Состав для термостойкой диэлектрической полимерной композиции

Изобретение относится к диэлектрической композиции для композиционных полимерных материалов и может применяться для создания радиопрозрачных изделий и покрытий приемо-передающих радиотехнических комплексов для авиакосмической, морской, сухопутной техники гражданского и специального назначения. Диэлектрическая полимерная композиция состоит из эпоксидиановой смолы, полиэтиленполиамина, полиметилфенилсилоксана, оксида алюминия и стеклянных полых микросфер в следующем соотношении, мас.ч: эпоксидная смола - 100, полиэтиленполиамин - 10, полиметилфенилсилоксан - 10-60, оксид алюминия - 5-15, микросферы стеклянные полые - 10-40. Техническим результатом изобретения является получение термостойкой диэлектрической полимерной композиции, обладающей низким водопоглощением и повышенными диэлектрическими характеристиками. 1 табл., 3 пр.

 

Заявляемая композиция относится к композиционным полимерным материалам и может применяться для создания радиопрозрачных изделий и покрытий приемо-передающих радиотехнических комплексов для авиакосмической, морской, сухопутной техники гражданского и специального назначения.

Наиболее распространенными полимерными композициями, обладающими хорошими диэлектрическими свойства, являются композиции на основе полимерных связующих, наполненные полыми стеклянными микросферами. Введение микросфер способствует повышению электрической прочности и удельного объемного сопротивления композиций. Увеличение значений указанных диэлектрических характеристик за счет введения микросфер обусловлено тем, что полые микросферы способствуют уменьшению теплопроводности композиции, создают дискретную пространственную решетку, препятствующую распространению электрического разряда по объему полимерного изделия.

В патенте RU 2185398 описан состав полимерной композиции на основе полипропилена, где в качестве наполнителей используются полые стеклянные микросферы и стекловолокно. Данная диэлектрическая полимерная композиция, получаемая методом литья под давлением, может использоваться для изготовления конструкционных электротехнический изделий.

Повышение электрической прочности и удельного объемного сопротивления данной полимерной композиции достигается за счет использования микросфер, а введение стекловолокна обеспечивает значительное повышение физико-механических показателей композиции, так как стекловолокно, как известно, является армирующим материалом.

Недостатком данной композиции является то, что введение наполнителей минерального происхождения значительно снижает текучесть полимерной композиции. Так как композицию предполагается перерабатывать методом литья под давлением, в данном случае использование стеклянных микросфер и стекловолокна нежелательно, вследствие резкого увеличения вязкости расплава и возникновения возможных проблем при переработке.

Наиболее близким к предлагаемому изобретению является состав для полимерной диэлектрической композиции (патент RU 2307432), содержащий в качестве связующего эпоксидную смолу, а в качестве наполнителей - микросферы стеклянные полые и двуокись титана. Данная диэлектрическая композиция предназначена для использования в радиотехнике и, в частности, в технике линзовых антенн.

Полученный композиционный диэлектрический материал обладает заданной диэлектрической проницаемостью и плотностью, работоспособностью в условиях вибрационных нагрузок в интервале температур от -60 до +85°C. Использование эпоксидной смолы обеспечивает технологичность и смачивающую способность, высокую адгезионную и когезионную прочность, малую усадку при отверждении без выделения побочных продуктов, стабильность физико-механических и диэлектрических свойств и, соответственно, стабильность радиотехнических характеристик изделия.

Использование стеклянных полых микросфер и двуокиси титана обеспечивает получение композиционного диэлектрического материала с заданной диэлектрической проницаемостью и плотностью.

Недостатком данной композиции является невысокая термостойкость, что значительно уменьшает диапазон практического применения полимерных композиций данного состава и пониженная водостойкость, обусловленная использованием в данной композиции гидрофильного наполнителя двуокиси титана, что приводит к снижению диэлектрических характеристик изделий.

Техническими задачами, на решение которых направлено предполагаемое изобретение, являются повышение термостойкости полимерной композиции, уменьшение ее гидрофильности и, как следствие, водопоглощения композиции и повышение диэлектрических характеристик.

Поставленная задача решается за счет композиции, состоящей из эпоксидиановой смолы, полиэтиленполиамина, полиметилфенилсилоксана, оксида алюминия и стеклянных полых микросфер в следующих соотношениях, масс, ч: эпоксидная смола 100, полиэтиленполиамин 10, полиметилфенилсилоксан 10-60, оксид алюминия 5-15, микросферы стеклянные полые 10-40.

Для получения диэлектрической полимерной композиции используется эпоксидная диановая смола марки ЭД-20 (ГОСТ 10587-84) с массовой долей эпоксидных групп 20-22,5%, динамической вязкостью 13-20 Па*сек (при Т=25±0,1)°C.

Использование полиэтиленполиамина (ТУ 2413-214-00203312-2002) в полимерной композиции необходимо для отверждения эпоксидиановой смолы.

Использование в полимерной композиции в качестве наполнителя микросфер стеклянных полых (марка МСО-А9 по ТУ 6-11-367-75) позволяет повысить диэлектрические характеристики композиции и, в частности, уменьшить диэлектрические потери.

Добавление полиметилфенилсилоксана (ТУ 2228-277-05763441-99) позволяет получить более гомогенизированную композицию с равномерным распределением стеклянных полых микросфер по всему объему полимерной композиции и, следовательно, получить более равномерное распределение поля диэлектрической проницаемости композиции. Предполагается, что полиметилфенилсилоксан повысит термостойкость отвержденной композиции, уменьшит влагопоглощение полимерной композиции, улучшит ее диэлектрические характеристики.

Использование в качестве наполнителя оксида алюминия марки ГК-2 (ГОСТ 30559-98) предполагает повышение диэлектрических характеристик изделия, улучшение стабильности диэлектрических характеристик и уменьшение электрических потерь.

При содержании стеклянных полых микросфер в полимерной композиции менее 10 масс.ч. диэлектрические характеристики практически не изменяются. При содержании стеклянных полых микросфер в полимерной композиции более 40 масс.ч. не наблюдается улучшение диэлектрических характеристик, происходит нарастание вязкости полимерной композиции, что существенно затрудняет равномерное распределение наполнителя по объему и, как следствие, приводит к нестабильности диэлектрических свойств изделий.

При содержании полиметилфенилсилоксана в композиции более 60 масс.ч. не наблюдается уменьшения водопоглощения, повышения термостойкости, происходит ухудшение прочностных характеристик, снижается экономический эффект применения полимерной композиции. При введении полиметилфенилсилоксана менее 10 масс.ч. водопоглощение и термостойкость композиции не изменяется.

При содержании оксида алюминии менее 5 масс.ч. диэлектрических характеристики изделия практически не изменяются, при содержании оксида алюминия более 15 масс.ч. происходит нарастание вязкости полимерной композиции, что существенно затрудняет равномерное распределение наполнителя по объему и, как следствие, приводит к нестабильности диэлектрических свойств изделий.

Оценка и доказательства преимущества заявляемого изобретения основаны на измерении эксплуатационных и технологических показателей составов с одинаковым содержанием эпоксидиановой смолы как матрицы и разным содержанием стеклянных полых микросфер, полиметилфенилсилоксана и оксида алюминия (на 100 масс.ч. эпоксидиановой смолы использовалось от 10 до 60 масс.ч. полиметилфенилсолоксана, от 10 до 40 масс.ч. стеклянных полых микросфер и от 5 до 15 масс.ч. оксида алюминия).

Заявляемое изобретение может быть осуществлено следующим образом: в эпоксидиановую смолу добавляют отвердитель полиэтиленполиамин, тщательно перемешивают. Затем добавляют полиметилфенилсилоксан и также тщательно перемешивают. К полученной композиции постепенно добавляют стеклянные полые микросферы и оксид алюминия при постоянном перемешивании состава. Время гелеобразования состава 1,5 часа.

Заявляемое изобретение иллюстрируется следующими примерами.

1. Эпоксидиановая смола 100
Полиэтиленполиамин 10
Стеклянные полые микросферы 10
Оксид алюминия (Ш) 5
Полиметилфенилсилоксан 10
2. Эпоксидиановая смола 100
Полиэтиленполиамин 10
Стеклянные полые микросферы 40
Оксид алюминия (Ш) 10
Полиметилфенилсилоксан 60
3. Эпоксидиановая смола 100
Полиэтиленполиамин 10
Стеклянные полые микросферы 20
Оксид алюминия (Ш) 15
Полиметилфенилсилоксан 30

Свойства материалов, полученных с использованием известной и предлагаемой композиции, приведены в таблице 1

Состав для диэлектрической полимерной композиции, включающий эпоксидиановую смолу, аминный отвердитель, наполнители, отличающийся тем, что он содержит в качестве наполнителя стеклянные полые микросферы и дополнительно содержит оксид алюминия и полиметилфенилсилоксан при следующем соотношении компонентов, мас.ч.:

Эпоксидиановая смола 100
Полиэтиленполиамин 10
Полиметилфенилсилоксан 10-60
Стеклянные полые микросферы 10-40
Оксид алюминия 5-15



 

Похожие патенты:

Изобретение относится к области антенной техники, в частности к новым линзовым антеннам, предназначенным для использования в различных приложениях систем радиосвязи миллиметрового диапазона длин волн, таких как системы радиорелейной связи типа "точка-точка" и транспортные сети систем мобильной сотовой связи, радары, спутниковые и межспутниковые системы связи, локальные и персональные системы связи и другие.

Изобретение относится к линзовой антенне. Антенна, включающая: по меньшей мере одну электромагнитную линзу, по меньшей мере одну площадку заземления, соединенную с упомянутой линзой, и по меньшей мере одну зондирующую конструкцию, соединенную с упомянутой линзой, причем упомянутая зондирующая конструкция включает по меньшей мере два зонда, и причем по меньшей мере один зонд окружен линзой.

Изобретение относится к антенной технике. Антенна включает электромагнитную линзу, площадку заземления, соединенную с упомянутой линзой, и зондирующую конструкцию, соединенную с упомянутой линзой.

Изобретение относится к антенной технике, а именно к устройствам для фокусировки радиоволн сантиметрового и миллиметрового диапазонов. Техническим результатом является создание цилиндрической линзы Микаэляна из однородного диэлектрического материала с минимальным продольным размером.

Изобретение относится к антенной технике, в частности к линзовым антеннам. .

Изобретение относится к области радиотехники, в частности к антенной технике, и может быть использовано в антеннах средств связи и радиолокации с широкоугольным электрическим сканированием преимущественно миллиметрового (ММВ) и сантиметрового (СМВ) диапазонов волн.

Изобретение относится к области радиотехники и, в частности, к антенной технике и может быть использовано в антеннах средств связи и радиолокации с широкоугольным электрическим сканированием преимущественно миллиметрового и сантиметрового диапазонов волн.

Изобретение относится к антенной технике и может быть использовано в антеннах средств связи и радиолокации с широкоугольным электрическим сканированием. .

Изобретение относится к системе проводников, а также к электрической катушке и электрической машине с такой системой проводников. Кроме того, к каталитически отверждаемой пропиточной смоле для изготовления изоляции электрической машины.

Изобретение относится к полимерным композициям, применяемым в электротехнике при изготовлении высоковольтной изоляции, в частности корпусных вводных и выводных изоляторов электронно-лучевых пушек, работающих при воздействии радиации в вакууме при коммутации тока до 30 А, напряжении до 85 кВ, класс нагревостойкости Н.
Изобретение относится к применению соединения структурной формулы R1CO2-R2CO2-Zn2+ в качестве катализатора сополимеризации смеси ангидрида карбоновой кислоты и оксирана.
Изобретение относится к пропиточной смоле для электроизоляционного кожуха, которая содержит базовую смолу, наполнитель, содержащий наночастицы, и способный к радикальной полимеризации активный разбавитель.

Изобретение относится к кабельной промышленности, в частности к технологии изолирования кабелей среднего напряжения на основе сшиваемого полиэтилена низкой плотности.

Настоящее изобретение касается области изоляции электрических проводов от частичного разряда, в частности способа изготовления изоляционной системы с улучшенной устойчивостью к частичному разряду и изоляционной системы с улучшенной устойчивостью к частичному разряду.

Изобретение относится к материалу покрытия с нелинейным удельным сопротивлением, электрической шине и обмотке статора. Изобретение содержит: полимерную матрицу, изготовленную из эпоксидной, акриловой смолы или полиуретана, отверждаемых за счет нагрева; диспергированные в полимерной матрице ZnO-содержащие частицы и полупроводящие поверхностно-обработанные вискеры.

Изобретение относится к составу диэлектрической композиции, предназначенной для использования при создании радиотехнических и электротехнических изделий. Композиция содержит эпоксидную диановую смолу, в качестве отвердителя полиэтиленполиамин и в качестве наполнителя стеклянные полые микросферы и оксид галлия.

Изобретение относится к области изоляции проводников от частичного разряда, в частности к способу изготовления системы изоляции с улучшенной стойкостью к частичному разряду.

Изобретение относится к отверждаемым композициям эпоксидной смолы, пригодным для получения изолятора для газоизолированного распределительного устройства высокого напряжения.

Изобретение относится к получению полимерного материала для изготовления изоляции электрического кабеля от агрессивной среды, в частности нефтепогружного кабеля, применяемого для питания погружных электродвигателей, в том числе для установок электроцентробежных насосов в нефтяных скважинах.

Изобретение относится к диэлектрической композиции для композиционных полимерных материалов и может применяться для создания радиопрозрачных изделий и покрытий приемо-передающих радиотехнических комплексов для авиакосмической, морской, сухопутной техники гражданского и специального назначения. Диэлектрическая полимерная композиция состоит из эпоксидиановой смолы, полиэтиленполиамина, полиметилфенилсилоксана, оксида алюминия и стеклянных полых микросфер в следующем соотношении, мас.ч: эпоксидная смола - 100, полиэтиленполиамин - 10, полиметилфенилсилоксан - 10-60, оксид алюминия - 5-15, микросферы стеклянные полые - 10-40. Техническим результатом изобретения является получение термостойкой диэлектрической полимерной композиции, обладающей низким водопоглощением и повышенными диэлектрическими характеристиками. 1 табл., 3 пр.

Наверх