединены с заземляемым основанием (2), через перпендикулярно состыкованный протяженный (длина в несколько раз больше, чем ширина) отрезок полоскового проводника (5). При этом отрезок (5) располагается снаружи свернутых отрезков (3, 4). На свободных концах отрезка полоскового проводника (3) расположены «вход» и «выход» фильтра.

В микрополосковом фильтре верхних частот (Фиг. 3) использовано три полосковых проводника (3-8), отрезки которых состыкованы друг с другом в виде меандровой линии.

Заявляемый фильтр заземлен на основание вместо используемого в прототипе металлического корпуса-экрана.

Разберем принцип действия микрополоскового фильтра верхних частот. Расположенные (Фиг. 1) на подложке (1) с высокой диэлектрической проницаемостью ε=80, свернутые в форме «шпильки» отрезки полоскового проводника (3-4) и отрезок полоскового проводника (5), при подаче на вход конструкции электромагнитного сигнала выполняют функцию микрополоскового резонатора. Длина отрезка (3) меньше примерно в два раза, чем длина отрезка (4). На амплитудно-частотной характеристике такого микрополоскового резонатора наблюдаются резонансы семи нижайших мод колебаний, которые формируют полосу пропускания. Выше по частоте располагаются несколько полюсов затухания, которые ограничивают полосу пропускания. При этом частота «нижайшего» полюса затухания определяет максимальную высокочастотную границу полосы пропускания фильтра верхних частот.

Варьируя длину и ширину отрезка полоскового проводника (5) можно корректировать собственные частоты микрополоскового резонатора, что позволяет настроить полосу пропускания заявляемого микрополоскового фильтра верхних частот с максимально допустимым уровнем потерь на отражение в ней S11≤-14 дБ.

Рост крутизны спада частотной характеристики заявляемой конструкции осуществляется дублированием n раз (n=2, 3, 4…) исходного полоскового проводника, состыкованного друг с другом в виде меандровой линии. Соответственно, число резонансов, формирующих полосу пропускания фильтра, увеличивается на 2(n-1). Так как длина и ширина добавляемых n внутренних полосковых проводников требует незначительной подстройки, в целом настройка фильтра отличается простотой даже при большом числе резонаторов.

Пример выполнения микрополоскового фильтра верхних частот (Фиг. 1). В конструкции была использована подложка размерами 5.46×5.14×1.00 мм3 из керамика ТБНС с диэлектрической проницаемостью ε=80. Отступы от краев подложки до отрезка полоскового проводника (3) равны толщине подложки h=1 мм. Частота среза (Фиг. 2) заявляемого фильтра ƒс=2 ГГц, что ниже, чем у прототипа, полоса пропускания фильтра, сформированная 7 резонансами, наблюдается на амплитудно-частотной характеристике до 8.6 ГГц, что протяженнее, чем у прототипа. При этом заявляемый фильтр занимает примерно в 29 раз меньший объем, чем фильтр-прототип. Конструктивные параметры фильтра, а в частности длина и ширина отрезков проводника (3), (4) и (5): 1.60×0.08 мм2, 3.46×0.40 мм2, 2.14×0.96 мм2, соответственно.

Пример выполнения микрополоскового фильтра верхних частот с числом полосковых проводников n=3 (Фиг. 3). В конструкции была использована подложка размерами 12.32×7.44×1.00 мм3 из керамика ТБНС с диэлектрической проницаемостью ε=80. Отступы от краев подложки до отрезка полоскового проводника (3) также равны толщине подложки h=1 мм. Частота среза (Фиг. 4) заявляемого фильтра ƒс=2 ГГц, что также ниже, чем у прототипа, полоса пропускания фильтра, сформированная 11 резонансами, наблюдается на амплитудно-частотной характеристике до 8.2 ГГц. При этом заявляемый фильтр занимает примерно в 9 раз меньший объем, чем фильтр-прототип. Конструктивные параметры фильтра, а в частности длина и ширина отрезков трех проводников - (3): 1.80×0.08 мм2, (4): 3.64×0.39 мм2, (5): 2.33×0.72 мм2, (6): 1.98×0.29 мм2, (7): 3.62×0.40 мм, (8): 2.34×0.66 мм. При этом увеличение числа полосковых проводников n сопровождается существенным наращиванием крутизны спада частотной характеристики фильтра.

Таким образом, заявляемый микрополосковый фильтр верхних частот обладает более широкой относительной полосой пропускания, лучшими частотно-селективными свойствами, за счет возможности наращивания в конструкции числа полосковых проводников n, а также большей миниатюрностью и технологичностью изготовления, за счет отсутствия у него металлического корпуса-экрана.

1. Микрополосковый фильтр верхних частот, содержащий диэлектрическую подложку, одна поверхность которой полностью металлизирована и служит заземляемым основанием, а на другой поверхности расположен полосковый металлический проводник, отличающийся тем, что отрезки полоскового проводника свернуты в форме «шпильки» вдоль оси симметрии и в центральной части соединены с заземляемым основанием через перпендикулярно состыкованный протяженный отрезок полоскового проводника.

2. Микрополосковый фильтр верхних частот по п. 1, отличающийся тем, что содержит n полосковых проводников, состыкованных друг с другом в виде меандровой линии, где n=2, 3, 4….



 

Похожие патенты:

Изобретение относится к области СВЧ-устройств. Предложен планарный поляризационный селектор, содержащий поверхностный резонатор с двумя подключенными к нему подводящими поверхностными волноводами, металлический двухполяризационный волновод и печатную плату, на которой выполнены поверхностный резонатор и подводящие поверхностные волноводы, причем поверхностный резонатор дополнительно содержит щелевую апертуру в одном из двух уровней металлизации, а металлический двухполяризационный волновод установлен на поверхности печатной платы в области щелевой апертуры поверхностного резонатора, и при этом сам поверхностный резонатор является резонатором нефундаментальных ортогональных мод.

Изобретение относится к области СВЧ техники, точнее к техническим решениям соединителей разъемных фланцев волноводов СВЧ трактов. Соединитель содержит шляпку 1 в виде диска и цилиндрическую часть 2 меньшего диаметра, размещенную в соосных отверстиях 3 и 4 сочлененных волноводных фланцев 5 и 6, вторую составляющую из шляпки 7 в виде диска и цилиндрической части 8 меньшего диаметра, отверстия 9 в диске 1 и отверстие 10 в диске 7, в которых закреплены центры цилиндрической части 2 и второй цилиндрической части 8 соединителя и его второй части.

Изобретение относится к радиотехнике, а именно к элементам волноводного тракта, и может быть использовано в волноводной, антенной и СВЧ-измерительной технике. Уголковый изгиб волноводного тракта содержит входной и выходной прямоугольные волноводы, расположенные под углом α один относительно другого, у которых стенки в плоскости изгиба параллельны, а также согласующую неоднородность.

Изобретение относится к радиотехнике и может быть использовано в широкополосных микроволновых устройствах в качестве оконечной согласованной нагрузки высокого уровня мощности.

Разъемное соединение фланцев волноводов СВЧ трактов относится к области СВЧ техники. Заявленное соединение содержит одинаковые пластины 1 с соосными отверстиями 2 и направляющими, которые образованы штырем 3, укрепленным на одной из пластин 1 и соосными с ними отверстиями 4 в другой пластине 1, шайбы 5 из магнитотвердых материалов с остаточной намагниченностью, размещенные в отверстиях 2 в пластинах 1, укрепленные в них и установленные встречно друг к другу противоположными полюсными наконечниками N-S, отверстие 6 с резьбой в одной из пластин 1, смещенное относительно центра к краю пластины.

Изобретение относится к области СВЧ техники, точнее к техническим решениям соединителей разъемных фланцев волноводов СВЧ трактов, и позволяет упростить процесс крепления фланцев при многократном их соединении и разъединении и ускорить процесс крепления фланцев волноводных труб.

Изобретение относится к радиотехнике СВЧ, в частности к приборам на магнитостатических волнах, и может быть использовано в качестве частотно-избирательного делителя мощности с нелинейным эффектом.

Изобретение относится к радиотехнике СВЧ, в частности к приборам на магнитостатических волнах, и может быть использовано в качестве частотного фильтра. Сущность изобретения заключается в том, что частотный фильтр СВЧ сигнала на магнитостатических волнах содержит магнитный элемент, представляющий собой магнонный кристалл, имеющий форму протяженного прямоугольника с заостренными по продольной оси торцами и периодическими геометрическими неоднородностями в форме треугольных элементов, период треугольных элементов выбран из условия образования брэгговской запрещенной зоны в диапазоне волновых чисел от 100 см-1 до 300 см-1, пьезоэлектрический элемент, имеющий длину меньше длины магнитного элемента, наружный электрод пьезоэлектрического элемента, выполненный сплошным, а электрод, прилегающий к поверхности магнитного элемента, имеет форму встречно-штыревого преобразователя с периодом Т, выбранным из условия Т=2Р, где Р - период треугольных элементов.

Изобретение относится к радиосвязи. Технический результат изобретения заключается в одновременном обеспечении заданных значений модулей и фаз передаточной функции в двух состояниях управляемого элемента в ограниченной двумя заданными частотами полосе частот.

Использование: для волноводов со штырьевыми стенками, реализованных в печатных платах. Сущность изобретения заключается в том, что оптически управляемый переключатель содержит печатную плату, содержащую верхний и нижний проводящие слои и слой диэлектрика между ними, стенки волновода, образованные двумя рядами переходных металлизированных отверстий, электрически соединенных с верхним и нижним проводящими слоями печатной платы, причем соседние отверстия в ряду расположены друг от друга на расстоянии менее одной десятой доли длины волны для электромагнитной волны, которая подается в переключатель, причем расстояние между рядами составляет более половины рабочей длины волны, распространяющейся в волноводе с учетом диэлектрического заполнения, первый и второй порты волновода для ввода и вывода электромагнитной энергии, расположенные на концах волновода между его стенками, шунтирующее металлизированное отверстие, электрически соединенное с нижним слоем печатной платы и отделенное от верхнего слоя печатной платы диэлектрическим зазором, фотопроводящий полупроводниковый элемент, расположенный на верхнем слое печатной платы и электрически соединенный с шунтирующим отверстием и с верхним слоем печатной платы, причем фотопроводящий элемент имеет по меньшей мере два состояния: состояние диэлектрика с малой собственной электрической проводимостью (выключенное состояние) при отсутствии управляющего светового потока и состояние проводника с относительно высокой электрической проводимостью (включенное состояние) при наличии управляющего светового потока.
Наверх