Спектрометр комбинационного рассеяния с совмещением микро- и макрорежимов для химического и структурного анализа веществ

Изобретение относится к области измерительной техники и касается спектрометра комбинационного рассеяния с совмещением микро- и макрорежимов для химического и структурного анализа веществ. Спектрометр включает в себя платформу, на которой установлены лазер, коллиматор, первое зеркало, оптический низкочастотный фильтр, микроскоп с первым образцом и модулем сопряжения, первый фокусирующий объектив, монохроматор и система регистрации излучения. Кроме того, спектрометр содержит второй фокусирующий объектив, второе зеркало, сферическое зеркало и сменный модуль с предметным столиком, вторым образцом и корректирующей линзой. Первое зеркало установлено с возможностью поворота для оптического сопряжения оптического излучения лазера со вторым фокусирующим объективом, вторым зеркалом и сферическим зеркалом. Сменный модуль может расположен таким образом, что низкочастотный фильтр расположен между корректирующей линзой и предметным столиком на первой оптической оси. Второе зеркало и сферическое зеркало установлены так, что образуемая ими вторая оптическая ось пересекает первую оптическую ось, а второй образец размещен в точке пересечения первой и второй оптических осей. Технический результат заключается в повышении чувствительности и расширении функциональных возможностей устройства. 2 з.п. ф-лы, 1 ил.

 

Спектрометр комбинационного рассеяния с совмещением микро- и макрорежимов для химического и структурного анализа веществ относится к измерительным приборам и может быть использован для исследований широкого класса веществ, например, полупроводниковых материалов, биологических тканей, органических или водных растворов, методами оптической спектроскопии, в частности, методом спектроскопии комбинационного рассеяния.

Аналоги данного устройства имеют один из указанных режимов в рамках одной оптической схемы. Таким образом, для осуществления комплексных исследований необходимо отдельно использовать спектрометры для микро- и для макрорежимов измерения. Некоторым исключением из данного правила является модель "Т64000 Advanced Research Raman System" компании HORIBA Scientific (ранее Jobin Yvon). Однако в данном приборе макрокамера является дополнительным и обеспечивается самостоятельным устройством, сопрягаемым с основной схемой для микрорежима измерения, что существенно повышает габариты, сложность и цену прибора.

Известен спектрометр комбинационного рассеяния, содержащий платформу, на которой установлены лазер, коллиматор, первое зеркало, оптический низкочастотный фильтр, оптический микроскоп с первым образцом и модулем сопряжения оптического микроскопа, первый фокусирующий объектив, монохроматор, входная щель монохроматора и система регистрации оптического излучения, при этом лазер оптически сопряжен с коллиматором, который посредством первого зеркала оптически сопряжен с оптическим низкочастотным фильтром, причем отраженное от оптического низкочастотного фильтра излучение лазера поступает на модуль сопряжения и далее на оптический микроскоп и первый образец, при этом первый образец, оптический микроскоп, модуль сопряжения, оптический низкочастотный фильтр, первый фокусирующий объектив, входная щель монохроматора и монохроматор расположены на первой оптической оси O1-O2, а оптический низкочастотный фильтр оказывается размещенным между модулем сопряжения оптического микроскопа и первым фокусирующим объективом (патент US 2010/0241357). Это устройство выбрано в качестве прототипа предложенного решения.

Недостаток этого устройства заключается в том, что с его помощью крайне затруднительно проводить исследования объемных образцов с низкой плотностью исследуемого вещества, например, растворов. Использование данного прибора, адаптированного только под микрорежим и способного хорошо анализировать сверхмалые количества, но,

высококонцентрированного образца, приводит к недопустимо большим потерям регистрируемого сигнала и, следовательно, к низкой чувствительности устройства. Это в свою очередь приводит к сужению функциональных возможностей устройства.

Задача изобретения заключается в обеспечении режимов микроизмерений и макроизмерений в рамках единой оптической схемы. Таким образом устраняется необходимость использования двух отдельных независммых устройств для осуществления комплексных исследований широкого класса веществ методом спектроскопии комбинационного рассеяния.

Технический результат изобретения заключается в расширении функциональных возможностей устройства за счет незначительного изменения оптического тракта прототипа, работающего в параллельных пучках, благодаря чему появляется возможность расположить предметный столик для установки крупногабаритных образцов, например, кювет или капилляров с исследуемым раствором, в фокусе первого фокусирующего объектива, что и фокусирует параллельные пучки оптического излучения на входную щель монохроматора. Это достигается введением корректирующей линзы с таким значением мнимого фокуса, что при использовании совместно с первым фокусирующим объективом задняя фокальная плоскость совпадает с плоскостью входной щели монохроматора, а передняя фокальная плоскость, в которой проходит оптическое излучение лазера, пересекает предметный столик со вторым образцом (кюветой). Сменяемость вводимых для включения макрорежима блоков без существенного изменения первичной оптической схемы, работающей в микрорежиме, позволяет легко реализовать оба эти измерительных режима в рамках одной установки, что приводит к повышению чувствительности устройства и расширению его функциональных возможностей.

Указанный технический результат достигается тем, что в спектрометр комбинационного рассеяния с совмещением микро и макро режимов для химического и структурного анализа веществ, содержащий платформу, на которой установлены лазер, коллиматор, первое зеркало, оптический низкочастотный фильтр, оптический микроскоп с первым образцом и модулем сопряжения оптического микроскопа, первый фокусирующий объектив, монохроматор, входная щель монохроматора и система регистрации оптического излучения, при этом лазер оптически сопряжен с коллиматором, который посредством первого зеркала оптически сопряжен с оптическим низкочастотным фильтром, причем отраженное от оптического низкочастотного фильтра излучение лазера поступает на модуль сопряжения и далее на оптический микроскоп и первый образец, при этом первый образец, оптический микроскоп, модуль сопряжения, оптический низкочастотный фильтр, первый фокусирующий объектив, входная щель монохроматора и монохроматор расположены на первой оптической оси O1-O2, а оптический низкочастотный фильтр оказывается размещенным между модулем сопряжения оптического микроскопа и первым фокусирующим объективом, введены второй фокусирующий объектив, второе зеркало, сферическое зеркало и сменный модуль с предметным столиком, вторым образцом и корректирующей линзой, при этом первое зеркало установлено с возможностью поворота для оптического сопряжения оптического излучения лазера со вторым фокусирующим объективом, вторым зеркалом и сферическим зеркалом, причем сменный модуль может занимать положение на первой оптической оси O1-O2 таким образом, что оптический низкочастотный фильтр оказывается расположенным между корректирующей линзой и предметным столиком на первой оптической оси O1-O2, при этом второе зеркало и сферическое зеркало установлены так, что образуемая ими вторая оптическая ось O3-O4 пересекает первую оптическую ось O1-O2, в плоскости XY, причем второй образец, закрепленный на предметном столике, оказывается размещенным в точке пересечения первой оптической оси O1-O2 и второй оптической оси O3-O4.

Существует вариант, в котором вторая оптическая ось O3-O4 перпендикулярна первой оптической оси O1-O2.

Существует вариант, в котором перемещение сменного модуля в положение на первой оптической оси O1-O2 осуществляют в плоскости XY по рельсовым направляющим.

На чертеже представлена схема спектрометра комбинационного рассеяния с совмещением микро- и макрорежимов для химического и структурного анализа веществ.

Спектрометр комбинационного рассеяния с совмещением микро- и макрорежимов для химического и структурного анализа веществ содержит платформу 1, на которой установлены лазер 2 и коллиматор 3. В качестве лазера 2 можно использовать лазер с диапазоном длин волн от ближнего УФ до ближнего РЖ- диапазонов. В качестве коллиматора 3 можно использовать двухлинзовую коллиматорную систему с подстройкой положения линз. На платформе 1 установлено также первое зеркало 4, сопряженное с модулем поворота в плоскости XY 5. Первое зеркало 4 может быть выполнено с металлической, отражающей поверхностью, например, «Aluminum Substrate Mirrors, #47-114» компании Edmund Optics. В качестве модуля поворота в плоскости XY 5 можно использовать угловую подвижку с моторизированной подстройкой такую, как «8MKVDOM» компании Standa. На платформе 1 также установлен оптический низкочастотный фильтр 6, который может быть выполнен в виде прозрачной отражающей поверхности с нанесенным диэлектрическим покрытием, например, фильтр «488 nm RazorEdge LP02-488RE-25» компании Semrock. На платформе 1 также установлен оптический микроскоп 7 с первым образцом 8 и с модулем сопряжения 9 оптического микроскопа 7. В качестве оптического микроскопа 7 можно использовать прямой оптический микроскоп, например, «Eclipse FN1» компании Nikon. Первый образец 8 может представлять собой образец, исследуемый в прямом оптическом микроскопе, например, полимерные структуры, клеточные культуры, полупроводниковые гетеропереходы и т.д. В качестве модуля сопряжения 9 можно использовать систему регулируемых по углу зеркал, образующих перископ, например, «10LBS» компании Standa. На платформе 1 также установлены первый фокусирующий объектив 11, монохроматор 12, входная щель монохроматора 13 и система регистрации оптического излучения 14. В качестве первого фокусирующего объектива 11 можно использовать линзы, собранные так, что их задняя фокальная плоскость совпадает с плоскостью входной щели монохроматора 13 при бесконечно удаленном переднем фокусе - падение параллельного пучка оптического излучения. В качестве монохроматора 12 можно использовать любой монохроматор (например, монохроматор Черни-Тюрнера), работающий в диапазоне от ближнего УФ, до ближнего ИК-диапазонов. Входная щель монохроматора 13 может представлять собой моторизированную щель с рабочим зазором от 0 до 1 мм такие, как «10AOS10-1» или «10MAOS10-1» компании Standa. В качестве системы регистрации оптического излучения 14 можно использовать, например, многоканальный регистратор (например, ПЗС-матрица или линейка) работающий в диапазоне от ближнего УФ, до ближнего ИК-диапазонов. Лазер 2 оптически сопряжен с коллиматором 3, который посредством первого зеркала 4 оптически сопряжен с оптическим низкочастотным фильтром 6. Это может быть осуществлено путем модуля позиционирования (не показан) лазера 2 соосно с оптической осью коллиматора 3 с последующей юстировкой оптического излучения, отраженного от первого зеркала 4 таким образом, чтобы оптическое излучение, отраженное от оптического низкочастотного фильтра 6 прошло через первую оптическую ось 01-02. Отраженное от оптического низкочастотного фильтра 6 оптическое излучение лазера 2 поступает на модуль сопряжения 9 и далее на оптический микроскоп 7 и первый образец 8. Первый образец 8, оптический микроскоп 7, модуль сопряжения 9, оптический низкочастотный фильтр 6, первый фокусирующий объектив 11, входная щель монохроматора 13 и монохроматор 12 расположены на первой оптической оси O1-O2. Погрешность расположения перечисленных элементов на первой оптической оси O1-O2 должны не превышать 1 мм и может быть проконтролирована визуально с помощью оптически прозрачной пленки с нанесенной миллиметровой сеткой. Оптический низкочастотный фильтр 6 при этом оказывается размещенным между модулем сопряжения 9 оптического микроскопа 7 и первым фокусирующим объективом 11. В качестве отличительных признаков в спектрометр введены второй фокусирующий объектив 17, второе зеркало 18, сферическое зеркало 19, и сменный модуль 20 с предметным столиком 21, вторым образцом 22 и корректирующей линзой 23. В качестве второго фокусирующего объектива 17 можно использовать одну или несколько линз. Второе зеркало 18 может быть выполнено в виде плоской поверхности, как с металлической отражающей поверхностью, например, «Aluminum Substrate Mirrors, #47-114» компании Edmund Optics, так и диэлектрической отражающей поверхностью, например, «TECHSPEC® Broadband Dielectric Coated λ/10 First Surface Mirrors, #87-366» компании Edmund Optics. Сферическое зеркало 19 может быть выполнено в виде вогнутой сферической поверхности, как с металлическим отражающим покрытием, «1" Dia, 3" FL Protected Alum., Spherical Mirror» компании Edmund Optics, так и диэлектрическим отражающим покрытием «СМ 127-012-Е02» компании Thorlabs». Сменный модуль 20 может представлять собой платформу, на которой установлены предметный столик 21 со вторым образцом 22 и корректирующая линза 23. Предметный столик 21 может быть выполнен в виде плоской поверхности с диаметром 10 мм-30 мм. В качестве второго образца 22 можно использовать различные жидкости (водные растворы, органические растворы и коллоидные взвеси), помещенные в кюветы для оптических измерений, имеющих прозрачные боковые стенки. В качестве корректирующей линзы 23 можно использовать рассеивающую линзу с таким значением мнимого фокуса, что при использовании совместно с первым фокусирующим объективом 11 задняя фокальная плоскость совпадала с плоскостью входной щели монохроматора 13, а передняя фокальная плоскость находилась в точке пересечения первой оптической оси O1-O2 и второй оптической оси O3-O4 так, что данная плоскость перпендикулярна первой оптической оси O1-O2.

Первое зеркало 4 установлено с возможностью поворота в положение 4(B) для оптического сопряжения излучения лазера 2 со вторым фокусирующим объективом 17, вторым зеркалом 18 и сферическим зеркалом 19. Это может быть проконтролировано визуально с помощью оптически прозрачной пленки с нанесенной миллиметровой сеткой, для чего второй образец 22 может быть снят с предметного столика 22. Для использования макрорежима сменный модуль 20 может занимать положение 20(A) на первой оптической оси O1-O2 таким образом, что оптический низкочастотный фильтр 6 оказывается расположенным между корректирующей линзой 23 в положение 23(A) и предметным столиком 21 в положение 21(A) на первой оптической оси O1-O2. Погрешность установки сменного модуля 20 на первой оптической оси O1-O2 в положение 20(A) должна быть в пределах 1 мм и может быть проконтролирована визуально с помощью оптически прозрачной пленки с нанесенной миллиметровой сеткой. Второе зеркало 18 и сферическое зеркало 19 установлены так, что образуемая ими вторая оптическая ось O3-O4 пересекает первую оптическую ось O1-O2, в плоскости XY. Причем второй образец 22, закрепленный на предметном столике 11, оказывается размещенным в точке пересечения первой оптической оси O1-O2 и второй оптической оси O3-O4 (положение 22(A)) с погрешностью 1 мм и может быть проконтролирована визуально с помощью оптически прозрачной пленки с нанесенной миллиметровой сеткой.

В наиболее предпочтительном варианте вторая оптическая ось O3-O4 перпендикулярна первой оптической оси O1-O2 с погрешностью 1 градус. Это может быть проконтролировано с использованием установленного на предметном столике 21 гониометра.

Перемещение сменного модуля 20 в положение на первой оптической оси O1-O2 (20(A)) осуществляют в плоскости XY посредством линейного привода 24 по рельсовым направляющим 25. В качестве линейного привода можно использовать моторизированный линейный транслятор такой, как «8MTL 140-300» компании Standa. Первая рельсовая направляющая 26 может представлять собой V-образный элемент. Вторая рельсовая направляющая 27 может представлять собой плоский элемент. В сменном модуле 20 со стороны рельсовых направляющих 25 закреплены, например, шаровые опоры 28, две из которых сопряжены с первой рельсовой направляющей 26, а одна - со второй рельсовой направляющей 27.

Устройство работает следующим образом.

При отведенном сменном модуле 20 (на чертеже - нижнее положение) устройство работает в микрорежиме измерения спектров комбинационного рассеяния. В данном случае излучение лазера 2 проходит через коллиматор 3 для достижения параллельности пучка оптического излучения и попадает на первое зеркало 4. Данное зеркало позволяет настроить положение пучка на плоскости оптического низкочастотного фильтра 6. Угловая юстировка фильтра 6, которая может быть обеспечена его подвижкой (не показана) позволяет настроить положение пучка оптического излучения на модуль сопряжения 9, который сопрягает его с оптическим микроскопом 7 с закрепленным первым образцом 8. Отраженное от первого образца 8, содержащее, как возбуждающее, так и вторичное излучение отражается обратно и, доходя до оптического низкочастотного фильтра, 6 разделяется на два пучка - возбуждающего, который отражается от низкочастотного фильтра 6, и вторичного, который без потерь проходит через этот фильтр. Пучок, содержащий вторичное излучение, проходит через первый фокусирующий объектив 11 на монохроматор 12 через входную щель монохроматора 13 с последующей регистрацией системой регистрации оптического излучения 14 с блоком управления 15.

Перевод устройства в режим макроизмерений осуществляется введением сменного модуля 20 содержащего с предметный столик 21, второй образец 22 и корректирующую линзу 23 в положение А на оси O1-O2. Введение сменного модуля 20 в положение А осуществляется в плоскости XY посредством линейного привода 24 по рельсовым направляющим 25. При этом оптическое излучение от лазера 2 перенаправляется первым зеркалом 4, переведенным в положение В, на второй фокусирующий объектив 17, а второе зеркало 18 позволяет навести его на предметный столик 21 со вторым образцом 22. Удвоение мощности оптического излучения от лазера 2 осуществляется сферическим зеркалом 19. В данной конфигурации направление распространения оптического излучения и ось сбора вторичного излучения взаимно перпендикулярны. Сбор вторичного излучения (комбинационное рассеяние и/или флуоресценция) осуществляется через тот же фокусирующий объектив 11 но с введением корректирующей (рассеивающей) линзы 23 с таким значением мнимого фокуса, что при использовании совместно с первым фокусирующим объективом 11 задняя фокальная плоскость совпадает с плоскостью входной щели монохроматора 13, а передняя фокальная плоскость, в которой проходит оптическое излучение лазера 2, пересекает предметный столик 21 со вторым образцом (кюветой) 22. Дальнейшая регистрация вторичного излучения осуществляется тем же способом, как и в случае макрорежима измерений.

То, что в устройство введены второй фокусирующий объектив 17, второе зеркало 18, сферическое зеркало 19 и сменный модуль 20 с предметным столиком 21, вторым образцом 22 и корректирующей линзой 23, при этом первое зеркало 4 установлено с возможностью поворота для оптического сопряжения излучения лазера 2 со вторым фокусирующим объективом 17, вторым зеркалом 18 и сферическим зеркалом 19, причем сменный модуль 20 может занимать положение на первой оптической оси O1-O2 таким образом, что оптический низкочастотный фильтр 6 оказывается расположенным между корректирующей линзой 23 и предметным столиком 21 на первой оптической оси O1-O2, при этом второе зеркало 18 и сферическое зеркало 19 установлены так, что образуемая ими вторая оптическая ось O3-O4 пересекает первую оптическую ось O1-O2, в плоскости XY, причем второй образец 22, закрепленный на предметном столике 21, оказывается размещенным в точке пересечения первой оптической оси O1-O2 и второй оптической оси O3-O4 приводит к тому, что за счет незначительного изменения оптического тракта прототипа, работающего в параллельных пучках, появляется возможность установить предметный столик 21 для установки крупногабаритных образцов, например, кювет или капилляров с исследуемым раствором, в фокусе того же объектива 11, что и фокусирует параллельные пучки оптического излучения на входную щель монохроматора 13. Данный результат достигается введением корректирующей (рассеивающей) линзы 23 с таким значением мнимого фокуса, что при использовании совместно с первым фокусирующим объективом 11 задняя фокальная плоскость совпадает с плоскостью входной щели монохроматора 13, а передняя фокальная плоскость, в которой проходит оптическое излучение лазера 2, пересекает предметный столик 21 со вторым образцом (кюветой) 22. Сменяемость вводимых для включения макрорежима блоков без существенного изменения оптической схемы, работающей в микрорежиме, позволяет легко реализовать оба эти измерительных режима в рамках одной установки. Это приводит к повышению чувствительности устройства и расширению его функциональных возможностей.

То, что вторая оптическая ось O3-O4 перпендикулярна первой оптической оси O1-O2 приводит к появлению возможности реализации макрорежима измерений комбинационного рассеяния в котором ось возбуждения (O3-O4) и регистрации (O1-O2) перпендикулярны, что обеспечивает максимальный измеряемый объем образца при минимальном прохождении возбуждающего излучения в блок регистрации. Это приводит к повышению чувствительности устройства и расширению его функциональных возможностей.

То, что перемещение сменного модуля 20 в положение на первой оптической оси O1-O2 осуществляют в плоскости XY по рельсовым направляющим 25 позволяет без дополнительных настроечных процедур и существенного изменения оптической схемы, работающей в микрорежиме переключать устройство в макрорежим измерения комбинационного рассеяния. Использование рельсовых направляющих позволяет точно установить сменный модуль 20 в положение А на оси O1-O2, что приводит к повышению чувствительности устройства и расширению его функциональных возможностей.

1. Спектрометр комбинационного рассеяния с совмещением микро- и макрорежимов для химического и структурного анализа веществ, содержащий платформу (1), на которой установлены лазер (2), коллиматор (3), первое зеркало (4), оптический низкочастотный фильтр (6), оптический микроскоп (7) с первым образцом (8) и модулем сопряжения (9) оптического микроскопа (7), первый фокусирующий объектив (11), монохроматор (12), входная щель монохроматора (13) и система регистрации оптического излучения (14), при этом лазер (2) оптически сопряжен с коллиматором (3), который посредством первого зеркала (4) оптически сопряжен с оптическим низкочастотным фильтром (6) с возможностью отражения излучения лазера (2) на модуль сопряжения (9) и далее на оптический микроскоп (7) и первый образец (8), при этом первый образец (8), оптический микроскоп (7), модуль сопряжения (9), оптический низкочастотный фильтр (6), первый фокусирующий объектив (11), входная щель монохроматора (13) и монохроматор (12) расположены на первой оптической оси О1-О2, а оптический низкочастотный фильтр (6) расположен между модулем сопряжения (9) оптического микроскопа (7) и первым фокусирующим объективом (11), отличающийся тем, что в него введены второй фокусирующий объектив (17), второе зеркало (18), сферическое зеркало (19) и сменный модуль (20) с предметным столиком (21), вторым образцом (22) и корректирующей линзой (23), при этом первое зеркало (4) установлено с возможностью поворота для оптического сопряжения оптического излучения лазера (2) со вторым фокусирующим объективом (17), вторым зеркалом (18) и сферическим зеркалом (19), причем сменный модуль (20) может занимать положение на первой оптической оси О1-О2 таким образом, что оптический низкочастотный фильтр (6) расположен между корректирующей линзой (23) и предметным столиком (21) на первой оптической оси О1-О2, при этом второе зеркало (18) и сферическое зеркало (19) установлены так, что образуемая ими вторая оптическая ось О3-О4 пересекает первую оптическую ось О1-О2 в плоскости XY, причем второй образец (22), закрепленный на предметном столике (21), размещен в точке пересечения первой оптической оси О1-О2 и второй оптической оси О3-О4.

2. Спектрометр по п. 1, отличающееся тем, что вторая оптическая ось О3-О4 перпендикулярна первой оптической оси О1-О2.

3. Спектрометр по п. 1, отличающееся тем, что содержит линейный привод (24) и рельсовые направляющие (25) с возможностью перемещения сменного модуля (20) по рельсовым направляющим (25) в положение на первой оптической оси О1-О2 в плоскости XY.



 

Похожие патенты:

Изобретение относится к области измерительной техники и касается газоанализатора комбинационного рассеяния. КР-газоанализатор включает в себя непрерывный лазер, поворотную призму, линзу, фокусирующую лазерное излучение в центре герметичной кюветы, оснащенной двумя окнами для пропускания лазерного излучения и одним окном для вывода рассеянного света, два объектива, голографический фильтр, блокирующий излучение в области длины волны лазера, спектральный прибор, сопряженный с многоканальным детектором, блок управления и персональный компьютер.

Изобретение относится к области измерительной техники и касается анализатора состава природного газа. Анализатор содержит непрерывный лазер, поворотную призму, линзу, фокусирующую лазерное излучение в центре герметичной кюветы, ловушку лазерного излучения, два объектива, голографический фильтр, блокирующий излучение в области длины волны лазера, спектральный прибор, сопряженный с многоканальным фотодетектором, блок управления и персональный компьютер.

Изобретение относится к способам и устройствам для измерения параметров ограненного драгоценного камня. Устройство состоит из комплекта источников излучения, каждый из которых сконфигурирован для испускания оптического излучения на отдельных длинах или в интервалах длин волн таким образом, чтобы испускаемое излучение облучало, по меньшей мере, часть измерительной позиции.

Группа изобретений относится к области технологий материалов, материаловедческих и аналитических исследований. Планарный оптический ГКР-сенсор для детектирования белковых соединений включает последовательно расположенные на подложке на основе диэлектрического химически инертного материала наноструктурированное покрытие на основе наночастиц благородных металлов и прозрачный микропористый слой полиэлектролита, характеризующийся способностью/возможностью образовывать полиэлектролитный комплекс с белковыми соединениями, при этом наночастицы благородных металлов имеют размеры 20-90 нм, наноструктурированное покрытие из них выполнено толщиной 1-10 мкм, а слой полиэлектролита выполнен толщиной 50-100 мкм.

Изобретение относится к способам анализа элементного состава веществ. Способ определения элементного состава капельных жидкостей включает: возбуждение плазменного разряда, доставку в зону разряда частиц анализируемой жидкости, регистрацию и обработку спектров излучения анализируемой жидкости, причем возбуждение плазменного разряда проводят при атмосферном давлении, основными носителями заряда в плазме являются электроны, генерируемые катодом плазменной горелки или каким-либо другим источником заряженных элементарных частиц.

Изобретение относится к области измерительной техники. Анализатор состава природного газа содержит непрерывный лазер, фокусирующую линзу, газовую кювету с входным и боковым окном, фотообъектив, голографический фильтр, спектральный прибор, сопряженный с ПЗС-матрицей, и блок управления, взаимодействующий с ПЗС-матрицей.

Изобретение относится к измерительной технике и может быть использовано для проведения качественного и количественного анализа газовых сред. Лазерный газоанализатор содержит непрерывный лазер, фокусирующую линзу, газовую кювету с входным окном для ввода лазерного излучения и окном для вывода рассеянного излучения под углом 90°, фотообъектив, голографический фильтр, спектральный прибор, сопряженный с ПЗС-матрицей, и блок управления.

Изобретение относится к медицине, а именно к терапии и кардиологии, и может быть использовано для диагностики ишемической болезни сердца. Ткань ногтевых пластин с пятых пальцев кистей правой и левой рук возбуждают линейно поляризованным лазерным излучением длиной волны 532 нм.

Изобретение относится к способу определения компонента в сепарационном блоке, расположенном ниже по потоку относительно реактора получения уксусной кислоты, включающему (i) подачу сырьевого потока в ректификационную колонну для перегонки низкокипящих фракций, где сырьевой поток содержит следующие компоненты: йодистый метил, воду, метанол, метилацетат, ацетальдегид, уксусную кислоту, алканы и пропионовую кислоту, (ii) разделение с помощью ректификационной колонны для перегонки низкокипящих фракций сырьевого потока на первый погон выходящего потока и выходящий поток кубового остатка, где первый погон выходящего потока содержит следующие компоненты: от 30% мас.

Изобретение относится к переносным устройствам для экспресс-оценки оптических характеристик растений на определенных волновых числах, закономерное изменение амплитуды которых является признаком влияния водорода, и может применяться для выявления зон эманации водорода за счет использования растений в качестве биоиндикаторов.

Изобретение относится к области измерительной техники и касается газоанализатора комбинационного рассеяния. КР-газоанализатор включает в себя непрерывный лазер, поворотную призму, линзу, фокусирующую лазерное излучение в центре герметичной кюветы, оснащенной двумя окнами для пропускания лазерного излучения и одним окном для вывода рассеянного света, два объектива, голографический фильтр, блокирующий излучение в области длины волны лазера, спектральный прибор, сопряженный с многоканальным детектором, блок управления и персональный компьютер.

Изобретение относится к области измерительной техники и касается анализатора состава природного газа. Анализатор содержит непрерывный лазер, поворотную призму, линзу, фокусирующую лазерное излучение в центре герметичной кюветы, ловушку лазерного излучения, два объектива, голографический фильтр, блокирующий излучение в области длины волны лазера, спектральный прибор, сопряженный с многоканальным фотодетектором, блок управления и персональный компьютер.

Изобретение относится к криоконсервации биологических объектов. Предложенный способ подбора условий для криоконсервации биологических объектов в вязких средах с использованием гидратообразующих газов предусматривает внесение исследуемых криопротекторов в среду для криоконсервации, при этом: а) на первом этапе измеряют вязкость контрольного раствора одного или более криопротекторов, дополнительно содержащего наночастицы при его охлаждении в рабочем диапазоне температур от +20˚С до целевой температуры, выбранной в интервале от -10 до -130°С; б) на втором этапе измеряют вязкость раствора криопротектора или композиции криопротекторов, дополнительно содержащего наночастицы с пониженной концентрацией на 5-45% под давлением гидратообразующего газа в процессе охлаждении раствора; в) если значение вязкости криопротектора или композиции криопротекторов с пониженной концентрацией не достигает вязкости контрольного раствора вплоть до целевой температуры, то сниженную концентрацию криопротектора или композиции криопротекторов необходимо повышать и снова проводить измерение согласно пункту б); г) если же в интервале до целевой температуры значение вязкости криопротектора или композиции криопротекторов с пониженной концентрацией достигает значения параметра вязкости в контрольном растворе, то проводится третий этап.

Изобретение относится к устройствам сканирования возбуждаемого лазерным источником излучения спектра флуоресценции поверхности объекта исследований и представления результата в виде изображений в видимом и ИК-диапазонах.

Изобретение относится к области спектроскопии и касается способа обнаружения элемента в образце. Способ осуществляется с помощью системы спектроскопии возбуждения лазерным пробоем (LIBS), включающей в себя первый лазер, второй лазер, спектрометр и детектор.

Изобретение относится к спектральной измерительной технике. Устройство для регистрации эмиссии образца в среднем диапазоне инфракрасного спектра содержит внешний источник излучения, конденсорную систему, первое плоское зеркало, сферическое зеркало.

Изобретение относится к области спектрального анализа и касается способа идентификации фарфора по виду материала. Способ включает в себя освещение исследуемых образцов, регистрацию спектров фотолюминесценции и создание по спектральным характеристикам обучающей выборки с последующим формированием базы данных в виде 3-х групп образцов по виду материала: костяной фарфор, мягкий и твердый.

Изобретение относится к оптическим устройствам, имитирующим вещество, обладающее круговым дихроизмом. Устройство для калибровки дихрографов кругового дихроизма, содержащее линейный поляризатор, представляющий собой изотропную прозрачную пластину диэлектрика с фиксированным углом наклона относительно направления распространения света и возможностью вращения относительно направления распространения света, и фазовую пластину, обеспечивающую разность хода между обыкновенным и необыкновенным лучами (2m+1)⋅λ/4.

Изобретение относится к лазерно-искровой эмиссионной спектрометрии. Система (102) для определения свойств образца (114) содержит ЛИЭС-детектор (104, 106) и детектор инфракрасного поглощения (108, 110) для исследования образца (114) с целью создания спектральных данных ЛИЭС и спектральных данных инфракрасного поглощения, соответственно; и процессор данных (112), предусмотренный для применения по меньшей мере одной хемометрической модели прогнозирования, каждая из которых построена для установления связи, предпочтительно количественной связи, между признаками объединенных спектральных данных ЛИЭС и поглощения с отдельным специфическим свойством образца, с комбинированным набором данных, выведенным из по меньшей мере частей данных ЛИЭС и данных поглощения, для создания из него определения, предпочтительно количественного определения, специфического свойства, связанного с указанной моделью.

Изобретение относится к области измерительной техники, а именно к спектроскопии комбинационного рассеяния света, и может быть использовано для проведения качественного и количественного анализа газовых сред.
Наверх