Комбинированная ветроэнергетическая опреснительная установка

Изобретение относится к технологии опреснения морской воды. Предпочтительная область использования - морские суда и корабли, в частности подводные обитаемые плавсредства и подводные лодки. Комбинированная ветровая опреснительная установка содержит обратноосмотический мембранный модуль, насос, подающий соленую или загрязненную воду к обратноосмотическому мембранному модулю, ветроэлектрогенератор, преобразующий энергию ветрового потока в электрическую энергию, блок термической утилизации концентрата, выполняющий функцию упаривания образующегося при работе обратноосмотического модуля рассола, накопитель опресненной воды, накопитель рассола, блок импульсного ультрафиолетового обеззараживания, электрический преобразователь, согласующий напряжения на входах насоса и блока термической утилизации концентрата с выходом ветродвигателя, автоматизированную систему управления, осуществляющую контроль мощности ветродвигателя, насоса, контроль давления и расхода жидкости в мембранном модуле, уровня жидкости в накопителях рассола и опресненной воды, ограничение тока, потребляемого насосом, и подключение блока термической утилизации концентрата при превышении мощности ветроэлектрогенератора над расчетной, необходимой для достижения безопасного давления в обратноосмотическом блоке. В установке значительно снижен объем стоков, генерируемых опреснительной установкой, и повышена степень полезного использования энергии ветрового потока. 3 з.п. ф-лы, 1 ил.

 

Изобретение относится к технологии опреснения морской воды. Предпочтительная область использования - морские суда и корабли, в частности подводные обитаемые плавсредства и подводные лодки.

Известно устройство для опреснения воды обратного осмоса (CN 202358969, кл. C02F 1/44, опубл. 01.08.2012), которое содержит систему генерирования энергии ветра и систему обессоливания обратного осмоса, содержащую обратноосмотический мембранный модуль, насос, подающий соленую или загрязненную воду к обратноосмотическому мембранному модулю. Система генерирования ветровой энергии включает в себя систему генератора ветряных турбин, выпрямитель, инвертор и усилительный трансформатор. Устройство использует энергию ветра для самостоятельной генерации энергии, без загрязнения, имеет преимущества низкого энергопотребления, низкой стоимости, низкий уровень шума, работает безопасно, стабильно, эффективно и надежно. Однако устройство имеет повышенный объем стоков и низкую степень использования ветрового потока.

Технической проблемой, на решение которой направлено изобретение, является устранение отмеченных недостатков. Технический результат заключается в создании установки, в которой значительно снижен объем стоков, генерируемых опреснительной установкой, и повышена степень полезного использования энергии ветрового потока.

Проблема решается, а технический результат обеспечивается тем, что комбинированная ветровая опреснительная установка содержит обратноосмотический мембранный модуль, насос, подающий соленую или загрязненную воду к обратноосмотическому мембранному модулю, ветроэлектрогенератор, преобразующий энергию ветрового потока в электрическую энергию, блок термической утилизации концентрата, выполняющий функцию упаривания образующегося при работе обратноосмотического модуля рассола, накопитель опресненной воды, накопитель рассола, блок импульсного ультрафиолетового обеззараживания, электрический преобразователь, согласующий напряжения на входах насоса и блока термической утилизации концентрата с выходом ветродвигателя, автоматизированную систему управления, осуществляющую контроль мощности ветродвигателя, насоса, контроль давления и расхода жидкости в мембранном модуле, уровня жидкости в накопителях рассола и опресненной воды, ограничение тока, потребляемого насосом, и подключение блока термической утилизации концентрата при превышении мощности ветроэлектрогенератора над расчетной, необходимой для достижения безопасного давления в обратноосмотическом блоке. К электрическому преобразователю может быть подключена батарея суперконденсаторов с водным или органическим электролитом для выравнивания профиля выдачи мощности ветродвигателя, которая может быть снабжена активной системой контроля и управления, обеспечивающей выравнивание напряжений на элементах батареи и перераспределение энергии от элементов с более высоким уровнем заряда к менее заряженным. К электрическому преобразователю может быть также подключена в качестве гарантирующего источника электропитания электрогенерирующая установка на основе теплового двигателя, использующего органическое топливо, в том числе дизель-генератор, газовая турбина, двигатель Стерлинга, либо электрохимический генератор, либо линия электропитания от централизованной энергетической сети.

На чертеже представлена схема предлагаемой установки, на которой показаны основные ее составляющие и связь между ними.

При работе установки соленая (морская) или загрязненная вода подается насосом 1 в обратноосмотический мембранный модуль опреснения 2. Установка содержит ветроэлектрогенератор 3, преобразующий энергию ветрового потока в электрическую энергию, необходимую для питания всех составляющих установки. Модуль 2 соединен с накопителями опресненной воды 4 и рассола 5. Опресненная вода проходит модуль импульсного ультрафиолетового обеззараживания 6 и подается потребителю. Рассол из накопителя направляют в блок термической утилизации 7, где рассол упаривается, а воду перепускают в накопитель 4. В установке имеется электрический преобразователь 8, согласующий напряжения на входах насоса 1 и блока термической утилизации концентрата 7 с выходом ветроэлектрогенератора 3. Установка оснащена автоматизированной системой управления, осуществляющей контроль мощности ветроэлектрогенератора 3, насоса 1, контроль давления и расхода жидкости в мембранном модуле 2, уровня жидкости в накопителях рассола 5 и опресненной воды 4, ограничение тока, потребляемого насосом 1, и подключение блока термической утилизации концентрата 7 при превышении мощности ветроэлектрогенератора 3 над расчетной, необходимой для достижения безопасного давления в обратноосмотическом модуле 2. К электрическому преобразователю 8 подключена батарея суперконденсаторов 9 с водным или органическим электролитом, используемая для выравнивания профиля выдачи мощности ветроэлектрогенератора 3 (компенсации коротких колебаний мощности ветроэлектрогенератора 3 длительностью 2-40 с), что позволяет увеличить время работы обратноосмотического модуля 2 при высоких скоростях ветра и повысить ресурсные характеристики мембран за счет снижения числа и амплитуды бросков давления. Батарея суперконденсаторов 9 снабжена активной системой контроля и управления, обеспечивающей выравнивание напряжений на элементах батареи и перераспределение энергии от элементов с более высоким уровнем заряда к менее заряженным, что позволяет снизить потери энергии и увеличить срок службы суперконденсаторов. К электрическому преобразователю 8 также подключена в качестве гарантирующего источника электропитания 10 электрогенерирующая установка на основе теплового двигателя, использующего органическое топливо, в том числе дизель-генератор, газовая турбина, двигатель Стирлинга, либо электрохимический генератор, либо линия электропитания от централизованной энергетической сети. Запуск гарантирующего источника электропитания 10 осуществляется автоматической системой управления в случае наличия потребности в опресненной воде, длительном отсутствии ветра (по показаниям анемометра и уровню воды в накопителе опресненной воды).

1. Комбинированная ветровая опреснительная установка, содержащая обратноосмотический мембранный модуль, насос, подающий соленую или загрязненную воду к обратноосмотическому мембранному модулю, ветроэлектрогенератор, преобразующий энергию ветрового потока в электрическую энергию, блок термической утилизации концентрата, выполняющий функцию упаривания образующегося при работе обратноосмотического модуля рассола, накопитель опресненной воды, накопитель рассола, отличающаяся тем, что снабжена блоком импульсного ультрафиолетового обеззараживания, электрическим преобразователем, согласующим напряжения на входах насоса и блока термической утилизации концентрата с выходом ветроэлектрогенератора, автоматизированной системой управления, осуществляющей контроль мощности ветроэлектрогенератора, насоса, контроль давления и расхода жидкости в мембранном модуле, уровня жидкости в накопителях рассола и опресненной воды, ограничение тока, потребляемого насосом, и подключение блока термической утилизации концентрата при превышении мощности ветроэлектрогенератора над расчетной, необходимой для достижения безопасного давления в обратноосмотическом блоке.

2. Комбинированная ветровая опреснительная установка по п. 1, отличающаяся тем, что к электрическому преобразователю подключена батарея суперконденсаторов с водным или органическим электролитом, используемая для выравнивания профиля выдачи мощности ветроэлектрогенератора.

3. Комбинированная ветровая опреснительная установка по п. 2, отличающаяся тем, что батарея суперконденсаторов снабжена активной системой контроля и управления, обеспечивающей выравнивание напряжений на элементах батареи и перераспределение энергии от элементов с более высоким уровнем заряда к менее заряженным.

4. Комбинированная ветровая опреснительная установка по любому из пп. 1-3, отличающаяся тем, что к электрическому преобразователю подключена в качестве гарантирующего источника электропитания электрогенерирующая установка на основе теплового двигателя, использующего органическое топливо, в том числе дизель-генератор, газовая турбина, двигатель Стирлинга, либо электрохимический генератор, либо линия электропитания от централизованной энергетической сети.



 

Похожие патенты:

Изобретение предназначено для фильтрования. Предложены составной композитный фильтрующий картридж (200) и система очистки воды, в которой используется указанный картридж.

В заявке описан водообрабатывающий картридж для парового аппарата. Водообрабатывающий картридж для парового аппарата (10) содержит корпус, в котором образованы первая проточная камера (56) и вторая проточная камера (58), причем первая проточная камера (56) имеет вход для воды и в первой проточной камере (56) расположен материал для обработки воды, а вторая проточная камера (58) имеет выход для воды, у которого расположена стыковочная стенка (84) для стыковки с уплотнительным патрубком (32) парового аппарата (10), имеющая конический участок, предназначенный для посадки на уплотнительный патрубок (32) и образующий уплотняющую кромку для прилегания к уплотнительному патрубку (32).

Изобретение относится, в общем, к концентраторам жидкости, а точнее к компактным передвижным недорогим концентраторам сточных вод, которые легко можно подключать к источникам отбросного тепла и использовать их для концентрирования жидкости.

Изобретение относится к устройствам для очистки воды замораживанием и может быть использовано в промышленных и бытовых условиях. Устройство для очистки воды замораживанием содержит камеру холода 1, в которой расположены резервуары 2 со съемными крышками 4, выполненные в виде усеченного конуса.

Изобретение относится к бытовому оборудованию и может быть использовано для очистки воды, поступающей из централизованного источника водоснабжения, а также для создания мобильных миниводоканалов и получения питьевой воды из открытых источников (озеро, река, скважина) в населенных пунктах, где нет возможности протянуть водопровод, например на военных сборах, молодежных форумах и в случаях катастроф.

Изобретение относится к способам удаления растворенных газов из сырьевого потока испарителя. Способ добычи нефти из нефтяной скважины, в котором осуществляют: извлечение водонефтяной смеси из скважины; разделение водонефтяной смеси с образованием нефтепродукта и добытой воды; направление добытой воды через деаэратор; после направления добытой воды через деаэратор, направление добытой воды в испаритель и образование концентрированного рассола и пара; конденсацию пара с образованием дистиллята; направление дистиллята в парогенератор и производство пара; введение по меньшей мере части пара в нагнетательную скважину; десорбцию растворенного газа из добытой воды выше по потоку от испарителя с помощью направления пара из испарителя через деаэратор; поддержание давления пара в деаэраторе ниже атмосферного давления и перед поступлением добытой воды в деаэратор нагревание добытой воды до температуры выше температуры насыщенного пара в деаэраторе, и устанавливают давление и температуру пара в деаэраторе путем подвергания пара, направляемого из испарителя в деаэратор, падению давления в месте между испарителем и деаэратором.

Изобретение относится к электрохимическим технологиям очистки воды, в частности к мобильному комплексу очистки природной или технической воды и может быть использовано для получения питьевой воды в полевых условиях или в мобильных воинских подразделениях.

Изобретение может быть использовано при получении бумаги, красок, покрытий, при обработке сточных вод. Способ получения водной суспензии, содержащей смесь частиц, содержащих поверхностно-модифицированный карбонат кальция (MCC), и частиц, содержащих осажденный карбонат кальция (PCC), включает обеспечение водной суспензии частиц, содержащих MCC, и обеспечение водной суспензии частиц, содержащих PCC.

Группа изобретений может быть использована при биологической очистке бытовых сточных вод и сточных вод свалок от соединений азота. Система содержит: реактор (10); датчик (14) измерения концентрации аммония и подачи сигнала (20); датчик (16) измерения концентрации нитрита и подачи сигнала (22); датчик (18) измерения концентрации нитрата и подачи сигнала (24); контроллер (30) приема сигналов концентраций аммония, нитрита и нитрата через один или более каналов (32) связи и подачи команд системе регулирования подачи растворенного кислорода (36) через канал связи (34) на повышение, уменьшение или поддержание концентрации растворенного кислорода в реакторе (10) на основе отношения концентрации аммония к сумме концентраций нитрита и нитрата.

Изобретение может быть использовано в нефтедобывающей и нефтехимической отраслях промышленности. Способ переработки воды, содержащей ароматические углеводороды, включает по меньшей мере следующие стадии: (i) введение потока (I), содержащего воду и ароматические углеводороды, выбранные из группы, состоящей из бензола, толуола, этилбензола и ксилола, в колонну, (ii) реализацию противоточного контакта потока (I) со вторым потоком (II) и (iii) отвод третьего потока (III), содержащего воду и ароматические углеводороды, выбранные из группы, состоящей из бензола, толуола, этилбензола и ксилола.

Предложена сменная чистящая головка (14) для зубной щетки, которая (10) включает корпус (24), образующий внутреннюю полость (26). Чистящий элемент (22) располагается на дистальном конце (23) корпуса. Гнездо (40) расположено на проксимальном конце (28) корпуса. Гнездо вмещает материал (44), который удаляет основное питательное вещество для роста плесени из жидкости (36), когда жидкость контактирует с гнездом. 4 н. и 10 з.п. ф-лы, 10 ил.

Изобретение относится к установкам для опреснения соленой воды, а именно к созданию теплонасосного опреснителя соленой воды, и может быть использовано для локального водоснабжения пресной водой населенных пунктов, жилищных, общественных и промышленных зданий. Теплонасосный опреснитель соленой воды содержит камеру испарения соленой воды с распылителями жидкости, замкнутый контур рабочего вещества, оснащенный компрессором, конденсатором, испарителем, дроссельным вентилем, циркуляционные насосы пресной и соленой воды, эжектор, автоматический воздухоотводчик, теплообменник предварительного охлаждения парожидкостной смеси, в контур циркуляции рабочей жидкости, в качестве которой используется опресненная вода, входит эжектор, соединенный с испарительной камерой и теплообменником предварительного охлаждения парожидкостной смеси, а также патрубок отвода пресной воды потребителю. Камера испарения соленой воды оборудована в верхней части сепаратором пара. Новая порция исходной соленой воды поступает в испарительную камеру из окружающей среды через регенеративный теплообменник, нагреваясь от сбрасываемого рассола. Техническим результатом изобретения является сокращение удельного потребления энергии на опреснение соленой воды, снижение солености получаемой пресной воды, снижение коррозии и накипеобразования при эксплуатации. 2 з.п. ф-лы, 1 ил.

Изобретение относится к мембранам из полианилина, полученным по способу инверсии фаз, для применения в прямом осмосе. Мембрана для прямого осмоса, полученная инверсией фаз, где указанная мембрана состоит по существу из пористого материала носителя и слоя полимера; где указанный слой полимера содержит полианилин и толщина слоя полимера составляет от примерно 20 мкм до примерно 120 мкм. Заявлен также способ получения мембран. Технический результат – обеспечение химически и термически стабильных материалов, способных очищать воду путем прямого осмоса. 3 н. и 64 з.п. ф-лы, 12 ил., 4 табл.

Изобретение относится к технологии опреснения морской воды. Предпочтительная область использования - морские суда и корабли, в частности подводные обитаемые плавсредства и подводные лодки. Комбинированная ветровая опреснительная установка содержит обратноосмотический мембранный модуль, насос, подающий соленую или загрязненную воду к обратноосмотическому мембранному модулю, ветроэлектрогенератор, преобразующий энергию ветрового потока в электрическую энергию, блок термической утилизации концентрата, выполняющий функцию упаривания образующегося при работе обратноосмотического модуля рассола, накопитель опресненной воды, накопитель рассола, блок импульсного ультрафиолетового обеззараживания, электрический преобразователь, согласующий напряжения на входах насоса и блока термической утилизации концентрата с выходом ветродвигателя, автоматизированную систему управления, осуществляющую контроль мощности ветродвигателя, насоса, контроль давления и расхода жидкости в мембранном модуле, уровня жидкости в накопителях рассола и опресненной воды, ограничение тока, потребляемого насосом, и подключение блока термической утилизации концентрата при превышении мощности ветроэлектрогенератора над расчетной, необходимой для достижения безопасного давления в обратноосмотическом блоке. В установке значительно снижен объем стоков, генерируемых опреснительной установкой, и повышена степень полезного использования энергии ветрового потока. 3 з.п. ф-лы, 1 ил.

Наверх