Способ вентиляции и кондиционирования воздуха

Изобретение относится к области вентиляции и кондиционирования воздуха, в частности к приточно-вытяжным вентиляционным устройствам с рекуперацией тепловой энергии для обеспечения приточно-вытяжной вентиляции воздуха в образовательных, медицинских, административных, развлекательных учреждениях; квартирах, офисах, бытовках, индивидуальных и многоквартирных домах; автомобильной, морской, авиационной технике, котельных, на производствах, железнодорожной технике, метро, вокзалах и во всех других помещениях, где требуется замен воздуха. Способ вентиляции и кондиционирования воздуха заключается в создании двух противоположных осевых воздушных потоков между внешним и внутренним стационарными цилиндрами и расположенным между ними вращающимся вокруг своей оси тонкостенным цилиндром. При этом вращающийся тонкостенный цилиндр является рекуператором, который, вращаясь, закручивает воздушные потоки вокруг себя изнутри и снаружи, создавая рабочую поверхность теплообмена, равную площади поверхности вращающегося тонкостенного цилиндра, умноженной на количество оборотов, а осевое направление воздушных потоков создают стационарные внешний и внутренний цилиндры с расположенными на их поверхности, со стороны вращающегося цилиндра, повторяющимися каналами, идущими от одного торца цилиндров к противоположному торцу цилиндров в виде спиралей, имеющих противоположные направления (закрученными в противоположном направлении друг к другу). Воздушные потоки, соприкасаясь с вращающимся тонкостенным цилиндром, передают ему тепловую энергию и в результате, не смешиваясь между собой, передают тепловую энергию друг другу. Технический результат заявленного способа вентиляции и кондиционирования воздуха заключается в повышении коэффициента полезного действия (КПД), повышении коэффициента теплопередачи, уменьшении размера, веса, себестоимости, а также в сокращении потребления энергии. 3 ил.

 

Изобретение относится к области вентиляции и кондиционирования воздуха, в частности к приточно-вытяжным вентиляционным устройствам для обеспечения приточно-вытяжной вентиляции воздуха и утилизации тепловой энергии в образовательных, медицинских, административных, развлекательных учреждениях; квартирах, офисах, бытовках, индивидуальных и многоквартирных домах; автомобильной, морской, авиационной технике, котельных, на производствах, железнодорожной технике, метро, вокзалах и в любых других помещениях, где требуется замена воздуха.

Из источников научно-технической и патентной информации известно несколько способов для обеспечения вентиляции и кондиционирования с применением рекуперации тепловой энергии (рекуператоров): пластинчатые, с промежуточным теплоносителем, камерные, роторные.

Известны пластинчатые рекуператоры, которые изготавливаются в двух конструктивных решениях: перекрестный и противоточный. Наиболее популярный вариант - это перекрестный пластинчатый рекуператор, в котором потоки приточного и вытяжного воздуха движутся по множеству небольших каналов, образованных этими теплопроводящими пластинами, по схеме противотока. Коэффициент полезного действия (КПД) такого рекуператора может достигать 70% (см. патент RU 129617, кл. F28F 3/08, опубл. 27.03.2015; RU 2531738, кл. F24F 7/013, опубл. 27.10.2014; https://www.promventholod.ru/tekhnicheskaya-biblioteka/rekuperatsiya-v-sistemakh-ventilyatsii-analiz-sistem-rekuperatsii-i-ekonomicheskaya-tselesoobraznost.html).

Недостатком таких рекуператоров является необходимость установки двух вентиляторов, для получения приемлемого КПД применяют несколько рекуператоров последовательно, большой вес, большой размер, большая материалоемкость, высокая стоимость, средний КПД.

Известны рекуператоры с промежуточным теплоносителем, которые состоят из двух теплообменников, соединенных между собой трубопроводами с циркулирующей по ним жидкостью. В таких рекуператорах один из теплообменников помещен в канал с потоком вытяжного воздуха и получает теплоту от него. Теплота через теплоноситель с помощью насоса и труб переносится в другой теплообменник, расположенный в канале приточного воздуха. Приточный воздух воспринимает это тепло и нагревается. Такие рекуператоры позволяют достичь КПД 45 - 60% (см. патент RU 2300056, кл. F24F 3/14, опубл. 27.05.2007; https://www.promventholod.ru/tekhnicheskaya-biblioteka/rekuperatsiya-v-sistemakh-ventilyatsii-analiz-sistem-rekuperatsii-i-ekonomicheskaya-tselesoobraznost.html).

Недостатком таких рекуператоров является необходимость установки двух вентиляторов, наличие отдельного насоса для перекачки жидкости, большой вес, большой размер, большая материалоемкость, высокая стоимость, низкий КПД.

Известны камерные рекуператоры. В таких рекуператорах камера разделяется на две части заслонкой. Удаляемый воздух нагревает одну часть камеры, затем заслонка изменяет направление воздушного потока таким образом, что приточный воздух нагревается от нагретых стенок камеры. При этом загрязнение и запахи могут передаваться из удаляемого воздуха в приточный. Разновидностью таких рекуператоров является «дышащий» рекуператор, в котором используется одна камера, а направление потоков изменяется при помощи изменения направления вращения вентилятора. Такой рекуператор позволяет достичь КПД 85%о (см. https://www.promventholod.ru/tekhnicheskaya-biblioteka/rekuperatsiya-v-sistemakh-ventilyatsii-analiz-sistem-rekuperatsii-i-ekonomicheskaya-tselesoobraznost.html).

Недостатком таких рекуператоров является необходимость установки одного - двух вентиляторов, наличие устройства для переключения заслонки, большой вес, большой размер, большая материалоемкость, высокая стоимость, средний КПД, заметное на слух переключение режимов.

Известны рекуператоры - теплоутилизаторы, например теплоутилизатор FRIVENT (http://www.frivent-russia.com/equipment/). Теплоутилизатор Фривент является теплообменником воздух-воздух, устанавливаемым в установках вентиляции и кондиционирования. В спиральном корпусе с двумя всасывающими и двумя выпускными отверстиями и рабочим колесом из пористого материала одновременно производится перемещение наружного и вытяжного воздуха и обмен тепла. Рабочее колесо вентилятора служит при этом для передачи тепла. Теплоутилизатор Фривент позволяет достичь КПД 48%.

Недостатком рекуператора Фривент является низкий КПД, который не может превысить 50%, смешивание входящего и удаляемого воздуха, прохождение воздуха по одним и тем же каналам, прохождение свежего и удаляемого воздуха в одном направлении, от оси наружу.

Наиболее близким к заявленному является роторный рекуператор, представляющий собой медленно оборачивающийся ротор-теплонакопитель, который продувается двумя противоположными воздушными потоками входящего и выходящего воздуха. Теплота от одного потока воздуха к другому передается через вращающийся между вытяжной и приточной секциями цилиндрический барабан, который формируется пакетом тонких пластинок, аккумулирующих тепло, называемый ротором-теплонакопителем. Роторный рекуператор позволяет достичь КПД 80% (см. патент RU 165820, кл. F24F 3/147, опубл. 10.11.2016; DE 3627578, кл. F24D 11/00, опубл. 18.02.1988; https://www.promventholod.ru/tekhnicheskaya-biblioteka/rekuperatsiya-v-sistemakh-ventilyatsii-analiz-sistem-rekuperatsii-i-ekonomicheskaya-tselesoobraznost.html).

Недостатком такого рекуператора является необходимость установки двух вентиляторов, наличие отдельного двигателя для вращения ротора, большой вес, большой размер, большая материалоемкость, высокая стоимость, средний КПД.

Задачей изобретения является значительное снижение материальных затрат на изготовление рекуператоров, уменьшение размеров, повышение КПД, разделение воздушных потоков.

Технический результат заявленного технического решения заключается в повышении коэффициента полезного действия (КПД), повышении коэффициента теплопередачи, уменьшении размера и веса, а также в сокращении потребления энергии.

Указанный технический результат достигается тем, что в заявленный способ вентиляции и кондиционирования воздуха заключается в создании двух противоположных осевых воздушных потоков между внешним и внутренним стационарными цилиндрами и расположенным между ними вращающимся вокруг своей оси тонкостенным цилиндром, при этом вращающийся тонкостенный цилиндр является рекуператором, который вращаясь, закручивает воздушные потоки вокруг себя изнутри и снаружи, создавая рабочую поверхность теплообмена равную площади поверхности вращающегося тонкостенного цилиндра умноженную на количество оборотов, а осевое направление воздушных потоков создают стационарные внешний и внутренний цилиндры с расположенными на их поверхности, со стороны вращающегося цилиндра, повторяющимися каналами, идущими от одного торца цилиндров к противоположному торцу цилиндров в виде спиральных канавок, имеющих противоположные направления (закрученными в противоположном направлении друг к другу), причем воздушные потоки, соприкасаясь с вращающимся тонкостенным цилиндром, передают ему тепловую энергию и в результате, не смешиваясь между собой, передают тепловую энергию друг другу.

Заявляемое техническое решение поясняется чертежами, где

на фиг. 1 - общий вид устройства для вентиляции и кондиционирования воздуха с рекуперацией тепловой энергии;

на фиг. 2 - вид сверху в разрезе устройства для вентиляции и кондиционирования воздуха с рекуперацией тепловой энергии;

на фиг. 3 - направление движения воздуха и зоны высокого и низкого давления в устройстве для вентиляции и кондиционирования воздуха с рекуперацией тепловой энергии (для наглядности показано в линейном виде).

Заявленный способ вентиляции и кондиционирования воздуха заключается в создании двух противоположных осевых воздушных потоков (8) и (9) между внешним (3) и внутренним (4) стационарными цилиндрами и расположенным между ними тонкостенным цилиндром (2) вращающимся вокруг своей оси (5). Причем тонкостенный цилиндр (2) вращается вокруг своей оси (5), предпочтительно, при помощи двигателя (1). Вращающийся тонкостенный цилиндр (2) является рекуператором, который вращаясь, закручивает воздушные потоки (8) и (9) вокруг себя изнутри и снаружи, создавая рабочую поверхность теплообмена равную площади поверхности вращающегося тонкостенного цилиндра (2) умноженную на количество оборотов. Осевое направление воздушных потоков (8) и (9) создают стационарные внешний (3) и внутренний (4) цилиндры с расположенными на их поверхности, со стороны вращающегося тонкостенного цилиндра (2), повторяющимися каналами (6) и (7), идущими от одного торца цилиндров (3 и 4) к противоположному торцу цилиндров (3 и 4) в виде спиральных канавок, имеющих противоположные направления, т.е. закрученными в противоположном направлении друг к другу. Воздушные потоки (8) и (9), соприкасаясь с вращающимся тонкостенным цилиндром (2), передают ему тепловую энергию и в результате, не смешиваясь между собой, передают тепловую энергию друг другу.

Устройство для вентиляции и кондиционирования воздуха с рекуперацией тепловой энергии, реализующее заявленный способ, включает вращающуюся часть, стационарную часть и двигатель. Вращающаяся часть выполнена в виде тонкостенного цилиндра (2), стенки которого по внешнему и внутреннему радиусу имеют канавки. Указанные канавки направлены параллельно оси вращения, которые при вращении создают повторяющиеся радиальные биения и завихрения. Стационарная часть выполнена в виде внешнего (3) и внутреннего (4) цилиндров, которые образованы повторяющимися каналами, идущими от одного торца цилиндров (3 и 4) к противоположному торцу цилиндров (3 и 4) в виде спиральных канавок. При этом внешний (3) и внутренний (4) цилиндры стационарной части охватывают тонкостенный цилиндр (2) вращающейся части снаружи и изнутри. Спиральные канавки имеют противоположные направления вращения. Двигатель (1) устройства, предпочтительно, закреплен на стационарной части с возможностью реверса направления вращения. Между указанными цилиндрами (3 и 4) стационарной части и тонкостенным цилиндром (2) имеется зазор.

Как показано на фиг. 1 и фиг. 2 двигатель (1) приводит во вращение тонкостенный цилиндр (2) и тем самым создает вращение воздуха между тонкостенным цилиндром (2) и цилиндрами стационарной части (3 и 4) вокруг оси (5). Образованные каналы (6) и (7) на внешнем (3) и внутреннем (4) цилиндрах, имея вид спиральных канавок, создают два противоположных осевых вектора движения воздушного потока (8) и (9). Воздушные потоки (8) и (9), соприкасаясь с вращающимся тонкостенным цилиндром (2), передают ему тепловую энергию и в результате, не смешиваясь между собой, передают тепловую энергию друг другу. Изменение направления вращения тонкостенного цилиндра (2) меняет местами направление движения воздушных потоков (8) и (9), что может быть очень полезно при работе системы в отрицательных температурах и позволяет производить оттаивание образовавшихся наледей, а также для сервисных режимов очистки и т.п.

Как видно из фиг. 1 и фиг. 2 заявленное устройство для вентиляции и кондиционирования воздуха не имеет классических лопастей для продвижения воздуха. Так, тонкостенный цилиндр (2) выполняет роль вращателя воздушной массы между внешним (3) и внутренним (4) цилиндрами, а осевое направление движения создают спиральные канавки на них, при этом тонкостенный цилиндр (2) является своеобразным радиатором-рекуператором, который вращаясь, создает рабочую поверхность теплообмена равную площади поверхности тонкостенного цилиндра (2), умноженную на количество оборотов.

Вращаясь, тонкостенный цилиндр (2) создает на фронтах поверхности области высокого (10) и низкого (11) давления (фиг. 3), частота (количество во времени) которых прямо пропорциональна скорости вращения и количества канавок тонкостенного цилиндра (2). Проходя через гребни (12) спиральных канавок внешнего цилиндра (3) и внутреннего цилиндра (4) области высокого и низкого давления от тонкостенного цилиндра (2) создают ударные волны и завихрения, которые в разы увеличивают эффективность теплообменных процессов между тонкостенным цилиндром (2) и воздушными потоками, а, следовательно, и КПД устройства в целом.

Зазор между цилиндрами (3 и 4) стационарной части и тонкостенным цилиндром (2), предпочтительно, может составлять от 0,01 до 100 мм. Указанный зазор влияет на КПД устройства для вентиляции и кондиционирования воздуха и возможность сквозного продува в выключенном состоянии. В оптимальном режиме зазор должен иметь минимально возможное значение.

Тонкостенный цилиндр (2), предпочтительно, может быть выполнен из максимально теплопроводящего материала: любой металл, керамика, теплопроводящие пластики, но может выполняться и из обычного пластика: ABS, поликарбонат, полистирол и т.д.

Внешний цилиндр (3) и внутренний цилиндр (4), предпочтительно, должны быть выполнены из материалов с максимально низкой теплопроводностью: пластики, резины, силиконы, а также вспененные пластики - пенополистирол, пенополиуретан и т.д.

Спиральные канавки, предпочтительно, могут иметь глубину от 0,01 до 200 мм.

В заявленном изобретении отсутствует вентилятор, а роль движителя воздуха выполняет вращающийся цилиндр (2), который раскручивает воздушный поток (8) и (9) вокруг себя, а для придания встречных направлений движения воздушных потоков (8) и (9) служат внешний (3) и внутренний (4) цилиндры, на которых имеются каналы (6) и (7) в виде спиральных канавок, идущих от одного торца к другому, причем эти спиральные канавки имеют противоположные направления вращения.

За счет того, что в заявленном изобретении потоки удаляемого и подаваемого воздуха разделены вращающимся цилиндром (2) и не смешиваются, а также двигаются во встречных направлениях, это позволяет получить КПД близкий к 100%. Кроме того, КПД зависит от площади поверхности теплообменника, а так как тонкостенный цилиндр (2) (рекуператор) в заявленном изобретении вращается, то площадь его поверхности равна произведению площади рекуператора и количества оборотов в заданный период времени. Это позволяет в десятки раз снизить материалоемкость, вес, размеры, и значительно увеличить полезную площадь рекуператора.

За счет того, что в заявленном изобретении ударные волны и завихрения (фиг. 3), создающиеся в приточно-вытяжном вентиляционном устройстве, препятствуют оседанию пыли на поверхностях цилиндров (2), (3) и (4), это позволяет значительно увеличить межсервисный интервал.

Способ вентиляции и кондиционирования воздуха, заключающийся в создании двух противоположных осевых воздушных потоков между внешним и внутренним стационарными цилиндрами и расположенным между ними вращающимся вокруг своей оси тонкостенным цилиндром, при этом вращающийся тонкостенный цилиндр является рекуператором, который, вращаясь, закручивает воздушные потоки вокруг себя изнутри и снаружи, создавая рабочую поверхность теплообмена, равную площади поверхности вращающегося тонкостенного цилиндра, умноженной на количество оборотов, а осевое направление воздушных потоков создают стационарные внешний и внутренний цилиндры с расположенными на их поверхности, со стороны вращающегося цилиндра, повторяющимися каналами, идущими от одного торца цилиндров к противоположному торцу цилиндров в виде спиралей, имеющих противоположные направления (закрученными в противоположном направлении друг к другу), причем воздушные потоки, соприкасаясь с вращающимся тонкостенным цилиндром, передают ему тепловую энергию и в результате, не смешиваясь между собой, передают тепловую энергию друг другу.



 

Похожие патенты:

Изобретение относится к вентиляционному устройству с теплоаккумулирующим блоком для одновременного обеспечения притока и вытяжки воздуха. Вентиляционное устройство, включающее расположенный во внутреннем помещении или в стене здания корпус, содержащий устройство подачи воздуха для подаваемого во внутреннее помещение потока приточного воздуха и устройство подачи воздуха для отводимого из внутреннего помещения потока вытяжного воздуха, теплоаккумулирующий блок для передачи тепла от потока вытяжного воздуха на поток приточного воздуха, и запорно-открывающее устройство для регулирования прохождения воздушных потоков, причем устройство подачи воздуха состоит из вентилятора для потока приточного воздуха и вентилятора для потока вытяжного воздуха, причем теплоаккумулирующий блок содержит два тепловых аккумулятора, а тепловые аккумуляторы во внутреннем помещении в эксплуатационном режиме предназначены для обеспечения одновременной подачи приточного и отведения вытяжного воздуха из помещения непрерывно по всей площади поверхности в зоне входных и выходных отверстий и способны пропускать потоки приточного и вытяжного воздуха, при этом вентиляторы для обеспечения непрерывной работы установлены в направлении подачи воздуха, перед тепловыми аккумуляторами на соответствующих входных и выходных отверстиях потоков приточного и вытяжного воздуха включены запорно-открывающие устройства для обеспечения прохождения воздушных потоков в обе стороны навстречу друг другу, причем тепловые аккумуляторы расположены со стороны всасывания.

Изобретение относится к теплообменному вентиляционному устройству, включающему в себя нагреватель, который нагревает наружный воздух, подаваемый снаружи помещения в теплообменник.

Изобретение относится к охране окружающей среды и предназначено для ликвидации разливов на поверхности водоемов и рек нефти и нефтепродуктов путем их сбора. Устройство включает плавучее средство, оборудованное компрессором и танкером для собранной нефти, емкость для сбора нефти, трубопровод для отбора собранной нефти, трубопровод для отвода воды.

Настоящее изобретение относится к способу эксплуатации чистого помещения и управляющему устройству для чистого помещения. Оно выполнено с возможностью управления и/или регулирования системы вентиляции помещения, система вентиляции помещения выполнена с возможностью создавать кратность воздухообмена в рабочем помещении и разность давлений между рабочим помещением и окружающим пространством, а управляющее устройство содержит по меньшей мере одно сенсорное устройство, выполненное с возможностью регистрировать фактическое значение, представляющее собой рабочий параметр.

Настоящее изобретение относится к интегрированному вентиляционному аппарату для подвальных помещений. Он включает в себя: приточный вентилятор, установленный в отверстии для подачи воздуха каждого яруса подвального помещения; вытяжной вентилятор, установленный в выпускном воздушном отверстии на каждом ярусе, направленный в воздухоотводящий канал подвального помещения; множество промежуточных вентиляторов, установленных на потолке каждого яруса подвального помещения; и контроллер, получающий электрические сигналы от датчиков, равномерно распределенных по потолку каждого яруса, для общего контроля вентиляторов; приточный вентилятор и вытяжной вентилятор, включающие цилиндрический вентилятор, установленный в полигональной колоннообразной раме, при этом по меньшей мере один из приточного вентилятора и вытяжного вентилятора дополнительно снабжен противопожарной заслонкой, которая открывается или закрывается в зависимости от того, работает вентилятор или нет, и которая может быть принудительно закрыта с помощью предохранителя, срабатывающего при определенной температуре, при этом по меньшей мере один из приточного вентилятора и вытяжного вентилятора дополнительно снабжен распылительными соплами, которые всасывают воду под действием разрежения создаваемого воздушного потока для мелкодисперсного распыления воды.

Группа изобретений относится к теплотехнике и может быть использована в составе рекуперативных противоточных теплообменных аппаратов, например кондиционеров, в системах вентиляции, а также для фильтрации воздуха и удаления влаги.

Изобретение относится к вентиляционному устройству, содержащему корпус; вентилятор для откачного воздуха, сконфигурированный для введения в корпус откачного воздуха, откачиваемого из пространства; вентилятор для приточного воздуха, сконфигурированного для введения в корпус приточного воздуха; теплообменник, сконфигурированный для обмена теплом между откачным воздухом и приточным воздухом; панель, установленную перед корпусом, где обеспечена передняя поверхность корпуса; выпуск для воздуха, заданный передней поверхностью корпуса и задней поверхностью панели, причем выпуск для воздуха позволяет выдувать из него приточный воздух после теплообмена, осуществляемого для приточного воздуха теплообменником; компонент для изменения направления воздушного потока, сконфигурированный для изменения направления приточного воздуха, выдуваемого через выпуск для воздуха; и стенку, перекрывающую воздухопровод, установленную ниже панели и сконфигурированную для ограничения потока приточного воздуха, выдуваемого через выпуск для воздуха в горизонтальном направлении.

Заявляемое решение относится к области приточно-вытяжной вентиляции производственных помещений. Приточно-вытяжная установка с рекуперацией теплоты вытяжного воздуха и косвенным адиабатическим охлаждением приточного воздуха, содержащая приточную и вытяжную камеры, диагонально установленный пластинчатый перекрестноточный рекуператор, управляемый рециркуляционный воздушный клапан, приточная камера содержит входной патрубок, управляемый входной утепленный воздушный клапан, воздухоочиститель, байпасный клапан, камеру смешения с управляемым воздушным клапаном на входе, блок воздухонагревателя, вентиляторный блок и выпускной патрубок, вытяжная камера содержит воздухоочиститель, вентиляторный блок, управляемый воздушный клапан, установленный на входе в рекуператор, входной и выпускной патрубки, охладитель приточного воздуха.

Изобретение предназначено для применения в устройствах вентиляции и кондиционирования воздуха. Установка содержит корпус, пластинчатый рекуперативный теплоутилизатор, приточный и вытяжной вентиляторы, фильтрующий элемент, нагревательный элемент выходящего приточного воздуха, нагревательный элемент для вытяжного воздуха, байпасный клапан, входное и выходное отверстия для приточного воздуха, входное и выходное отверстия для вытяжного воздуха, поддон для слива конденсата.

Изобретение относится к вентиляции и управлению температурой в камерах для электронного оборудования, в частности к устройствам и способам управления воздушным потоком внутри таких камер.

Изобретение относится к области вентиляции и кондиционирования воздуха, в частности к приточно-вытяжным вентиляционным устройствам с рекуперацией тепловой энергии для обеспечения приточно-вытяжной вентиляции воздуха в образовательных, медицинских, административных, развлекательных учреждениях; квартирах, офисах, бытовках, индивидуальных и многоквартирных домах; автомобильной, морской, авиационной технике, котельных, на производствах, железнодорожной, технике, метро, вокзалах и во всех других помещениях, где требуется замена воздуха. Приточно-вытяжное вентиляционное устройство с рекуперацией тепловой энергии включает вращающуюся часть, стационарную часть и двигатель с возможностью реверса направления вращения. Вращающаяся часть выполнена в виде тонкостенного цилиндра, стенки которого по внешнему и внутреннему радиусу имеют неровную поверхность, причем указанная неровная поверхность стенок тонкостенного цилиндра (2) по внешнему и внутреннему радиусу может быть выполнена в виде канавок или выемок, или лопастей, которые направлены параллельно оси вращения двигателя и при вращении создают повторяющиеся радиальные биения и завихрения. Стационарная часть выполнена в виде внешнего и внутреннего цилиндров, охватывающих вращающуюся часть снаружи и изнутри. При этом внешний и внутренний цилиндры образованы повторяющимися каналами, идущими от одного торца цилиндров к противоположному в виде спиральных канавок, а указанные спиральные канавки имеют противоположные направления вращения. Технический результат заявленного приточно-вытяжного вентиляционного устройства с рекуперацией тепловой энергии заключается в повышении коэффициента полезного действия (КПД), повышении коэффициента теплопередачи, уменьшении размера, веса, себестоимости, а также в сокращении потребления энергии. 25 з.п. ф-лы, 3 ил.

Изобретение относится к области вентиляции и кондиционирования воздуха, в частности к приточно-вытяжным вентиляционным устройствам с рекуперацией тепловой энергии для обеспечения приточно-вытяжной вентиляции воздуха в образовательных, медицинских, административных, развлекательных учреждениях; квартирах, офисах, бытовках, индивидуальных и многоквартирных домах; автомобильной, морской, авиационной технике, котельных, на производствах, железнодорожной технике, метро, вокзалах и во всех других помещениях, где требуется замен воздуха. Способ вентиляции и кондиционирования воздуха заключается в создании двух противоположных осевых воздушных потоков между внешним и внутренним стационарными цилиндрами и расположенным между ними вращающимся вокруг своей оси тонкостенным цилиндром. При этом вращающийся тонкостенный цилиндр является рекуператором, который, вращаясь, закручивает воздушные потоки вокруг себя изнутри и снаружи, создавая рабочую поверхность теплообмена, равную площади поверхности вращающегося тонкостенного цилиндра, умноженной на количество оборотов, а осевое направление воздушных потоков создают стационарные внешний и внутренний цилиндры с расположенными на их поверхности, со стороны вращающегося цилиндра, повторяющимися каналами, идущими от одного торца цилиндров к противоположному торцу цилиндров в виде спиралей, имеющих противоположные направления. Воздушные потоки, соприкасаясь с вращающимся тонкостенным цилиндром, передают ему тепловую энергию и в результате, не смешиваясь между собой, передают тепловую энергию друг другу. Технический результат заявленного способа вентиляции и кондиционирования воздуха заключается в повышении коэффициента полезного действия, повышении коэффициента теплопередачи, уменьшении размера, веса, себестоимости, а также в сокращении потребления энергии. 3 ил.

Наверх