Способ оценки адгезионной прочности изоляционного покрытия обмоток тяговых двигателей электровозов и устройство для его реализации

Изобретение относится к машиностроению и может быть использовано при проведении испытаний адгезионной прочности изоляционного покрытия обмоток электродвигателей локомотивов. Сущность: осуществляют воздействие на образец с износостойкими покрытиями деформирующей нагрузки до разрушения покрытия и оценку результатов испытаний. Воздействие на образец осуществляют вибрационными колебаниями, возбуждаемыми звуковым давлением, причем увеличивают интенсивность звуковых колебаний до разрушения образца и оценку прочности дают по результатам сравнения с эталонным образцом износостойкого покрытия, после чего делают заключение о состоянии изоляционного покрытия. Устройство содержит высокочастотный акустический динамик с присоединенными к нему генератором частот и усилителем звука для регулирования вибрационного воздействия. Динамик закреплен сверху относительно исследуемого образца на специальном штативе, на основании установлена подставка с захватами для образца, причем видеокамера имеет возможное перемещение, осуществляемое посредством манипулятора по нескольким степеням свободы. Технический результат: возможность оценить остаточный ресурс изоляционного покрытия, показать опасные места на изоляционном покрытии. 2 н.п. ф-лы, 2 ил.

 

Изобретение относится к машиностроению и может быть использовано при проведении испытаний адгезионной прочности изоляционного покрытия обмоток электродвигателей локомотивов.

В современных условиях развития экономики возникает необходимость повышения сроков доставки грузов и формирования устойчивых грузопоток. В связи с этим инфраструктура железнодорожного транспорта испытывает большие нагрузки, связанные с увеличением веса поездов и скоростей движения при неизменности технических характеристик тягового подвижного состава.

Результатом таких перегрузок становится усиление ряда негативных факторов, влияющих на тяговые свойства электродвигателей локомотивов. Основными возникновения режимов неустойчивой работы являются электрические и механические воздействия.

Основное внимание при испытаниях на влияние электрических воздействий уделяется значениям электрического сопротивления обмоток тягового двигателя, тем самым выявляется наличие «пробоев», ведущих к потере их изоляционных свойств. Целью механических испытаний в основном является проверка прочности крепления обмоток. Для этого применяется длительное вибрационное воздействие на двигатель в целом.

При этом влияние вибрационного поля и звуковых воздействий, возникающих в самом двигателе, в большинстве своем не принимается во внимание, однако адгезионная прочность изоляционного покрытия при длительной работе ухудшается.

Предлагается способ и устройство для оценки надежности изоляционного покрытия, основанный на испытаниях адгезионной прочности лакокрасочной пленки к подложке при помощи вибрационных воздействий, генерируемых высокочастотных звуковым динамиком.

В процессе патентного поиска выявлен ряд часть изобретений-аналогов.

Известен способ [Некрасов А.И., Борисов Ю.С., Некрасов А.А., Марчевский С.В., Ефимов А.В., «Способ эксплуатационного контроля состояния изоляции и ресурса обмоток электродвигателей», патент RU 2491560 С2, МПК G01R 31/00, опубл. 27.08.2013], при котором путем проведения измерений и расчетов определяют состояние изоляции и ресурс обмоток электродвигателей технологического оборудования, отличающийся тем, что контроль состояния изоляции и прогнозирование ресурса обмоток электродвигателей осуществляют в эксплуатационных условиях с учетом параметров окружающей среды производственных помещений, в которых эксплуатируются электродвигатели, режима работы электродвигателей и величины сопротивления изоляции обмотки в момент ввода электродвигателя в эксплуатацию, при этом измеряют и учитывают температуру, влажность, концентрацию в воздухе агрессивных примесей, а также степень загрузки и число пусков электродвигателей в сутки, причем все измерения выполняют в конце технологических пауз перед пуском электродвигателей технологического оборудования в работу, по результатам полученных измерений, после их статистической обработки, получают математические уравнения (зависимости) изменения электрического сопротивления изоляции и ресурса обмоток электродвигателей во времени, при этом для заданного сочетания эксплуатационных факторов определяют коэффициенты этих уравнений, по полученным уравнениям, исходя из первоначальной величины сопротивления изоляции, строят для данного сочетания эксплуатационных факторов окружающей среды и режима работы электродвигателей графические зависимости изменения сопротивления изоляции и расхода ресурса обмоток электродвигателей во времени, по этим графическим зависимостям определяют в процессе эксплуатации ожидаемое сопротивление изоляции и ресурс обмоток электродвигателей на данный момент времени, на основании которых принимают решение о продолжении использования в работе, проведении мероприятий по техническому обслуживанию и ремонту для поддержания и работоспособности или замене электродвигателей.

Основным недостатком данного изобретения является отсутствие проверки адгезионной прочности изоляционного покрытия.

Известно устройство [Илюшкин М.В., Филимонов В.И., Филимонов А.В., «Устройство для испытания покрытия на отслоение», патент RU 37221, U1, МПК G01N 19/04, опубл. 10.04.2004], включающий в себя нагружение изделий, включающий в себя нагружение изделий индектором, регистрацию сигналов акустической эмиссии одновременно с нагружением, контроль физико-механических свойств по параметрам сигналов, отличающийся тем, что в качестве параметра принимают энергию импульсов сигналов, а контроль производят по критерию, определяемому по зависимости Kp=(Ес2), где Ес - энергия импульса, b2 с; τ - длительность импульсов, с.

Недостатками данного изобретения являются отсутствие визуального контроля над обследуемым покрытием и проверки адгезионной прочности покрытия на стойкость вибрационным возмущениям.

К известным изобретениям также относится способ [Борисенко А.А. «Способ определения адгезионной прочности», патент RU 2019817 С1, МПК G01N 19/04, опубл. 15.09.1994], заключающийся в том, что на подложке формируют покрытие, прикладывают к нему сдвигающее усилие и по величине разрушающей нагрузки определяют адгезионную прочность соединения, отличающийся тем, что, с целью повышения достоверности определения адгезионной прочности соединений спаянных, склеенных или обожженных материалов, формирование покрытия осуществляют методом "сидячей" капли, сдвигающее усилие создают с помощью пластины с отверстием, в котором располагают каплю, диаметр которого выбирают в 5-10 раз больше исходного диаметра капли, а величину Т сдвигающего усилия выбирают из условия T/F ≅ 150 МПа, где F - площадь контакта капли с подложкой.

К недостаткам данного изобретения можно отнести отсутствие внимания к стойкости покрытия к вибрационным возмущениям.

За прототип взят способ [Бочкарев С.В., Цаплин А.И., Петроченков А.Б., Галиновский А.Л., Барзов А.А., Проваторов А.С., Павлов A.M., Елисеев А.Н., Хафизов М.В., Абашин М.И., «Способ контроля и диагностики устойчивости покрытия к действию внешних нагрузок», патент RU 2583332, С1, МПК, G01N 3/60, G01N 19/04, опубл. 10.05.2016], включающий воздействие индентором на образец с износостойкими покрытиями деформирующей нагрузкой до разрушения покрытия и оценку результатов воздействия, отличающийся тем, что воздействие осуществляют с помощью высокоскоростной струи жидкости, используемой в качестве индентора, со скоростью 300…1000 м/с на образцы, предварительно прошедшие циклическое нагружение, имеющее волновой нестационарный характер, а оценивают результаты воздействия по скорости струи, при которой начинается интенсивное разрушение покрытия, или по скорости подачи сопловой головки относительно поверхности диагностируемого образца или изделия, при которой начинается интенсивное разрушение покрытия, или по длине гидрокаверны от точки начала воздействия до точки полного разрушения покрытия или по глубине и ширине гидрокаверны.

К недостаткам данного изобретения можно отнести приложение воздействия в точке, а не к образцу в целом, в также отсутствие фиксации хода испытаний.

Задачей предлагаемого способа является сообщение звуковых колебаний исследуемому на адгезионную прочность образцу изоляционного покрытия при помощи высокочастотного динамика.

Способ оценки адгезионной прочности изоляционного покрытия обмоток тяговых электродвигателей транспортных средств, включающий воздействие на образец с износостойкими покрытиями деформирующей нагрузки до разрушения покрытия и оценку результатов воздействия, отличающийся тем, что воздействие осуществляют с помощью вибрационных колебаний, возбуждаемых звуковым давлением различной степени интенсивности, которую регулируют при помощи генератора частот и усилителя звука, а оценивают результаты по времени и силе воздействия, при котором начинается интенсивное разрушение покрытия, контроль за ходом испытания осуществляют при помощи перемещаемой видеокамеры, результаты фиксируют по окончанию этапа испытаний и сравнивают с эталонным первоначальным образцом и делают заключение о состоянии изоляционного покрытия.

Устройство оценки адгезионной прочности изоляционного покрытия обмоток тяговых электродвигателей транспортных средств, содержащее высокочастотный акустический динамик с присоединенными к нему генератором частот и усилителем звука для регулирования вибрационного воздействия, причем динамик закреплен сверху относительно исследуемого образца на специальном штативе, устройства крепления для фиксации образца на основании, видеокамеру, перемещаемую при помощи манипулятора по нескольким степеням свободы.

Суть предлагаемого изобретения поясняется чертежами.

На фиг. 1 изображена горизонтальная проекция испытательной установки. Высокочастотный динамик 1 закреплен на штативе 2 над исследуемым образцом 3, закрепленном при помощи креплений 11 на подставке 4 и представляющим собой часть изоляционного покрытия. Динамик 1 присоединен к генератору частот 5, соединенному с усилителем звука 6, на котором установлен блок управления 7. Также предусмотрена видеокамера 8, закрепленная на манипуляторе 9 с возможностью движения по нескольким степеням свободы. Подставка 4 с исследуемым образцом 3 жестко закреплена на основании 12 при помощи скоб 11. На фиг 2 показана вертикальная проекция испытательной установки, где отмечены фигуры Хладни 10.

Сущность предлагаемого способа заключается в следующем.

При помощи блока управления 7 генератору частот 5 задается требуемый режим воздействия, после чего происходит включение динамика 1. При необходимости увеличения звукового воздействия используется усилитель звука 6. Также блок управления 6 позволяет соединять и накладывать («микшировать») друг на друга различные звуковые воздействия для получения требуемых возмущений различной природы. Динамик 1 располагается сверху относительно исследуемого образца и закреплен на штативе 2 с возможностью перемещения динамика 1 после завершения испытаний. Звуковое воздействие, передаваемое на исследуемый образец 3, возбуждает его колебания, что позволяет оценить адгезионную прочность изоляционного покрытия образца, жестко зафиксированного устройствами крепления 11 на подставке 4. При помощи видеокамеры 7, закрепленной на манипуляторе 8, производится контроль за ходом испытаний, осуществляющийся после их окончания с возможностью записи визуальных результатов изменения структуры покрытия. Для исключения влияния на процесс неудерживающих связей исследуемый образец 3 на подставке 4 жестко присоединен к основанию 12 скобами 10.

У изоляционного покрытия при длительном воздействии различного характера, в том числе моделировании рабочих частот тягового электродвигателя, а также звуковых записей его работы, может снизиться адгезионная прочность, что приведет к образованию различных дефектов, в том числе трещин, вспучиваний, отрывов и т.д. Поэтому представленный способ после анализа результатов испытаний позволит оценить остаточный ресурс изоляционного покрытия, показать опасные места на изоляционном покрытии.

1. Способ оценки адгезионной прочности изоляционного покрытия обмоток тяговых электродвигателей транспортных средств, включающий воздействие на образец с износостойкими покрытиями деформирующей нагрузки до разрушения покрытия и оценку результатов испытаний, отличающийся тем, что воздействуют на образец вибрационными колебаниями, возбуждаемыми звуковым давлением, причем увеличивают интенсивность звуковых колебаний до разрушения образца и оценку прочности дают по результатам с эталонным образцом износостойкого покрытия, после чего делают заключение о состоянии изоляционного покрытия.

2. Устройство для оценки адгезионной прочности изоляционного покрытия обмоток тяговых электродвигателей транспортных средств, отличающееся тем, что содержит высокочастотный акустический динамик с присоединенными к нему генератором частот и усилителем звука для регулирования вибрационного воздействия, причем динамик закреплен сверху относительно исследуемого образца на специальном штативе, на основании установлена подставка с захватами для образца, причем видеокамера имеет возможность перемещения, осуществляемого посредством манипулятора по нескольким степеням свободы.



 

Похожие патенты:

Изобретение относится к машиностроению и может быть использовано при проведении механических испытаний изоляции обмоток электродвигателей локомотивов. Сущность: осуществляют приложение силового воздействия к исследуемому образцу изоляционного покрытия.

Изобретение относится к способам оценки энергоемкости титановых сплавов по их механическим свойствам и определения по полученным величинам пригодности данных сплавов для изготовления упругих элементов.

Изобретение относится к способам оценки энергоемкости титановых сплавов по их механическим свойствам и определение, по полученным величинам, пригодности данных сплавов для изготовления упругих элементов.

Изобретение относится к способу определения стойкости к истиранию по меньшей мере одного слоя износа, расположенного на несущей пластине. Сущность: осуществляют этапы: записи по меньшей мере одного БИК-спектра слоя износа, расположенного по меньшей мере на одной несущей пластине, a) перед затвердеванием по меньшей мере одного слоя износа, b) после затвердевания по меньшей мере одного слоя износа или c) перед затвердеванием по меньшей мере одного слоя износа с несущей пластиной и после него с применением по меньшей мере одного БИК-детектора в диапазоне длины волны от 500 нм до 2500 нм, предпочтительно от 700 нм до 2000 нм, особенно предпочтительно от 900 нм до 1700 нм; определения стойкости к истиранию по меньшей мере одного слоя износа путем сравнения БИК-спектра, записанного для определения стойкости к истиранию по меньшей мере одного слоя износа, по меньшей мере с одним БИК-спектром, записанным по меньшей мере для одного эталонного образца по меньшей мере одного слоя износа с известной стойкостью к истиранию, с помощью многопараметрового анализа данных (МАД), при этом по меньшей мере один БИК-спектр, записанный по меньшей мере для одного эталонного образца с известной стойкостью к истиранию по меньшей мере одного слоя износа, определили заранее a) после затвердевания по меньшей мере одного слоя износа или b) перед затвердеванием и после него с использованием того же БИК-детектора в диапазоне длины волны от 500 нм до 2500 нм, предпочтительно от 700 нм до 2000 нм, особенно предпочтительно от 900 нм до 1700 нм.

Изобретение относится к технике для проведения испытаний, а именно для исследования устойчивости к воздействию резких температурных колебаний, и может быть использовано при испытаниях на термоудар приборов космического назначения.

Изобретение относится к способам определения термомеханических характеристик полимерных композиционных материалов, а именно к способам определения теплостойкости Т.

Изобретение относится к метрологии, в частности к способам определения термостойкости углей при их циклическом замораживании и оттаивании. Сущность: осуществляют циклическое замораживание и оттаивание однотипных образцов углей при числе М циклов, равном порядковому номеру соответствующего образца в серии.

Изобретение относится к области строительства и предназначено для испытаний плоских многоэтажных рамно-стержневых конструктивных систем на живучесть, в частности экспериментального определения динамических догружений в элементах конструктивной системы при внезапном выключении из работы одного из несущих элементов.

Изобретение относится к области теплоэнергетики и может быть использовано для определения жаростойкости аустенитных сталей, используемых в теплонапряженных элементах энергетического оборудования.

Изобретение относится к области пожарной безопасности зданий. При осуществлении способа испытание стальной балки с гофростенкой проводят без разрушения по комплексу единичных показателей качества, оценивая их величину с помощью статистического контроля.

Изобретение относится к машиностроению и может быть использовано при проведении механических испытаний изоляции обмоток электродвигателей локомотивов. Сущность: осуществляют приложение силового воздействия к исследуемому образцу изоляционного покрытия.

Использование: для неразрушающего контроля поврежденности металлов. Сущность изобретения заключается в том, что определяют временные задержки распространения упругой волны, при этом определение временных задержек производят для одного типа объемной упругой волны при разных температурах и определяют поврежденность материала, используя заданную математическую формулу.
Устройство относится к метрологии, в частности к средствам для дистанционного контроля высоковольтного оборудования. Устройство контроля высоковольтного оборудования под напряжением, включающее приемник сигналов от частичных разрядов, оптический визир, блок лазерной наводки, жидкокристаллический индикатор, блок автоматической регулировки чувствительности сигналов от частичных разрядов, блок обработки сигналов.

Использование: для ультразвукового (УЗ) неразрушающего контроля изделий, в частности железнодорожных рельсов. Сущность изобретения заключается в том, что в зоне досягаемости диаграммы направленности вертикального зондирующего электроакустического преобразователя (ЭАП), направленного через головку, шейку к подошве рельса, устанавливают дополнительные приемные ЭАП.
Изобретение относится к технологии изготовления стволов артиллерийских орудий. Способ поверхностной закалки внутренней поверхности ствола артиллерийского орудия заключается в том, что на контрольный участок внутренней поверхности ствола воздействуют импульсами лазерного излучателя для нагрева и перевода поверхностного слоя металла в мартенсит с последующим контролем качества закалки.

Использование: для комплексного автоматизированного неразрушающего контроля качества многослойных изделий. Сущность изобретения заключается в том, что устройство включает два ультразвуковых преобразователя теневого контроля, ультразвуковой дефектоскоп теневого контроля, пороговое устройство ультразвукового дефектоскопа теневого контроля, датчик позиционирования, электронный блок датчика позиционирования, регистрирующее устройство, преобразователь акустического дефектоскопа для осуществления метода свободных колебаний, акустический дефектоскоп для осуществления метода свободных колебаний, пороговое устройство акустического дефектоскопа для осуществления метода свободных колебаний, электронный ключ, блок задержки.

Использование: для неразрушающего контроля качества изделий. Сущность изобретения заключается в том, что сканируют поверхность контролируемого объекта датчиками физических полей, измеряют величины сигналов с каждой точки поверхности контролируемого объекта, разбивают диапазон величин сигналов по их значениям на I интервалов, регистрируют измеренные сигналы по принадлежности к соответствующим интервалам, определяют количество измеренных сигналов в каждом интервале, рассчитывают разность количества измеренных сигналов в последующем и предыдущем интервалах по всему диапазону значений величин измеренных сигналов, в качестве порогового значения величины сигнала излучения физического поля выбирают значение из интервала, для которого разность количества измеренных сигналов в данном и предыдущем интервалах меньше нуля, а разность количества измеренных сигналов в данном и последующем интервалах больше нуля.

Область применения: - неразрушающий контроль состояния сляба. Технический результат – повышение точности контроля.

Использование: для неразрушающего контроля твердых тел. Сущность изобретения заключается в том, что размещают в заданной зоне сканирования ультразвуковой преобразователь и проводят операции контроля, включающие зондирование импульсами ультразвуковой частоты, регистрацию принятых сигналов посредством дефектоскопа с обеспечением их визуализации в виде амплитудно-временной развертки, выделение на ней соответствующей заданной зоне сканирования временной зоны, апертуру которой выбирают из условия невхождения в нее зондирующего импульса, задание критерия полезности сигнала и анализ зарегистрированных в этой временной зоне принятых сигналов, включающий определение их амплитуд через заданный промежуток времени, перемещают ультразвуковой преобразователь в зоне сканирования и повторяют операции контроля.

Изобретение относится к горной промышленности и может быть использовано для прогноза динамических явлений типа внезапного выброса угля и газа, горного удара и им подобных.

Изобретение относится к машиностроению и может быть использовано при проведении механических испытаний изоляции обмоток электродвигателей локомотивов. Сущность: осуществляют приложение силового воздействия к исследуемому образцу изоляционного покрытия.

Изобретение относится к машиностроению и может быть использовано при проведении испытаний адгезионной прочности изоляционного покрытия обмоток электродвигателей локомотивов. Сущность: осуществляют воздействие на образец с износостойкими покрытиями деформирующей нагрузки до разрушения покрытия и оценку результатов испытаний. Воздействие на образец осуществляют вибрационными колебаниями, возбуждаемыми звуковым давлением, причем увеличивают интенсивность звуковых колебаний до разрушения образца и оценку прочности дают по результатам сравнения с эталонным образцом износостойкого покрытия, после чего делают заключение о состоянии изоляционного покрытия. Устройство содержит высокочастотный акустический динамик с присоединенными к нему генератором частот и усилителем звука для регулирования вибрационного воздействия. Динамик закреплен сверху относительно исследуемого образца на специальном штативе, на основании установлена подставка с захватами для образца, причем видеокамера имеет возможное перемещение, осуществляемое посредством манипулятора по нескольким степеням свободы. Технический результат: возможность оценить остаточный ресурс изоляционного покрытия, показать опасные места на изоляционном покрытии. 2 н.п. ф-лы, 2 ил.

Наверх