Оксидный керамический магнитный материал на основе натрия, ванадия, железа и никеля



Оксидный керамический магнитный материал на основе натрия, ванадия, железа и никеля
Оксидный керамический магнитный материал на основе натрия, ванадия, железа и никеля

Владельцы патента RU 2670973:

Федеральное государственное бюджетное научное учреждение "Федеральный исследовательский центр "Красноярский научный центр Сибирского отделения Российской академии наук" (RU)

Изобретение относится к разработке новых материалов, которые могут быть полезны для химической промышленности, материаловедения, спинтроники. Оксидный керамический магнитный материал содержит кислород, железо и ванадий и дополнительно натрий и никель при следующем соотношении компонентов, ат. %: железо - 10,53; никель - 5,26; натрий - 5,26; ванадий - 15,79; кислород - 63,16. Изобретение позволяет создавать материал с нескомпенсированным магнитным моментом, сохраняющимся при комнатной температуре, и возможностью управления им с помощью внешнего магнитного поля. 2 ил., 2 табл.

 

Изобретение относится к разработке магнитных соединений, которые могут быть полезны для химической промышленности, материаловедения, спинтроники как новые материалы с возможностью управления величиной магнитного момента с помощью внешнего магнитного поля.

Известен оксидный материал - поливанадат Cu13Fe4V10O44, в состав которого входят магнитные ионы меди и железа [J. Typek, G. Zolnierkiewicz at el. Journal of Magnetism and Magnetic Materials 382, 2015, 71-77].

Недостатком этого материала является низкая температура магнитного фазового перехода и антиферромагнитное упорядоченное состояние (температура Нееля TN=2.7 K).

Наиболее близким к заявленному изобретению по технической сущности является пятикомпонентное оксидное соединение поливанадат LiCuFe2(VO4)3, характеризующееся антиферромагнитным типом магнитного порядка [Дрокина Т.В., Петраковский Г.А. и др. ФТТ, 2016, 58 (10). Стр. 1913-1920]. В состав данного соединения входят элементы, в том числе магнитные ионы меди и железа, при следующем соотношении компонентов, ат. %: железо - 10,53; медь - 5,26; литий - 5,26; ванадий - 15,79; кислород - 63,16.

К недостаткам прототипа можно отнести антиферромагнитный тип магнитного упорядочения спиновой системы и низкую температуру магнитного фазового перехода (температура Нееля TN=7 K).

Задача, на решение которой направлено заявляемое изобретение, является разработка материала, отличающегося качественным и количественным составом и обладающего нескомпенсированным магнитным моментом при комнатной температуре.

Техническим результатом изобретения является получение нового оксидного керамического материала на основе натрия, ванадия, железа и никеля с нескомпенсированным магнитным моментом, сохраняющимся при комнатной температуре, и возможностью управления им с помощью внешнего магнитного поля.

Технический результат достигается тем, что в оксидном керамическом магнитном материале на основе натрия, ванадия, железа и никеля, включающем железо и ванадий, новым является то, что дополнительно содержит натрий и никель, при следующем соотношении компонентов, ат. %: железо - 10,53; никель - 5,26; натрий - 5,26; ванадий - 15,79; кислород - 63,16.

Сопоставительный анализ с прототипом позволяет сделать вывод, что заявляемое изобретение отличается от известного качественным и количественным составом, обуславливающим изменение типа магнитного порядка. Эти отличия позволяют сделать вывод о соответствии заявляемого технического решения критерию «новизна».

Признаки, отличающие заявляемое решение от прототипа, не выявлены при изучении данной и смежных областей техники и, следовательно, обеспечивают заявляемому техническому решению соответствие критерию «изобретательский уровень».

Изобретение осуществляется следующим образом. Указанное соединение - многокомпонентный ванадат NaNiFe2(VO4)3, обладающее нескомпенсированным магнитным моментом при комнатной температуре и допускающее возможность управления величиной магнитного момента с помощью внешнего магнитного поля, было приготовлено методом твердофазного синтеза из стехиометрических смесей Na2CO3 (20.29 вес. %), Fe2O3 (30.58 вес. %), V2O5 (34.83 вес. %) и NiO (14.30 вес. %). Исходные соединения, составляющие шихту, смешиваются и перетираются вручную пестиком в ступке с добавлением этилового спирта. Из приготовленной шихты с помощью пресс-формы формируются таблетки под давлением около 10 кбар диаметром 10 мм и толщиной 1,5-2,0 мм. Таблетки помещаются в алундовый тигель и отжигаются в печи. Нагрев печи, регулируемый программным регулятором, осуществляется со скоростью 150 град/час. Температура в печи измеряется с помощью термопар (платино - платино-родиевые) с точностью 0,1°С. Перепад температур в рабочей области не превышает 5°С. Охлаждение печи происходит естественным путем. Отжиг проводится в два этапа (Таблица 1). После завершения первого отжига таблетки перетираются, смесь снова формуется в таблетки, которые помещаются в печь для второго отжига.

Анализ синтезированных образцов осуществлялся с помощью рентгеновской дифракции. Порошковая рентгенограмма материала NaNiFe2(VO4)3 отснята при комнатной температуре на дифрактометре D8 ADVANCE фирмы Bruker, используя линейный детектор VANTEC и Cu-Kα излучение. На рентгенограмме не было обнаружено рефлексов, соответствующих фазам примесей.

В таблице 2 приведены основные параметры рентгеновского эксперимента и результаты уточнения кристаллической структуры соединения NaNiFe2(VO4)3. Кристаллическая решетка соединения NaNiFe2(VO4)3 характеризуется триклинной пространственной группой Р1(-).

Примечание. а, b, с, α, β, γ - параметры ячейки; V - объем ячейки;

факторы недостоверности: Rwp - весовой профильный, Rp - профильный,

RB - интегральный; χ2 - качество подгонки.

Намагниченность синтезированного материала NaNiFe2(VO4)3 измерялась SQUID- и вибрационным магнетометрами.

На фиг. 1 приведена кривая температурной зависимости магнитного момента М(Т) соединения NaNiFe2(VO4)3. На фиг. 2 показана зависимость магнитного момента М образца NaNiFe2(VO4)3 от магнитного поля Н. Можно видеть, что магнитный момент сохраняется до комнатной температуры, и приложение магнитного поля приводит к изменению магнитного момента.

Таким образом, новый ванадат NaNiFe2(VO4)3 обладает магнитным моментом, что подтверждают измерения температурной М(Т) и полевой М(Н) зависимостей магнитного момента, причем эффект сохраняется при комнатной температуре (фиг. 1, 2).

Полученный новый материал, отвечающий формуле NaNiFe2(VO4)3, расширяет ряд материалов, допускающих возможность управления величиной магнитного момента внешним магнитным полем при высоких температурах.

Оксидный керамический магнитный материал на основе натрия, ванадия, железа и никеля, включающий железо и ванадий, отличающийся тем, что дополнительно содержит натрий и никель, при следующем соотношении компонентов, ат. %:

железо - 10,53;

никель - 5,26;

натрий - 5,26;

ванадий -15,79;

кислород - 63,16.



 

Похожие патенты:

Изобретение относится к области металлургии. Техническим результатом изобретения является получение текстурированного листа из электротехнической стали, который включает в себя основное покрытие с высокой долей TiN, благоприятное для сообщения напряжения стальному листу, и обладает превосходными магнитными свойствами.

Предложены лист из текстурированной электротехнической стали с низкими потерями в железе даже при включении по меньшей мере одного элемента, сегрегирующегося на границах зерен, из Sb, Sn, Mo, Cu и P, и способ его изготовления.

Изобретение относится к области металлургии. Для получения низких потерь и низкой магнитострикции в сердечнике лист из имеющей ориентированную зеренную структуру электротехнической стали включает основной стальной лист, первичную пленку, сформированную на поверхности основного стального листа, а также изолирующее покрытие с натяжением, сформированное на поверхности первичной пленки, в котором управление магнитными доменами выполняется путем облучения изолирующего покрытия с натяжением лазером сверху, при этом величину деформации получают путем осуществления измерений на листе из электротехнической стали, в которой диапазон от поверхности изолирующего покрытия с натяжением до положения на глубине 5 мкм в направлении к стороне основного стального листа от границы между основным стальным листом и первичной пленкой удаляется путем травления по меньшей мере одной поверхности, имеющей ориентированную зеренную структуру электротехнической стали на длине 300 мм в направлении, параллельном направлению прокатки, и на длине 60 мм в направлении, параллельном поперечному направлению.

Изобретение относится к области металлургии. Способ изготовления листа из текстурированной электротехнической стали с использованием технологии без ингибитора включает конечную холодную прокатку с общим обжатием холодной прокатки, равным 85% или более, и обжатием прокатки за проход 32% или более.

Изобретение относится к области металлургии. Для обеспечения низких потерь в железе и превосходных магнитных свойств получают лист из неориентированной электротехнической стали, содержащей, мас.%: С 0,005 или менее, Si от 1,0 до 4,5, Mn от 0,02 до 2,0, раств.

Изобретение относится к получению ферритовых изделий. Способ включает приготовление пресс-порошка, содержащего ферритовый материал и легирующую добавку в виде наноразмерного порошка карбонильного железа в количестве 0,01-0,03 мас.% от общей массы пресс-порошка, прессование заготовок и радиационно-термическое спекание заготовок посредством непрерывного электронного пучка электронного ускорителя.

Изобретение относится к области получения магнитных масел на основе высокодисперсного магнетита. Изобретение может быть использовано в машиностроении, приборостроении, в медицине и т.д.

Изобретение относится к области нанокомпозитных материалов на основе электроактивных полимеров с системой сопряжения и магнитных наночастиц Fe3O4, закрепленных на углеродных нанотрубках.

Изобретение относится к области металлургии. Для повышения магнитных свойств стального листа в продольном и поперечном направлениях прокатки лист с ориентированной зеренной структурой выполняют из стали, содержащей химический состав, мас.%: С от 0,0003 до 0,005, Si от 2,9 до 4,0, Mn от 2,0 до 4,0, раств.

Изобретение относится к области металлургии, а именно к технологии производства магнитных сплавов системы железо-алюминий-никель-кобальт, применяемых для получения постоянных магнитов электродвигателей и навигацинных устройств.

Изобретение относится к получению диэлектрических материалов. Технический результат изобретения заключается в повышении диэлектрической проницаемости.

Изобретение относится к пьезоэлектрическим керамическим материалам. Технический результат изобретения заключается в повышении температурной стабильности относительной диэлектрической проницаемости ε33 T/ε0 и коэффициента электромеханической связи планарной моды колебаний.

Изобретение относится к пьезоэлектрическим керамическим материалам на основе титаната свинца. Технический результат изобретения заключается в повышении значений относительной диэлектрической проницаемости ε 33 T / ε 0 = 13500 − 16460 при сохранении высоких значений пьезомодуля |d31|=131-156 пКл/Н и коэффициента электромеханической связи планарной моды колебаний Kp=0.19-0.24.

Изобретение относится к пьезоэлектрическим керамическим материалам на основе ниобатов натрия, калия, лития и может быть использовано в ультразвуковых преобразователях, работающих в широком диапазоне температур в режиме приема, в частности в датчиках детонации двигателей внутреннего сгорания.
Изобретение относится к пьезокерамическим материалам и может быть использовано при создании ультразвуковых преобразователей, в частности устройств медицинской диагностики.

Изобретение относится к технологии получения пьезоэлектрических керамических материалов на основе твердых растворов ниобатов калия-натрия (КНН), предназначенных для использования в электромеханических преобразователях, работающих в режиме приема, в частности, в гидроакустических приемных устройствах.

Изобретение относится к пьезокерамическим материалам и может быть использовано при создании ультразвуковых преобразователей, в частности устройств медицинской диагностики.

Изобретение относится к пьезоэлектрическим керамическим материалам и может быть использовано при создании высокочастотных акустоэлектрических преобразователей.
Изобретение относится к пьезоэлектрическим керамическим материалам. Технический результат изобретения заключается в снижении относительной диэлектрической проницаемости и механической добротности, в повышении пьезочувствительности, коэффициента электромеханической связи планарной моды колебаний, скорости звука.

Изобретение относится к пьезоэлектрическим керамическим материалам. Технический результат изобретения заключается в повышении коэффициента электромеханической связи планарной моды колебаний, снижении относительной диэлектрической проницаемости.

Изобретение относится к получению поликристаллических ферритов-гранатов. Способ включает синтез ферритового материала, приготовление пресс-порошка, прессование заготовок, радиационно-термическое спекание заготовок путем их нагрева до температуры спекания 1350-1450°С облучением проникающим пучком быстрых электронов с выдержкой при температуре спекания в течение 30-90 минут под непрерывным электронным пучком.
Наверх