Способ очистки природных водоемов от сероводорода

Изобретение может быть использовано в области улучшения экологии природных водоемов с морской водой и их очистки от сероводорода. Для осуществления способа проводят подъем к поверхности сероводородсодержащих вод за счет аэролифта и выделение из них сероводорода с последующим разложением его на элементы. Подъем воды осуществляют вертикальным трубопроводом (1), в рабочей части которого проводят электролиз воды с растворенным в ней сероводородом, причем анодом является корпус трубопровода, выполненный из легкого алюминиевого сплава. В боковой рабочей поверхности корпуса трубопровода расположены окна (2) для забора воды при его тралении в слое воды с растворенным сероводородом. Нижняя часть трубы плотно закрыта крышкой для сбора нерастворимых в морской воде продуктов электролиза, которые тяжелее воды (6). Катодом является сплошной цилиндр из алюминиевого сплава дюраль с содержанием меди 5-8% (7), расположенный по оси трубопровода в его рабочей части. Способ обеспечивает эффективное очищение водоемов с морской водой от сероводорода и, следовательно, предотвращение сокращения рыбных запасов в водоемах. 1 ил., 1 табл., 1 пр.

 

Изобретение относится к способам очистки природных водоемов от сероводорода для улучшения экологии природных водоемов с целью предотвращения уменьшения рыбных запасов в частности в акватории Черного моря вблизи Крымского побережья.

Наиболее близким к данному предложению является патент РФ №2123476 с приоритетом от 02.07.92 г., который предполагал создание аэролифта из пузырьков водорода, вырабатываемых за счет химической реакции активированного алюминия с морской водой. Водород, поднимаясь по трубе вверх, увлекает по трубе вверх и воду вместе с растворенным в нем водородом. Из движущейся к поверхности воды суспензии, за счет падения давления начинает выделяться и растворенный водород, что усиливает эффект аэролифта.

В 1992 году активированный алюминий предполагал использование сплава алюминия с индием и галлием. Такой сплав успешно выделяет из воды водород, при этом индий и галлий безвозвратно расходуется, что экономически невыгодно, так как эти компоненты по стоимости близки к золоту.

Поэтому предлагается вместо индия и галлия использовать сплав алюминия с несколькими процентами меди, например, 5-8% или использовать известный сплав Д16 (дюраль-дуралюминий), где так же содержится медь. Эти сплавы хорошо зарекомендовали себя в качестве материала для катода при электролизе воды для получения водорода. В предполагаемом нами способе организовывать аэролифт, используя разложение воды при помощи электролиза. Труба сделана из легкого алюминиевого сплава АМГ-6, почти не подверженного коррозии в морской воде. Труба-1 в данном случае будет являться анодом, а катодом расположенный в центре круглый сплошной цилиндр 7 из предлагаемого нами недорогого алюминиевого сплава.

В прототипе вода, в которой растворен сероводород засасывалась снизу трубы, в предлагаемом изобретении см. фиг. 1 нижний торец трубы закрыт, а вода с растворенным сероводородом поступает через боковые окна-2, что предполагает перемещение такой трубы-1 ее траление каким-либо судном, т.е. очищение воды от сероводорода на приличной акватории и в слое по вертикальному размеру щелей водозоборников-2.

Закрытая нижняя часть трубы предполагает сбор продуктов электрохимической реакции, которые тяжелее воды и не растворимы в воде-6.

Преимущество этого способа состоит еще в том, что этот процесс будет регулируемым за счет изменения мощности электроэнергии, подаваемой от постоянного источника тока 8 в цепь анод-катод.

Не нужно будет задействовать насосом, как в прототипе, первоначальное движение воды с растворенным в ней сероводородом вверх к поверхности водоема. Это можно сделать подавая в начале большую мощность на электролизную ячейку.

Следует заметить, что электролиз морской воды с растворенным в ней сероводородом несколько отличается от электролиза обычной воды.

Морская вода содержит в основном хлорид натрия, т.е. катионы натрия и анионы хлора и молекулы воды. Поэтому на катоде наряду с водородом будет находиться и натрий. Натрий с молекулами воды дает NaOH, с одной стороны дает умягчение воды (что полезно в небольших количествах), а с другой усиливает электролиз, что экономит электроэнергию.

На аноде наряду с кислородом выделяется хлор, который хорошо растворяясь в воде образует HCl и соединяясь с NaOH дает реакцию нейтрализации (соль возвращается в воду). Кислород, слабо растворяясь в воде, участвует в увеличении процесса аэролифта и еще происходит аэрация сероводорода и его химическое окисление кислородом.

В ресивере 3 происходит отделение сероводорода от воды. Вода стекает опять в водоем, а сероводород компрессором 4 подается в электролизер 5, где сначала сжижают его, а потом разлагают на водород и серу. Полученный водород частично используют для получения энергии, необходимой для сжатия и разложения сероводорода, а часть в качестве экологически чистого горючего.

Серу используют в различных отраслях народного хозяйства.

Экспериментальная проверка эффективности способа очистки природных водоемов с морской водой от сероводорода проводилась в лабораторных условиях путем извлечения сероводорода

из образцов воды, аналогичных химическому составу морской воды

Для получения раствора морской воды с сероводородом готовим разбавленный раствор соляной кислоты (например 10%) и растворяем в этом растворе сульфид натрия Na2S. При этом идет реакция: Na2S+2 НСl=2NaCl+H2S, т.е. получаем раствор сероводорода в морской воде, т.к. в морской воде прежде всего содержится NaCl. В целях безопасности испытание нужно проводит в вытяжном шкафу с хорошей вытяжкой образующегося сероводорода, т.к. даже небольшая концентрация его в воздухе вредна для здоровья.

Для лабораторного опыта с электролизом используем электролизную ячейку в 1,5 литра, куда вливаем полученный раствор с 5% соляной кислоты - это 75 г НСl или это 2,05 г водорода, т.е. примерно 1 г-моль, и в этом растворе растворяем 0,5 г Na2S, т.е. чисто серы 0,2 г. С этим количеством может соединиться водорода согласно формуле сероводорода 0,06 г. Итого в 1,5 л сероводорода будет 0,26 г, т.е. на литр соответствено концентрация будет 0,173 г/л. Максимальная растворимость составляет 4,47 г/л при 20 град.С и при 1атм. В лечебных целях целях- это средняя допустимая концентрация при приеме сероводородных ванн в течение 10 минут. Следовательно опыт проводим тоже в течение 10 минут.

Соленость нашего электролита получена по хлору примерно 72 г, но натрия 0,3 г и с ним может соединиться только 0,46 г хлора, т.е. NaCl в растворе будет 0,76 г, т.е. 0,5 г/л. Без ущерба для сероводорода добавляем еще согласно приведенной таблице до 20 г/л- это соленость Черного моря. Далее опыт проводим согласно п. 6 Таблицы №1. За 10 минут количество сероводорода уменьшилось в 2 раза. Оценивалось по показателям РН-метра. Щелочной раствор РН 12 изменился до РН 5,7.

Способ очистки природных водоемов от сероводорода, включающий подъем к поверхности сероводородсодержащей морской воды за счет аэролифта и выделение из нее сероводорода с последующим разложением его на элементы, отличающийся тем, что подъем воды осуществляют вертикальным трубопроводом, в рабочей части которого осуществляется электролиз воды с растворенным в ней сероводородом, причем анодом является корпус трубопровода, выполненный из легкого алюминиевого сплава и в боковой рабочей поверхности которого расположены окна для забора воды при его тралении в слое растворенного сероводорода, а нижняя часть трубы плотно закрыта крышкой для сбора нерастворимых в морской воде продуктов электролиза, которые тяжелее воды, а катодом является сплошной цилиндр из алюминиевого сплава с содержанием меди 5-8%, расположенный по оси трубопровода в его рабочей части.



 

Похожие патенты:

Изобретение относится к устройству получения обогащенной водородом воды и обогащенной кислородом воды. Устройство содержит диэлектрический корпус с отверстием для входа воды и вентилями для выхода обогащенной водородом воды и обогащенной кислородом воды.

Группа изобретений относится к области производства воды хозяйственно-питьевого назначения и может быть использована в технике, медицине, в том числе в практическом здравоохранении, в пищевой и косметической промышленности, сельском хозяйстве.

Группа изобретений относится к области водоподготовки. Установка содержит устройство датчика хлора, резервуар (16, 16b) для соляного раствора (или обесцвечивающего раствора хлора или диоксида хлора), который через трубопровод (24а, 50) контроля хлора соединен с устройством (29, 30; 29b, 30b) датчика хлора.

Изобретение может быть использовано в химической промышленности и водоочистке. Сорбционную очистку вод от аммонийного азота предприятий рыборазведения осуществляют при подаче сорбента, перемешивании и отделении твердой фазы.

Изобретение относится к системам мембранной очистки и/или обессоливания жидкости и может быть использовано в промышленном, бытовом и/или питьевом водоснабжении, на промышленных предприятиях, станциях очистки жидкости, в общественных учреждениях, на дачных и садовых участках.
Группа изобретений относится к генератору озона с высоковольтным электродом (5) и по меньшей мере одним контрэлектродом (1), проволочному изделию плоской формы и компоновке высоковольтного электрода.
Изобретение относится к устройствам для дистилляции морских, загрязненных или минерализованных вод посредством использования только солнечной энергии. В корпусе опреснителя установлено последовательно несколько пар металлических листов с образованием зон конденсации, между листами в каждой паре размещен гигроскопический материал, нижние концы которого через герметичные отверстия в днище корпуса выведены в емкость с опресняемой водой, на металлические листы нечетных испаряющих пар нанесены отверстия, их верхние концы выведены через крышку корпуса наружу, нижние концы металлических листов четных конденсационных пар через днище корпуса выведены в емкость с опресняемой водой, а верхние концы этих пар листов изнутри корпуса присоединены к его крышке, в которой выполнены для них отверстия, испаряющие воду, причем патрубок емкости для сбора конденсата проложен вдоль днища корпуса и на нем нанесены отверстия в зонах конденсации пара между парами металлических листов.
Изобретение предназначено для улавливания и нанесения противомикробного средства. Блок улавливания для использования с блоком нанесения противомикробного средства содержит фильтр на входе, соединенный с улавливающей линией на входе для переноса сточной жидкости из блока нанесения противомикробного средства в фильтр на входе, фильтр на выходе, соединенный с улавливающей линией на выходе для переноса фильтрата сточной жидкости на входе из фильтра на входе в фильтр на выходе.
Изобретение относится к способам извлечения кремнезема из термальных вод и может быть применено в химической, нефтеперерабатывающей промышленности, в геотермальной энергетике.

Изобретение относится к способу получения потоков газообразного водорода, обогащенного сероводородом, подходящего для сульфидирования катализатора, получаемого из насыщенных аминов нефтепереработки.

Изобретение относится к области физики, в частности к аналитическому приборостроению и может быть использовано в газоанализаторах, применяемых на установках извлечения серы.

Группа изобретений относится к неорганической химии и может быть использована для получения сероводорода с содержанием сульфанов, не превышающим 600 млн-1. Для получения сероводорода путем проведения экзотермической реакции серы с водородом при повышенных температуре и давлении обеспечивают наличие расплава (3) серы в нижней части (2) реактора (1).

Группа изобретений относится к неорганической химии и может быть использована для получения сероводорода с содержанием сульфанов, не превышающим 600 млн-1. Для получения сероводорода путем проведения экзотермической реакции серы с водородом при повышенных температуре и давлении обеспечивают наличие расплава (3) серы в нижней части (2) реактора (1).

Изобретение относится к синтезу сероводорода и может быть использовано в химической промышленности. Реактор (1) для непрерывного получения сероводорода содержит нижнюю часть (2) с расплавом (3) серы, одну или несколько не удерживающих давление первых ловушек (4), по меньшей мере по одному устройству (5, 5а), подводящему водород на каждую первую ловушку, газосборную часть (6), пригодную для вмещения газовой смеси, содержащей продукт, один или несколько не удерживающих давление встроенных элементов (7) для непрерывного перемещения всей содержащей продукт газовой смеси, образовавшейся в нижней части (2) реактора, в газосборную часть (6).

Изобретение относится к синтезу сероводорода и может быть использовано в химической промышленности. Реактор (1) для непрерывного получения сероводорода путем проведения экзотермической реакции серы и водорода содержит нижнюю часть (2) для размещения расплава (3) серы, одну или несколько не удерживающих давление первых ловушек (4), по меньшей мере по одному устройству (5, 5a), подводящему под давлением газообразный водород на каждую первую ловушку, одну или несколько не удерживающих давление вторых ловушек (8), расположенных над первой(-ыми) ловушкой(-ами) (4), газосборную часть (6) для размещения газовой смеси, содержащей продукт при повышенных температуре и давлении.

Изобретение может быть использовано для очистки природных и сточных вод промышленных предприятий от сероводорода, ионов сульфидов и гидросульфидов. Способ включает обработку исходной воды соединениями железа с последующей их регенерацией кислотой.

Изобретение относится к способу обработки серосодержащего газа и к катализатору гидрирования, используемому для этого. Описан катализатор гидрирования, который включает в качестве активного компонента оксид никеля, оксид кобальта, а также оксид молибдена или оксид вольфрама.

Изобретение относится к способу получения серной кислоты, при этом в установке для производства серной кислоты получают исходный газ, содержащий SO2, который пропускают, по меньшей мере, через один реактор, в котором протекает каталитическая реакция с окислением SO3 в SO2, а из образовавшегося при этом SO3 получают серную кислоту.
Изобретение относится к области химии и может быть использовано в газоперерабатывающей промышленности для удаления полисульфанов из товарной серы. .

Изобретение может быть использовано в нефтедобывающей и нефтехимической отраслях промышленности. Способ переработки воды, содержащей ароматические углеводороды, включает по меньшей мере следующие стадии: (i) введение потока (I), содержащего воду и ароматические углеводороды, выбранные из группы, состоящей из бензола, толуола, этилбензола и ксилола, в колонну, (ii) реализацию противоточного контакта потока (I) со вторым потоком (II) и (iii) отвод третьего потока (III), содержащего воду и ароматические углеводороды, выбранные из группы, состоящей из бензола, толуола, этилбензола и ксилола. Концентрация ароматических углеводородов составляет ≤3 мг/л в пересчете на объем потока (III). Второй поток (II) содержит попутный нефтяной газ, включающий от ≥30 до ≤75 об.% метана. Изобретение позволяет обеспечить простой и экономичный способ удаления ароматических углеводородов. 15 з.п. ф-лы, 1 ил.
Наверх