Электродуговой плазмотрон



Электродуговой плазмотрон
Электродуговой плазмотрон
Электродуговой плазмотрон
Электродуговой плазмотрон
H05H1/34 - Плазменная техника (термоядерные реакторы G21B; ионно-лучевые трубки H01J 27/00; магнитогидродинамические генераторы H02K 44/08; получение рентгеновского излучения с формированием плазмы H05G 2/00); получение или ускорение электрически заряженных частиц или нейтронов (получение нейтронов от радиоактивных источников G21, например G21B,G21C, G21G); получение или ускорение пучков нейтральных молекул или атомов (атомные часы G04F 5/14; устройства со стимулированным излучением H01S; регулирование частоты путем сравнения с эталонной частотой, определяемой энергетическими уровнями молекул, атомов или субатомных частиц H03L 7/26)

Владельцы патента RU 2672961:

Семенов Александр Алексеевич (RU)

Изобретение относится к технологии плазменной обработки изделий, а более конкретно к электродуговым плазматронам, предназначенным для напыления порошковых материалов, включая тугоплавкие металлы. Электродуговой плазмотрон содержит корпус, сопло, анодный электрод, узел подачи транспортирующего газа с металлизированным порошком, узел подвода активной среды через конусообразный канал сопла, в котором плазмообразующий канал образован между выходным конусообразным каналом сопла и наплавляемой поверхностью. Выходной конусообразный канал сопла жестко связан с прямой секцией и входным конусообразным каналом, наклонными относительно оси и образующей каналами, с которыми соединен канал прямой подачи транспортирующего газа с металлизированным порошком и канал подвода активной среды. Анодный электрод соединен с внешней поверхностью корпуса сопла, а на корпусе плазмотрона под углом расположена рабочая ручка. Технический результат заключатся в повышении КПД, удельной мощности и надежности, в упрощении конструкции и эксплуатации плазмотрона. 3 ил.

 

Изобретение относится к технологии плазменной обработки изделий, а более конкретно - к электродуговым плазматронам, предназначенным для напыления порошковых материалов, включая тугоплавкие металлы. Напыление производится на поверхности изделий с целью получения покрытий различного функционального назначения.

В настоящее время созданы различные типы электродуговых плазматронов, служащих для напыления покрытий на поверхности изделий и материалов. В процессе плазменного напыления частицы порошкового материала расплавляются и ускоряются в плазменном потоке, после чего они осаждаются на подготовленную поверхность в расплавленном состоянии.

Известны двухэлектродные плазматроны, содержащие катод и анод в форме сопла. В таких плазматронах длина дуги меньше либо равна длине самоустанавливающейся дуги. Плазматроны такого типа генерируют короткую электрическую дугу, поэтому для получения качественных покрытий требуются токи более 200А. При меньших значениях тока плазматроны данного типа не обеспечивают требуемого нагрева и ускорения частиц порошка из-за недостаточного энерговклада в короткую дугу. Необходимую температуру плазменного потока можно достичь только за счет увеличения тока дуги, однако в этом случае увеличивается эрозия электродов. Увеличение температуры плазмы приводит также к интенсивному испарению мелких частиц, вследствие этого существенно ухудшается качество наносимых покрытий. (Плазматроны: конструкции, характеристики, расчет / А.С. Коротеев, В.М. Миронов, Ю.С. Свирчук. - М.: Машиностроение, 1993. - 296 с.).

Недостатком устройств является возбуждение короткой электрической дуги, поэтому для получения качественных покрытий требуются токи более 200А.

Известны также плазматроны, в которых стабилизация дугового разряда обеспечивается посредством подачи стабилизирующей среды через тангециальные каналы в межэлектродный промежуток. Каналы для подачи стабилизирующей среды сообщены с коническим каналом, образованным между противолежащими поверхностями секций межэлектродной вставки (см., например, патент US 6483070, МПК В23K 10/00, опубл. 19.11.2002).

Недостатком устройств является сложная конструкция плазмотрона и малая производительность.

Предлагаемое изобретение направлено на увеличение продолжительности рабочего состояния открытой плазмы, упрощения конструкции плазмотрона и повышение его производительности.

Это достигается тем, что предусматривается прямая подача под давлением транспортирующего газа с металлизированным порошком к входным конусообразным каналам и прямой секции, ускорением частиц порошка подводом активной среды к входному конусообразному каналу. Кроме того активная среда (нагретая аэрозолъпроводимой жидкости с добавлением горючего материала, например, вода с содержанием 10% бензина). Эта аэрозоль увеличивает расстояние пробоя между электродами, зажигается и горит обеcпечивая изоляцию кислорода, нагревает подложку и напыляемый порошок, обеспечивает стабилизацию плазмы, образуемой электрической дугой.

На фиг. 1 изображено устройство электродуговой плазмотрон вид сверху, на фиг. 2 вид сбоку, на фиг. 3 схему работы устройства.

Электродуговой плазмотрон для напыления покрытий, содержит корпус 1 (фиг. 1), сопло 6 (фиг. 1), анодный электрод 4 (фиг. 1), узел подачи транспортирующего газа с металлизированным порошком, узел подвода активной среды, предназначенным для напыления, через конусообразный канал сопла, кроме того плазмообразующий канал 10 (фиг. 3) образован между выходным конусообразным каналом сопла 5 (фиг. 1) и наплавляемой поверхностью 11 (фиг. 3), в свою очередь выходной конусообразный канал сопла 5 (фиг. 1) жестко связан с прямой секцией 8 (фиг. 2) и входным конусообразным каналом 3 (фиг. 1),наклонными относительно оси и образующей каналами 12 (фиг. 3) с которым соединен канал прямой подачи транспортирующего газа с металлизированным порошком 2 (фиг. 1) и канал подвода активной среды 7 (фиг. 1), кроме того анодный электрод 4 (фиг. 1) соединен с внешней поверхностью корпуса сопла 6 (фиг. 1), а на корпусе плазмотрона под углом расположена рабочая рукоять 9 (фиг. 2).

Работает устройство следующим образом. Перед включением плазматрона подключаются к патрубку канала прямой подачи транспортирующего газа с металлизированным порошком 2 (фиг. 1) трубопровод системы подачи, к каналу подвода активной среды 7 (фиг. 1), шланги системы подачи активной среды, к анодному электроду 4 (фиг. 1) кабель с источника электропитания.

При включении плазматрона катод с источника электропитания подключают с помощью коммутирующих элементов (на чертеже не показаны) к наплавляемой поверхности 11 (фиг. 3). Разрядный ток составляет не более 50А. Зажигание дугового разряда в плазмообразующем канале, 10 (фиг. 3) между выходным конусообразным каналом сопла 5 (фиг. 1) и наплавляемой поверхностью 11 (фиг. 3), осуществляется после его заполнения транспортирующим газом с металлизированным порошком и канал плазмообразующей активной средой.

Подача транспортирующего газа с металлизированным порошком осуществляется через осевой каналпрямой подачи транспортирующего газа с металлизированным порошком 2 (фиг. 1). Далее во входной конусообразный канал 3 (фиг. 1), прямую секцию 8 (фиг. 2) и через конусообразный канал сопла, в плазмообразующий канал 10 (фиг. 3), образованный между выходным конусообразным каналом сопла 5 (фиг. 1) и наплавляемой поверхностью 11 (фиг. 3).

Подача плазмообразующей активной среды осуществляется через осевой канал 7, радиальные каналы 12, обеспечивающих вихревое закручивание активной среды. Далее плазмообразующая активная среда подается в полость, входного конусообразного канала 3 (фиг. 1), прямую секцию 8 (фиг. 2) и через конусообразный канал сопла, в плазмообразующий канал 10 (фиг. 3), образованный между выходным конусообразным каналом сопла 5 (фиг. 1) и наплавляемой поверхностью 11 (фиг. 3). Подача под давлением активной среды ускоряет передвижение металлизированного порошка, кроме того обладая проводимостью и горючестью эта среда поддерживает горение электрической дуги. В зависимости от параметров активной среды изменяется длина плазменного факела.

После зажигания дугового разряда в плазмообразующем канале в заданную область начального участка дуги (в прикатодную зону), подается поток транспортирующего газа с металлизированным порошком, предназначенным для напыления. Предварительное смешение транспортирующего газа с порошком производится в системе подготовки и подачи рабочей смеси (на чертеже не показана), которая подключена к каналу прямой подачи транспортирующего газа с металлизированным порошком 2 (фиг. 1). Все трубопроводы и корпус 1 выполняются из диэлектрического материала. Детали сопла 6, входной конусообразный канал 3 (фиг. 1) выполняются из легированного металла.

Оптимальный режим ввода порошка в плазмообразующий канал достигается посредством регулирования расхода транспортирующего газа, плазмообразующей активной среды, подбором размеров проходного сечения сопла.

Наличие отличительных признаков приводит к повышению КПД, удельной мощности и надежности, упрощению конструкции и эксплуатации плазмотрона с МЭВ. Указанный плазмотрон может быть использован в установках плазменного напыления и закалки.

Электродуговой плазмотрон для напыления покрытий, содержащий корпус, сопло с закрепленным на нем анодным электродом, штуцер подвода транспортирующего газа с металлизированным порошком для напыления, расположенный в задней части корпуса, и катодный электрод, отличающийся тем, что в передней части корпуса выполнена двухступенчатая проточка, на первом выступе которой жестко закреплен экструдер со штуцерами подачи активной среды, образующий со вторым выступом корпуса канал для активной среды, при этом во внутреннюю часть экструдера со стороны его передней части ввинчено внутреннее сопло, с наружной части экструдера ввинчено сопло с закрепленным на нем анодным электродом, а катодный электрод выполнен с возможностью крепления к напыляемой поверхности детали.



 

Похожие патенты:

Изобретение относится к плазменной технике, а именно к классу плазменных ускорителей (холловских, ионных), использующих в своем составе катоды, и может быть использовано при разработке электроракетных двигателей.

Изобретение относится к устройствам для нанесения покрытий из тугоплавких дисперсных материалов и может найти применение в металлургии, плазмохимии, машиностроительной промышленности.

Изобретение относится к области систем и процессов плазменно-дуговой резки, а именно к сменным картриджам для плазменно-дуговой горелки. Картридж включает в себя корпус картриджа, имеющий первую секцию и вторую секцию.

Группа изобретений относится к получению порошка, который может быть использован в аддитивных технологиях. Установка для получения частиц порошка содержит плазматрон, выполненный с возможностью подачи в плазму исходного материала в форме удлиненного элемента, распылительный блок с соплами для подачи распыляющего газа и камеру для сбора частиц порошка.
Изобретение относится к способу сжигания химически активного газа с электроположительным металлом, также к устройству для осуществления этого способа. В заявленном изобретении электроположительный металл выбран из группы, включающей щелочные металлы, щелочноземельные металлы, алюминий и цинк, а также их смеси и/или сплавы, причем химически активный газ перед сжиганием и/или во время сжигания, например, только с целью воспламенения химически активного газа по меньшей мере время от времени переводится в состояние плазмы.
Изобретение относится к каркасу для картриджа плазменно-дуговой горелки. Каркас включает в себя теплопроводящий корпус (308) каркаса, имеющий продольную ось, первый конец, сконфигурированный для соединения с первым расходным компонентом, и второй конец, сконфигурированный для сопряжения со вторым расходным компонентом.

Изобретение относится к области металлургии и может быть использовано для предварительного нагрева реактора плазменной газификации. Устройство содержит фурму, плазменное факельное устройство, установленное для инжектирования горячего газа в фурму, множество сопел, выполненных с возможностью инжектирования горючего материала в фурму для сгорания горючего материала в фурме, и первую камеру повышенного давления, установленную вокруг по меньшей мере участка фурмы и сообщающуюся по текучей среде с множеством сопел, при этом сопла подают горючий материал ниже по потоку от плазменного факела, создаваемого факельным устройством, обеспечивая в результате сопловое смешивание и сгорание воздуха и горючего материала с помощью плазменного факела.

Группа изобретений относится к области стерилизации. Система для стерилизации содержит реакционную емкость, выполненную с возможностью размещения в ней объекта стерилизации и его стерилизации, первые средства подачи перкислотного агента в реакционную емкость, причем перкислотный агент содержит перуксусную кислоту, средства для уменьшения давления в реакционной емкости, средства для вентилирования реакционной емкости, средства для создания плазмы в первом предварительно определенном участке для размещения объекта стерилизации в реакционной емкости.

Использование: для изменения электромагнитной сигнатуры поверхности. Сущность изобретения заключается в том, что микроэлектронный модуль содержит по меньшей мере один преобразователь напряжения для преобразования первого подаваемого напряжения в более высокое, низкое или такое же второе напряжение, кроме того, микроэлектронный модуль содержит по меньшей мере один возбудитель, возбудитель содержит по меньшей мере один генератор, чтобы генерировать электрическую плазму с помощью второго напряжения, подаваемого преобразователем напряжения, по меньшей мере преобразователь напряжения и возбудитель размещаются на тонкопленочной планарной подложке, электрическая плазма, генерируемая возбудителем, взаимодействует с электромагнитным излучением, падающим на поверхность, в результате чего изменяется электромагнитная сигнатура.

Изобретение относится к системам плазменно-дуговой резки. Сменный картридж, включающий компоненты для использования с системой плазменно-дуговой резки, содержит кожух, поддерживающий компоненты сменного картриджа, содержащие электрод, расположенный внутри кожуха, сопло, механизм для соединения кожуха с горелкой для плазменно-дуговой резки и пружину.

Изобретение относится к устройствам для нанесения покрытий из тугоплавких дисперсных материалов и может найти применение в металлургии, плазмохимии, машиностроительной промышленности.

Изобретение относится к области металловедения, а именно к химико-термической обработке металлических изделий, к созданию наноструктурированных материалов конструкционного назначения, к решению проблемы трения и износа, и может быть использовано для повышения долговечности деталей машин в любой отрасли промышленности.

Изобретение относится к области газотермических технологий и может быть использовано при нанесении порошковых покрытий методом низкоскоростного газопламенного напыления.

Компонент газовой турбины, имеющий теплоизолирующую внешнюю поверхность для воздействия газообразных продуктов сгорания, содержит металлическую подложку, крепящий слой на поверхности подложки, теплозащитное покрытие, структуру выступающих элементов и структуру элементов в виде канавок.

Изобретение относится к формированию на стальных поверхностях покрытий на основе карбида титана, титана и алюминия, которые могут быть использованы в штамповочном производстве и других отраслях промышленности.

Изобретение относится к устройствам для создания высокотемпературных высокоскоростных потоков частиц, которые могут быть использованы, в частности для нанесения порошкового покрытия на изделия любой формы.

Изобретение относится к формированию на стальных поверхностях покрытий на основе карбида титана, никеля и молибдена, которые могут быть использованы в штамповочном производстве и других отраслях промышленности.

Изобретение относится к способу восстановления шеек стального коленчатого вала двигателей внутреннего сгорания. В способе восстановления шеек стальных коленчатых валов осуществляют демонтаж, мойку, дефектоскопию и шлифование изношенной поверхности, зачистку подложечного слоя от коррозии, подготовку подложечного слоя к наплавке путем дробеструйной обработки и газопламенное напыление.

Изобретение относится к технологии напыления газотермических покрытий и может быть использовано в машиностроении, авиационной и ракетно-космической технике, станкостроении, нефтегазодобывающей промышленности, энергетике и в городских сетях.

Изобретение относится к способам нанесения покрытий, в частности к способу нанесения покрытий на рабочую поверхность цилиндра блока цилиндров двигателя внутреннего сгорания.

Изобретение относится к получению функционально-градиентного материала на подложке методом прямого лазерного нанесения. Устройство содержит лазерный блок и акустический генератор.

Изобретение относится к технологии плазменной обработки изделий, а более конкретно к электродуговым плазматронам, предназначенным для напыления порошковых материалов, включая тугоплавкие металлы. Электродуговой плазмотрон содержит корпус, сопло, анодный электрод, узел подачи транспортирующего газа с металлизированным порошком, узел подвода активной среды через конусообразный канал сопла, в котором плазмообразующий канал образован между выходным конусообразным каналом сопла и наплавляемой поверхностью. Выходной конусообразный канал сопла жестко связан с прямой секцией и входным конусообразным каналом, наклонными относительно оси и образующей каналами, с которыми соединен канал прямой подачи транспортирующего газа с металлизированным порошком и канал подвода активной среды. Анодный электрод соединен с внешней поверхностью корпуса сопла, а на корпусе плазмотрона под углом расположена рабочая ручка. Технический результат заключатся в повышении КПД, удельной мощности и надежности, в упрощении конструкции и эксплуатации плазмотрона. 3 ил.

Наверх