Способ генетической паспортизации селекционных достижений малины на основе rapd-маркеров

Изобретение относится к области биотехнологии. Изобретение представляет собой способ генетической паспортизации селекционных достижений малины на основе RAPD-маркеров. Заявленный способ заключается в амплификации ДНК, выделенной из анализируемого образца, с использованием набора из 13 RAPD-праймеров и выявлении профилей, присущих только для данного сорта. Заявляемый способ позволяет идентифицировать сорта малины на основе ДНК-технологий. 2 з.п. ф-лы, 3 ил., 1 табл., 3 пр.

 

Изобретение относится к сельскому хозяйству, в частности, к составлению генетических паспортов посадочного материала малины.

Малина является ценной ягодной культурой, сладкие и ароматные плоды которой широко используются как в свежем виде, так и для переработки. Малина проста в выращивании, скороплодна, а ягоды ее являются почти первыми в сезоне, когда потребность в плодах особенно велика. В связи с открытием новых антиоксидантных свойств ее плодов в последние два десятилетия заметно вырос спрос на свежие ягоды малины. По производству плодов малины лидирующее место занимает Россия, на долю которой приходится около 30% валового сбора ягод малины в мире (с учетом сбора плодов с дикорастущих насаждений). Благодаря популярности этой культуры научные программы по селекции малины выполняются в нескольких российских селекционных центрах. За последние 5 лет в Государственный реестр селекционных достижений РФ включено 20 новых сортов малины.

В соответствии со статьей 1413 ГК РФ обязательным условием выдачи патента на селекционное достижение является его отличимость от других сортов (Гражданский кодекс Российской Федерации. Часть четвертая: Федеральный закон от 18 дек. 2006 г. №230-Ф3 // Парламент, газ. 2006. 22 дек.). Это требование предполагает наличие у нового сорта одного или нескольких маркерных признаков, которые обеспечат ему отличимость среди однотипных сортов, а также поддержание сортовых признаков и свойств селекционного достижения в процессе репродуцирования и соблюдения авторских прав селекционера.

В настоящее время для маркирования сортов малины используются как количественные признаки (число побегов, длина междоузлий, длина ягоды), так и качественные (окраска цветка, листьев, побегов и ягод, профиль и морщинистость листьев), которые выявляются визуально в фенотипе растений (RTG/0043/1 «Методика проведения испытаний на отличимость, однородность и стабильность. Малина (Rubus idaeus L.)» от 20.04.2006 г. №12-06/09. http://www.gossort.com/mtd_dus.html). Одним из основных недостатков таких признаков является существенная зависимость их проявления от условий выращивания, а также затрудненная идентификация в определенные сезоны года, например, в отсутствие цветения или плодоношения. В результате заключение о принадлежности данной партии посадочного материала к тому или иному сорту можно сделать лишь с определенной долей вероятности.

В связи с вышесказанным более эффективной и перспективной системой маркирования селекционных достижений является генетическая паспортизация сорта, представляющая собой метод получения генетически детерминированных характеристик с помощью молекулярных маркеров. В качестве таких маркеров могут использоваться молекулы белка (изоферментные маркеры) или участки ДНК (ДНК-маркеры). На сегодняшний день проведение генетической паспортизации считается актуальной задачей современной селекции. Кроме применения для регистрации и сертификации новых сортов, она также может использоваться и для защиты авторских прав селекционеров в случае нелегального распространения селекционного материала.

Известен способ паспортизации генотипов малины с помощью изоферментных маркеров (С.Е. Дунаева, Н.В. Кудрякова, Л.Л. Малышев. Использование изоферментных маркеров для паспортизации образцов и их таксономического разделения в роде Rubus // Плодоводство: научные труды. Национальная академия наук Беларуси, Институт плодоводства НАН Беларуси. - 2004. - Т. 15. - С. 212-216), в котором, в частности, использовались такие ферменты, как эстераза, пероксидаза и лейцинаминопептидаза. Недостатком данного способа является то, что изоферментные маркеры связаны с фенотипом, то есть подвержены влиянию окружающей среды и изменениям на различных стадиях развития растения. Кроме того, ограниченное количество таких маркеров по причине малочисленности биохимических анализов для их обнаружения не позволяет произвести тщательный анализ генетического разнообразия.

Наиболее близким к заявляемому изобретению является «Способ маркирования селекционных достижений клевера лугового на основе RAPD-маркеров» (Патент РФ №2244416 по заявке №2002102791/13 от 06.02.2002 г., А01Н 1/04, публ. 20.01.2005 г.), заключающийся в оценке ДНК-полиморфизма RAPD-методом с использованием набора 10-членных праймеров. Недостатком данного способа является то, что предлагаемый набор праймеров был предназначен для паспортизации генотипов клевера и может быть неэффективным для использования на столь отдаленном от клевера виде растения, как малина.

Задачей изобретения является генетическая паспортизация посадочного материала малины на основе ДНК-полиморфизма RAPD-методом.

Поставленная задача решается благодаря тому, что в отличие от известного способа паспортизации сортов клевера на основе RAPD-маркеров, включающем выделение ДНК из растительного материала, амплификацию ДНК в реакционной смеси с последовательным участием нескольких рандомных праймеров, разделение продуктов амплификации с помощью электрофореза, визуализацию продуктов амплификации под ультрафиолетовым светом, выявление для каждого сорта специфичных профилей продуктов амплификации в качестве его маркера, в данном изобретении амплификацию ДНК проводят с использованием следующих праймеров:

причем в процессе амплификации обеспечивают индивидуальную температуру отжига для каждого праймера, при этом выделение ДНК осуществляют из материала, взятого от не менее десяти растений каждого сорта, выращенных в поле или защищенном грунте или не менее двадцати растений каждого сорта, выращенных в условиях in vitro.

Способ осуществляют следующим образом:

отбирают образцы растительного материала исследуемого сорта, из образцов выделяют ДНК любым известным способом, амплифицируют ДНК в реакционной смеси с последовательным участием указанных нескольких праймеров по известной методике, полученные продукты амплификации разделяют на фракции методом электрофореза в разделяющем геле по стандартной методике, осуществляют визуализацию продуктов амплификации под ультрафиолетовым светом, для каждого сорта выявляют специфичные профили продуктов амплификации, которые служат маркерами данного селекционного достижения, причем в процессе амплификации обеспечивают индивидуальную температуру отжига для каждого праймера. При этом выделение ДНК осуществляют из материала, взятого от не менее десяти растений каждого сорта, выращенных в поле или защищенном грунте или не менее двадцати растений каждого сорта, выращенных в условиях in vitro.

Примеры осуществления способа.

Пример 1. Отбор растительного материала.

Для генетической паспортизации сорта отбирали листья с десяти растений для каждого сорта, выращенных в полевых условиях. До начала исследований листья хранили в холодильнике при 4°С.

Пример 2. Выделение ДНК.

Для выделения ДНК использовали модифицированный СТАВ-метод:

Гомогенизация и экстракция. Фрагменты растительной ткани массой до 50 мг помещали в центрифужную пробирку типа “Eppendorf” объемом 1,5 мл, содержащую 500 мкл экстрагирующего буфера (Т=65°С), следующего состава: 1,5% раствор бромида цетилтриметиламмония (СТАВ); 0,12 М раствор трис-HCI (рН 8,0); 1,2 М раствор хлорида натрия; 15 мМ раствор трилона Б, и гомогенизировали до однородного состояния. Далее пробирку закрывали и перемешивали содержимое на вихревом смесителе (400-600 об/мин) в течение 5 секунд. После этого пробирки помещали в твердотельный термостат и инкубировали в течение 30 мин при 65°С.

Очистка гомогенатов. После экстракции пробирку охлаждали до комнатной температуры и к образцу добавляли 500 мкл хлороформа. Содержимое перемешивали на встряхивающей ванне (200 об/мин) в течение 15 мин при комнатной температуре. Далее производили центрифугирование при 13000× g в течение 10 мин. После этого пипеточным дозатором отбирали 300 мкл супернатанта, переносили в другую центрифужную пробирку типа “Eppendorf” объемом 1,5 мл и добавляли к нему 60 мкл буфера 5× СТАВ (5% р-р СТАВ; 350 мМ раствор трилона Б). Содержимое перемешивали на вихревом смесителе (400 об/мин) и инкубировали в твердотельном термостате в течение 10 мин при 65°С. После инкубации добавляли 360 мкл хлороформа. Содержимое перемешивали на встряхивающей ванне (200 об/мин) в течение 10 мин при комнатной температуре, после чего центрифугировали при 13000× g в течение 10 мин (если раствор оставался мутным или была большая интерфаза, то процедуру очистки хлороформом повторяли).

Осаждение ДНК. По окончании центрифугирования пипеточным дозатором отбирали 200 мкл супернатанта, переносили в другую центрифужную пробирку типа “Eppendorf” объемом 1,5 мл и добавляли 200 мкл изопропанола. После добавления спирта содержимое пробирки перемешивали и оставляли в роторе центрифуги на 30 мин. Далее производили центрифугирование при 13000× g (Т=4°С) в течение 10 мин.

Очистка препарата ДНК. Супернатант сливали, а полученный осадок ДНК промывали 700 мкл охлажденного 70% этанола. После промывания содержимое пробирок центрифугировали при 13000× g (Т=4°С) в течение 5 мин. Процедуру промывки повторяли два раза для удаления из осадка остатков трилона Б и изопропанола, поскольку они являются ингибиторами амплификации.

Лиофилизация препарата ДНК. После промывки этанолом, пробирки размещали в штативе и, открыв крышки, просушивали осадок ДНК в течение 30-40 мин (Т=45°С) до полного испарения этанола.

Растворение препарата ДНК. Высушенный осадок растворяли в 50 мкл деионизированной воды во встряхивающей ванне (200 об/мин) при 65°С в течение 15 мин.

Пример 3. Полимеразная цепная реакция (ПЦР).

Для генетической паспортизации сортов малины использовали 13 RAPD-праймеров (таблица 1).

Таблица 1. Характеристика RAPD-праймеров, использованных для генетической паспортизации сортов малины.

ПЦР проводили по следующей программе:

1 цикл - длительная денатурация (3 мин, 94°С); 40 циклов - денатурация (30 с., 94°С), отжиг (30 с., температура отжига из табл. 1), элонгация (45 с., 72°С); 1 цикл - длительная элонгация (7 мин., 72°С).

Пример 4. Электрофоретическое разделение, визуализация и интерпретация результатов ПЦР.

Электрофоретическое разделение продуктов ПЦР проводили в 1,5% агарозных гелях, которые приготавливали путем растворения 1,5 г агарозы в 98,5 г 1× трис-ЭДТА-боратного буфера. Гели помещали в электрофоретическую камеру типа "SE-2" (фирма "Helicon"). Катодный и анодный отсеки заполняли 1× трис-ЭДТА-боратным буфером так, чтобы гель был погружен в буфер на 5 мм. Загрузочный раствор каждой дорожки состоял из 5 мкл продуктов ПЦР и 2 мкл загрузочного буфера (30% глицерин, 0,5% бромфеноловый синий). Электрофорез проводили при 4-8°С в течение 2,0-2,5 часов при параметрах тока 90 V/60 мА.

Визуализацию электрофоретических спектров осуществляли путем помещения гелевой пластины в раствор бромистого этидия (0,5 мкг/мл) на 15 мин. Затем гель извлекали, промывали в дистиллированной воде для удаления остатков красителя и просматривали в УФ-свете. Фракции ДНК проявляются в виде светлых полос на темном фоне.

Интерпретацию полученных результатов проводили визуально. RAPD-маркеры характеризуются доминантным типом проявления и диаллельной системой: "1" - наличие ампликона (доминантный аллель) и "0" - отсутствие ампликона (рецессивный аллель), в той или иной зоне гелевой пластины.

На Фиг. 1-3 на примере трех сортов малины (Атлант, Геракл, Пингвин) представлены RAPD-спектры, полученные при использовании 13 праймеров (анализировали по два или три образца ДНК, выделенные из различных источников).

Таким образом, предложенный способ, включающий отбор растительного материала, выделение ДНК из отобранного материала, генетический анализ ДНК RAPD-методом с последовательным участием нескольких праймеров, с последующим разделением продуктов амплификации путем электрофореза, их визуализацией под ультрафиолетовым светом и выявлением специфичных профилей позволит проводить генетическую паспортизацию любого сорта малины, выращиваемого в России.

1. Способ генетической паспортизации селекционных достижений малины на основе RAPD-маркеров, включающий отбор растительного материала, выделение ДНК из растительного материала, амплификацию ДНК в реакционной смеси с последовательным участием нескольких рандомных праймеров, разделение продуктов амплификации с помощью электрофореза, визуализацию продуктов амплификации под ультрафиолетовым светом и выявление среди продуктов амплификации присущих только для данного сорта профилей, служащих маркерами селекционного достижения, отличающийся тем, что амплификацию ДНК проводят с последовательным участием следующих рандомных праймеров:

2. Способ по п. 1, отличающийся тем, что для каждого рандомного праймера обеспечивают индивидуальную температуру отжига (°C):

Oligo 3 - 38,5

Oligo 4 - 34,5

Oligo 6 - 38,3

Oligo 9 - 38,0

Oligo 18 - 38,8

Oligo 27 - 31,7

Oligo 29 - 35,1

Oligo 83 - 31,9

Oligo 85 - 36,9

Oligo 93 - 32,4

Oligo 98 - 36,7

Oligo 100 - 43,0

Oligo 105 - 37,3

3. Способ по п. 1, отличающийся тем, что выделение ДНК осуществляют из материала, взятого от не менее десяти растений каждого сорта, выращенных в поле или защищенном грунте, или не менее двадцати растений каждого сорта, выращенных в условиях in vitro.



 

Похожие патенты:

Изобретение относится к области медицины, в частности к гинекологии. Предложен способ центильной оценки микроценоза слизистой влагалища у девочек путем отбора биоматериала со слизистой боковой стенки влагалища за физиологическим отверстием девственной плевы соскобом одноразовым урогенитальным зондом.

Изобретение относится к области медицины, в частности к гинекологии. Предложен способ центильной оценки микроценоза слизистой влагалища у девочек путем отбора биоматериала со слизистой боковой стенки влагалища за физиологическим отверстием девственной плевы соскобом одноразовым урогенитальным зондом.

Предложенная группа изобретений относится к области медицины, в частности, к онкологии и молекулярной биологии. Предложены набор реагентов и планшет для определения риска возникновения рецидива онкологических заболеваний молочной железы, включающие праймеры и зонды, специфичные по отношению к генам-маркерам ELOVL5, IGFBP6, TXNDC9.

Предложенная группа изобретений относится к области медицины, в частности, к онкологии и молекулярной биологии. Предложены набор реагентов и планшет для определения риска возникновения рецидива онкологических заболеваний молочной железы, включающие праймеры и зонды, специфичные по отношению к генам-маркерам ELOVL5, IGFBP6, TXNDC9.

Изобретение относится к области медицинской микробиологии и предназначено для дифференциации штаммов V. cholerae биовара Эль Тор.

Изобретение относится к области медицинской микробиологии и предназначено для дифференциации штаммов V. cholerae биовара Эль Тор.

Настоящее изобретение относится к предоставлению вакцин, которые специфичны к опухолям пациентов и потенциально применимы для иммунотерапии первичной опухоли, а также метастазов опухоли.

Настоящее изобретение относится к предоставлению вакцин, которые специфичны к опухолям пациентов и потенциально применимы для иммунотерапии первичной опухоли, а также метастазов опухоли.

Изобретение относится к области биохимии, в частности к способу получения генетического материала подсолнечника. Изобретение позволяет получать генетический материал подсолнечника, который имеет содержание пальмитиновой кислоты менее чем 3,0% от общего содержания масла.
Изобретение относится к области лабораторной диагностики, молекулярной биологии и эпидемиологии. Предложен набор синтетических олигонуклеотидов для выявления ДНК возбудителя бактериального вагинита Lactobacillus spp.

Изобретение относится к биотехнологии. Описан способ анализа активации Т-клеток путем детекции копий по меньшей мере одной молекулы РНК, экспрессируемой в отдельных Т-клетках, включающий предоставление образца, содержащего популяцию клеток, содержащую Т-клетки; индукцию экспрессии генов в Т-клетках ex vivo, либо сразу, либо после культивирования, при инкубировании клеток по меньшей мере с одним соединением, которое связывается специфическими рецепторами и инициирует экспрессию генов; фиксацию и пермеабилизацию клеток; мечение копий по меньшей мере одной молекулы РНК, экспрессируемой Т-клетками, с помощью набора флуоресцентно меченных олигонуклеотидных зондов гибридизации, которые имеют комплементарные последовательности к молекулам РНК, и удаление не связавшихся зондов при промывке; и детекцию клеток с событиями экспрессии с помощью проточной цитометрии (FC), где событие экспрессии является одним или более измерениями флуоресценции, которые группируют с помощью гейтирования интенсивности флуоресценции. Изобретение позволяет быстро обнаружить копии по меньшей мере одной молекулы РНК, экспрессируемой в отдельных клетках. 24 з.п. ф-лы, 8 ил., 3 табл., 12 пр.

Предложенная группа изобретений относится к области медицины. Предложены способы определения статуса плоидности хромосомы или сегмента хромосомы у вынашиваемого плода. Проводят мультиплексную амплификацию по меньшей мере 1000 полиморфных локусов на хромосоме или сегменте хромосомы из образца, который содержит свободноплавающую материнскую ДНК от матери плода и свободноплавающую плодную ДНК с использованием множества праймеров в одной реакции для получения смеси амплифицированной плодной и материнской геномной ДНК по меньшей мере 1000 полиморфных локусов. Предложенная группа изобретений обеспечивает эффективные неинвазивные способы пренатального установления плоидности. 2 н. и 30 з.п. ф-лы, 26 ил., 4 табл., 14 пр.

Предложенная группа изобретений относится к области медицины. Предложены способы определения статуса плоидности хромосомы или сегмента хромосомы у вынашиваемого плода. Проводят мультиплексную амплификацию по меньшей мере 1000 полиморфных локусов на хромосоме или сегменте хромосомы из образца, который содержит свободноплавающую материнскую ДНК от матери плода и свободноплавающую плодную ДНК с использованием множества праймеров в одной реакции для получения смеси амплифицированной плодной и материнской геномной ДНК по меньшей мере 1000 полиморфных локусов. Предложенная группа изобретений обеспечивает эффективные неинвазивные способы пренатального установления плоидности. 2 н. и 30 з.п. ф-лы, 26 ил., 4 табл., 14 пр.

Изобретение относится к области биотехнологии. Изобретение представляет собой способ генетической паспортизации селекционных достижений малины на основе RAPD-маркеров. Заявленный способ заключается в амплификации ДНК, выделенной из анализируемого образца, с использованием набора из 13 RAPD-праймеров и выявлении профилей, присущих только для данного сорта. Заявляемый способ позволяет идентифицировать сорта малины на основе ДНК-технологий. 2 з.п. ф-лы, 3 ил., 1 табл., 3 пр.

Наверх