Способ формирования видеосигнала "кольцевого" кадра в телевизионной камере для панорамного компьютерного наблюдения в условиях сложной освещённости и/или сложной яркости объектов

Изобретение относится к панорамному компьютерному наблюдению, которое выполняется при помощи монохромной или цветной телевизионной камеры кругового обзора в области, близкой к полусфере, выполненной на базе «кольцевого» сенсора («кольцевого» фотоприемника). Техническим результатом является организация в автоматическом режиме повышения чувствительности для фрагментов панорамного изображения, которые контролируются при низкой освещенности (яркости) соответствующих им объектов «кольцевого» кадра путем увеличения для них времени накопления. Результат достигается тем, что накапливают зарядовое изображение информационного кадра на светочувствительных элементах мишени в соответствии с управляющим напряжением для автоматической регулировки времени накопления (АРВН) фотоприемника, осуществляют «кольцевую» развертку зарядового изображения на мишени с последующим поэлементным считыванием зарядовых пакетов в «кольцевом» регистре сдвига и формированием на выходе блока преобразования «заряд-напряжение» (БПЗН), напряжения аналогового сигнала изображения наблюдаемого пространства, причем в процессе получения видеосигнала сенсора управляют площадью считывающей апертуры за счет того, что от строки к строке изменяют период управляющих импульсов Тп (импульсов сброса) для БПЗН, при этом величина управляющего напряжения АРВН и соответственно длительность накопления зарядов за кадр определяются раздельно для каждой этой отдельно взятой мишени путем опережающей и неразрушающей оценки формируемого на ней зарядового рельефа. 2 з.п. ф-лы, 6 ил.

 

Предлагаемое изобретение является техническим решением по категории «способ» и имеет отношение к панорамному компьютерному наблюдению, которое выполняется при помощи монохромной или цветной телевизионной камеры кругового обзора в области, близкой к полусфере, выполненной на базе «кольцевого» сенсора («кольцевого» фотоприемника).

Наиболее близким по технической сущности заявляемому изобретению следует считать способ формирования видеосигнала «кольцевого» кадра [1], в монохромной или цветной телевизионной камере для панорамного компьютерного наблюдения, заключающийся в том, что устанавливают телевизионную камеру в фиксированное положение, осуществляют захват оптического изображения в телевизионной камере с угловым полем в пространстве предметов 360° по азимуту, в «кольцевом» фотоприемнике телевизионной камеры, изготовленном по технологии приборов с зарядовой связью (ПЗС), который выполнен на кристалле в виде кругового кольца, имеет схемотехническую организацию «кольцевой строчный перенос» и состоит из связанных последовательно зарядовой связью «кольцевой» фотоприемной области (мишени) и «кольцевого» регистра сдвига, заканчивающегося блоком преобразования «заряд - напряжение» (БПЗН) с организацией «плавающая диффузия», при этом на мишени линейки светочувствительных элементов, чередующиеся с линейками экранированных от света элементов, расположены вдоль радиальных направлений от воображаемого центра кругового кольца к его внешней периферии и расположенному там «кольцевому» регистру сдвига, а число элементов в каждой «кольцевой» строке мишени равно числу элементов в «кольцевом» регистре сдвига, причем на мишени площадь светочувствительных элементов и равная ей площадь экранированных элементов различны от строки к строке, увеличиваясь по мере движения к внешней периферии до максимальной величины, не превышающей площадь элемента «кольцевого» регистра сдвига, накапливают зарядовое изображение информационного кадра на светочувствительных элементах мишени в соответствии с управляющим напряжением для автоматической регулировки времени накопления (АРВН) фотоприемника, осуществляют «кольцевую» развертку зарядового изображения на мишени с последующим поэлементным считыванием зарядовых пакетов в «кольцевом» регистре сдвига и формированием на выходе БПЗН напряжения аналогового сигнала изображения наблюдаемого пространства, причем в процессе получения видеосигнала сенсора управляют площадью считывающей апертуры за счет того, что от строки к строке изменяют период управляющих импульсов Тr, (импульсов сброса) для БПЗН по соотношению:

где Тp - период считывания элемента в «кольцевом» фотоприемнике;

nm - коэффициент, целое число, величина которого для текущей строки считывания в «кольцевом» фотоприемнике, равна отношению:

где Δ1 и Δm - соответственно площадь светочувствительного элемента для первой и текущей строк считывания в «кольцевом» фотоприемнике,

обеспечивая одинаковую величину площади считывающей апертуры в пределах всего «кольцевого» растра фотоприемника, преобразуют аналоговый видеосигнал в цифровой видеосигнал.

Способ формирования видеосигнала в прототипе [1] обеспечивает выравнивание разрешающей способности «кольцевого» изображения, предлагаемого компьютерным операторам-пользователям.

Однако при работе в условиях сложной освещенности и/или сложной яркости объектов, когда высокой освещенности (яркости) на одних участках поля зрения сопутствует низкая освещенность (яркость) на других его участках, реализованный в телевизионной камере способ формирования видеосигнала прототипа [1] не справляется с ситуацией.

Это объясняется тем, что в этих условиях АРВН, выполняя отсчет управляющего напряжения при помощи амплитудного детектора по пиковому или по среднему значению видеосигнала, пропорциональному освещенности мишени фотоприемника, распространяет свой полученный результат, а именно: длительность времени накопления, - на все элементы (пикселы) мишени.

Недостаток способа формирования видеосигнала в прототипе [1] заключается в том, что возникает режим ограниченного накопления (по времени) для тех участков панорамного изображения, которые контролируются при низкой освещенности (яркости) соответствующих им объектов.

Задачей изобретения является организация в автоматическом режиме повышения чувствительности для этих фрагментов «кольцевого» кадра путем увеличения для них времени накопления.

Поставленная задача в заявленном способе формирования видеосигнала «кольцевого» кадра решается тем, что устанавливают телевизионную камеру в фиксированное положение, осуществляют захват оптического изображения в телевизионной камере с угловым полем в пространстве предметов 360° по азимуту, в «кольцевом» фотоприемнике телевизионной камеры, изготовленном по технологии приборов с зарядовой связью (ПЗС), который выполнен на кристалле в виде кругового кольца, имеет схемотехническую организацию «кольцевой строчный перенос» и состоит из связанных последовательно зарядовой связью «кольцевой» мишени и «кольцевого» регистра сдвига, заканчивающегося БПЗН с организацией «плавающая диффузия», при этом на мишени линейки светочувствительных элементов, чередующиеся с линейками экранированных от света элементов, расположены вдоль радиальных направлений от воображаемого центра кругового кольца к его внешней периферии и расположенному там «кольцевому» регистру сдвига, а число элементов в каждой «кольцевой» строке мишени равно числу элементов в «кольцевом» регистре сдвига, причем на мишени площадь светочувствительных элементов и равная ей площадь экранированных элементов различны от строки к строке, увеличиваясь по мере движения к внешней периферии до максимальной величины, не превышающей площадь элемента «кольцевого» регистра сдвига, накапливают зарядовое изображение информационного кадра на светочувствительных элементах мишени в соответствии с управляющим напряжением для АРВН фотоприемника, осуществляют «кольцевую» развертку зарядового изображения на мишени с последующим поэлементным считыванием зарядовых пакетов в «кольцевом» регистре сдвига и формированием на выходе БПЗН напряжения аналогового сигнала изображения наблюдаемого пространства, причем в процессе получения видеосигнала сенсора управляют площадью считывающей апертуры за счет того, что от строки к строке изменяют период управляющих импульсов Тr для БПЗН по соотношениям (1, 2), обеспечивая одинаковую величину площади считывающей апертуры в пределах всего «кольцевого» растра фотоприемника, преобразуют аналоговый видеосигнал в цифровой видеосигнал, отличающийся тем, что «кольцевая» мишень фотоприемника разделена на изолированные друг от друга фотоприемные области, которые при параллельно действующем управлении, имеют форму в виде части кругового кольца, а их число k определяется соотношением:

где γг - горизонтальный угол поля зрения в градусах ожидаемого и предлагаемого оператору компьютера «прямоугольного» изображения, при этом величина управляющего напряжения АРВН и соответственно длительность накопления зарядов за кадр определяются раздельно для каждой этой отдельно взятой мишени путем опережающей и неразрушающей оценки формируемого на ней зарядового рельефа.

Сопоставительный анализ с прототипом [1] показывает, что заявляемый способ отличается наличием следующих признаков:

- условием осуществления действий по формированию в телевизионной камере исходного аналогового видеосигнала, а именно: разделением «кольцевой» мишени фотоприемника на k изолированных друг от друга мишеней, имеющих форму в виде части кругового кольца, которые управляются параллельно;

- выполнением в телевизионной камере нового действия по определению управляющего напряжения для АРВН путем опережающей и неразрушающей оценки уровня формируемого зарядового рельефа;

- выполнением в телевизионной камере параллельных действий по установке длительности накопления зарядов за кадр для каждой из k мишеней сенсора.

Совокупность известных и новых признаков не известна из уровня техники, поэтому заявляемый способ отвечает требованию новизны.

По техническому результату и методу его достижения предлагаемое техническое решение соответствует критерию о наличии изобретательского уровня.

На фиг. 1 приведена схемотехническая организации фотоприемника на ПЗС (по методу «кольцевой строчный перенос») с шестью изолированными мишенями (k=6); на фиг. 2 представлена структурная схема устройства, поясняющая реализацию заявляемого способа формирования видеосигнала в одной отдельно взятой мишени; на фиг. 3 - схематический поперечный разрез фрагмента мишени этого сенсора при трехфазном переносе зарядовых пакетов; на фиг. 4 - временные диаграммы (упрощенные осциллограммы) сопутствующих сигналов; на фиг. 5б) - эпюра, иллюстрирующая временное положение выходного сигнала устройства АРВН (относительно кадрового гасящего импульса, представленного на фиг. 5а); на фиг. 6 - иллюстрация возможного варианта схемотехнической организации «кольцевого» фотоприемника на ПЗС.

Способ формирования видеосигнала может быть реализован для «кольцевого» телевизионного сенсора применительно к двухфазному, трехфазному или четырехфазному зарядовому переносу. Отметим, что здесь далее при изложении происходящих процессов в сенсоре рассматривается только механизм трехфазного переноса зарядов.

«Кольцевой» фотоприемник на фиг. 1 выполнен на кристалле в виде кругового кольца, имеет схемотехническую организацию «кольцевой строчный перенос» и состоит из связанных последовательно зарядовой связью «кольцевой» мишени 1-1, «кольцевого» регистра сдвига 1-2 и БПЗН 1-3 с организацией «плавающая диффузия», а его выход является выходом «видео» «кольцевого» фотоприемника, при этом на мишени 1-1 радиально расположенные линейки светочувствительных элементов чередуются с радиальными линейками экранированных от света элементами, причем число элементов в каждой «кольцевой» строке мишени 1-1 равно числу элементов в «кольцевом» регистре сдвига 1-2, а площадь светочувствительных элементов на мишени от строки к строке различна, увеличиваясь по мере движения к внешней периферии до максимальной величины, не превышающей площадь элемента «кольцевого» регистра сдвига 1-2. Пунктирные линии на фиг. 1 показывают выделение на «кольцевой» мишени 1-1 фотоприемника шести изолированных мишеней, имеющих форму в виде части кругового кольца, т.е. k=6. Введем обозначение этих сенсоров соответственно как: 1-1-1, 1-1-2, 1-1-3, 1-1-4, 1-1-5 и 1-1-6.

Предполагается, что для всех шести изолированных мишеней действует параллельное управление, обеспечивающее: - процесс накопления зарядового рельефа в соответствии с длительностью, задаваемой выходным импульсом АРВН на входе электронного затвора сенсора;

- процесс неразрушающего измерения уровня рельефа для получения опережающего сигнала управления на входе АРВН.

Организация этого параллельного управления может быть осуществлена за счет «размножения» импульсных сигналов при помощи внешних буферных каскадов для готовых микросхем, реализующих набор (комплект) необходимых управляющих напряжений.

Очевидно, что предлагаемый в настоящем техническом решении способ формирования видеосигнала может быть с успехом реализован и для двух других вариантов схемотехнической организации «кольцевого» фотоприемника.

Схемотехническая организация фотоприемника на ПЗС по методу «кольцевой кадровый перенос», усовершенствованная аналогичным приемом по выравниванию разрешающей способности, которая была предложена в патенте РФ [4], представлена на фиг. 6.

«Кольцевой» фотоприемник на ПЗС состоит из связанных последовательно зарядовой связью «кольцевой» мишени 1-1, «кольцевой» секции памяти 1-2, «кольцевого» регистра сдвига 1-3 и БПЗН 1-4 с организацией «плавающая диффузия», а его выход является выходом «видео» «кольцевого» фототоприемника, причем число элементов в каждой «кольцевой» строке мишени и в каждой «кольцевой» строке секции памяти равно числу элементов в «кольцевом» регистре сдвига, а площадь светочувствительных элементов на мишени от строки к строке различна, увеличиваясь по мере движения к внешней периферии до максимальной величины, не превышающей площадь элемента секции памяти, при этом «кольцевая» мишень разделена на k изолированных друг от друга фотоприемных областей с параллельно действующим управлением, а число этих областей определяется соотношением (3).

Схемотехническая организация фотоприемника по методу «кольцевой строчно-кадровый перенос», которая также усовершенствована упомянутым методом по выравниванию разрешающей способности изображения, была предложена в патенте РФ [5].

Являясь комбинированной по отношению к двум предыдущим устройствам, эта организация сенсора более сложна в реализации, но гарантирует и более высокие показатели его предельной чувствительности. «Кольцевой» фотоприемник на ПЗС, который выполнен на кристалле в виде кругового кольца, состоит из связанных последовательно зарядовой связью «кольцевой» мишени, «кольцевой» секции памяти, «кольцевого» регистра сдвига и БПЗН с организацией «плавающая диффузия», а его выход является выходом «видео» «кольцевого» фотоприемника, при этом на мишени радиально расположенные линейки светочувствительных элементов чередуются с радиальными линейками экранированных от света элементами, а экранированная от света секция памяти заполнена радиальными линейками с таким же числом элементов, что и на мишени, причем число элементов в каждой «кольцевой» строке мишени и в каждой «кольцевой» строке секции памяти равно числу элементов в «кольцевом» регистре сдвига, а площадь светочувствительных элементов на мишени от строки к строке различна, увеличиваясь по мере движения к внешней периферии до максимальной величины, не превышающей площадь элемента секции памяти.

Рассмотрим анонсированную ранее структурную схему на фиг. 2. Она содержит фотоприемник 1-1-1, а все его фазные электроды, за исключением электродов первой и второй фазы мишени, подключены к соответствующим выходам блока 2 управляющих напряжений мишени; первый фазный электрод мишени сенсора 1-1-1 подключен к входу преобразователя 3 «ток -напряжение», выход которого подключен к неинвертирующему входу блока 4 вычитания; второй фазный электрод мишени сенсора 1-1-1 - к выходу генератора 5 линейно изменяющегося напряжения, который стробируется по входу «Запуск развертки»; выход генератора 5 линейно изменяющегося напряжения дополнительно через делитель 6 напряжения подключен к инвертирующему входу блока 4 вычитания, выход которого соединен с информационным входом пикового детектора 7, управляющий вход которого подключен к импульсу сброса, а выход - к входу широтно-импульсного модулятора (ШИМ) 8. Выходной сигнал блока 8 подключен к «электронному затвору сенсора 1-1-1.

Пунктирные линии на фиг. 2 отражают наличие имеющихся электрических связей между первыми и соответственно вторыми фазными электродами сенсора 1-1-1 и блоком 2 управляющих напряжений мишени, которые далее не комментируются.

Устройство на фиг. 2 работает следующим образом.

Для упрощения будем полагать, что фрагмент мишени сенсора 1-1-1, показанный на фиг. 3, отображает всю эту мишень, которая состоит из четырех трехфазных элементов, которые выполнены на кремниевом «кольцевом» кристалле по технологии ПЗС с каналом проводимости р-типа. Это означает, что для выполнения переноса зарядовых пакетов управляющие смещения на фазных электродах фотоприемника должны иметь отрицательную полярность относительно подложки кристалла. Именно такую проводимость канала имела отечественная матрица ПЗС, серийно выпускавшаяся в СССР как изделие под маркой К1200ЦМ1, которая была использована авторами работ [2, 3] в экспериментальных исследованиях.

В нашем примере будем считать, что во время развертки к третьему фазному электроду мишени приложено нулевое напряжение подложки кристалла сенсора 1-1-1, которое необходимо для создания барьеров, препятствующих растеканию зарядов в соседние потенциальные ямы.

Рассмотрим режим работы устройства, когда перед разверткой напряжения на первом и втором фазных электродах мишени устанавливаются одинаковыми и равными минус Uн относительно подожки. При этом в каждом элементе мишени накопленный заряд делится на две равные части: половина заряда находится под правым (вторым) фазным электродом, вторая половина - под левым (первом) фазным электродом. Очевидно, что при неравномерной засветке мишени в каждом ее пикселе накапливается разное количество заряда.

В некоторый момент включается генератор 5 линейно изменяющегося напряжения, предназначенный для осуществления этой быстродействующей развертки зарядового сигнала, и потенциал на втором фазном электроде мишени начинает плавно возрастать (фиг. 4а). При этом в каждом пикселе глубина потенциальных ям под вторыми фазными электродами уменьшается (см. фиг. 3), поэтому во всех элементах мишени начинается процесс переноса заряда из правого электрода под левый электрод. В результате движения заряда в цепи левого (первого) фазного электрода мишени возникает ток, равный сумме токов в каждом ее пикселе (фиг. 4б). Сначала этот ток (I1) максимален, т.к. заряд есть в каждом пикселе. По мере роста потенциала на втором фазном электроде наступает момент, когда в пикселе с наименьшим количеством зарядовых носителей весь заряд перетекает из правого фазного электрода в левый фазный электрод. При этом суммарный ток уменьшается (фиг. 4б). Затем кончается заряд под правым фазным электродом в следующем пикселе, и суммарный ток снова уменьшается. Так продолжается до тех пор, пока не кончится заряд под правым фазным электродом мишени в пикселе, содержащем перед началом процесса зарядового переноса наибольшее количество зарядовых носителе. После этого ток (Il) становится равным нулю, и весь заряд мишени оказывается в потенциальных ямах первого фазного электрода.

В сформированном так токе (фиг. 4б) заключена информация о распределении зарядов по всей поверхности мишени «кольцевого» фотоприемника 1 -1 -1.

Следует признать, что точность этой информации ограничена помехой (см. эпюру Iп на фиг. 4б), возникающей из-за перезаряда ПЗС-структуры развертывающим линейно изменяющимся напряжением, т.е. в действительности величина возникающего тока составляет Il+1п.

Для вычитания этой помехи служит делитель 6 напряжения и блок 4 вычитания.

При реализации настоящего изобретательского решения можно использовать не только линейно возрастающее напряжение, но и линейно убывающее напряжение. Например, при использовании удвоенного размаха линейно изменяющегося напряжения (см. пунктир на фиг. 4а) напряжение на втором фазном электроде за время развертки уменьшается относительно подложки кристалла фотоприемника от минус Uн до минус 2Uн. Тогда возникающий ток изменяет свое направление, т.к. заряд перетекает не из правых электродов под левые электроды, а наоборот.

Интересующий нас информационный уровень напряжения, появляющийся на выходе блока 4 вычитания в течение телевизионного кадра, будет фиксироваться пиковым детектором 7, который перед этим измерением должен быть обязательно обнулен при помощи импульса сброса.

Полученное таким образом управляющее напряжение для блока АРВН 8 определяет на его выходе цифровой сигнал накопления в сенсоре 1-1-1, (см. фиг. 5б), который может изменяться в течение кадра от максимального значения отсчета до его минимального отсчета в зависимости от уровня освещенности контролируемой сцены. Для выполнения этой функции цифровой сигнал накопления подается на управляющий вход сенсора, являющийся его «электронным» затвором (см. фиг. 2).

Очевидно, что такой процесс оптимизированного накопления зарядов на мишени в зависимости от уровня освещенности контролируемой сцены будет происходить параллельно и на всех других пяти мишенях, обозначенных нами ранее как: 1-1-2, 1-1-3, 1-1-4, 1-1-5 и 1-1-6.

Важно отметить, что период упомянутой нами линейной развертки микро может составлять всего лишь 20 мкс, что подтверждено косвенно в работе [3], а это является гарантом повышения точности управления (слежения) за параметром чувствительность телевизионной камеры в условиях и быстро изменяющейся освещенности контролируемой сцены.

Итак, в интервале прямого хода каждого телевизионного кадра происходит процесс оптимизированного накопления зарядов в светочувствительных пикселах всех шести мишеней 1-1-1, 1-1-2, 1-1-3, 1-1-4, 1-1-5 и 1-1-6 пропорционально освещенности контролируемого панорамного сюжета.

В течение кратковременного промежутка последующего интервала обратного хода кадровой развертки открывается фотозатвор, и заряды всех «кольцевых» строк, участвовавших в накоплении, переносятся (за один шаг поворота) в экранированные от света пикселы, расположенные на тех же мишенях.

Затем фотозатвор каждой из шести мишеней закрывается, и в новом кадровом цикле выполняется накопление другой зарядовой «картины», а накопленные в предыдущем кадре зарядовые пакеты в радиальных направлениях переносятся на периферию кристалла фотоприемника, загружая в интервале обратного хода строчной развертки новыми зарядами «кольцевой» регистр 1-2.

Для всех строк каждой из шести мишеней фотоприемника в БПЗН 1-3, как и в прототипе [1], обеспечивается одинаковая по полю площадь считывающей апертуры, что гарантирует одинаковую чувствительность для всех элементов «объединенной» мишени при поддержании одних и тех же пространственных зазоров между соседними пикселами.

Очевидно, что таким образом обеспечивается выравнивание разрешающей способности «кольцевого» изображения по всей площади «объединенной» мишени сенсора.

Затем, как и в прототипе [1], сформированный аналоговый видеосигнал преобразуется в цифровой телевизионный сигнал (ЦТС) «кольцевого» кадра на выходе телевизионной камеры.

Далее ЦТС по интерфейсу (например, USB 2,0) передается на сервер компьютерной системы, где выполняется запись видеоинформации в его оперативную память на кадр.

Технический результат заявляемого решения обеспечивается тем, что в телевизионной камере будут в полностью автоматическом режиме получены оптимальные показатели для времени накопления (Tн) применительно ко всем k участкам «кольцевой» мишени фотоприемника.

Следовательно, по сравнению с прототипом [1], будет достигнуто повышенное отношение сигнал/шум (ψ) формируемого видеосигнала и соответственно увеличение чувствительности для тех участков панорамного изображения, которые регистрируются при низкой освещенности (яркости) соответствующих им объектов.

В настоящее время все блоки и элементы комментируемой структурной схемы, реализующей предлагаемый способ формирования «кольцевого» кадра в телевизионной камере для панорамного компьютерного наблюдения в условиях сложной освещенности и/или яркости объектов освоены или могут быть освоены отечественной промышленностью.

Поэтому следует считать предполагаемое изобретение соответствующим требованию о промышленной применимости.

ИСТОЧНИКИ ИНФОРМАЦИИ

1. Патент РФ №2633758. МПК H04N 5/00. Телевизионная камера повышенной чувствительности для панорамного компьютерного наблюдения. / В.М. Смелков // Б.И. - 2017. - №29.

2. Авторское свидетельство СССР №1417210. МПК H04N 5/228. Способ формирования сигнала управления чувствительностью телевизионной камеры на матрице ПЗС. / А.Н. Куликов и Л.И. Хромов // Б.И. - 1988. - №30.

3. Хромов Л.И., Цыцулин А.К., Куликов А.Н. Видеоинформатика. Передача и компьютерная обработка видеоинформации. - М.: «Радио и связь», 1991.

4. Патент РФ №2625163. МПК H04N 7/00. Телевизионная камера и ее «кольцевой» фотоприемник для компьютерной системы панорамного наблюдения. / В.М. Смелков // Б.И. - 2017. - №20.

5. Патент РФ №2611422. МПК H04N 7/00. Телевизионная камера повышенной чувствительности и ее «кольцевой» фотоприемник для компьютерной системы панорамного наблюдения. / В.М. Смелков // Б.И. - 2017. - №6.

1. Способ формирования видеосигнала «кольцевого» кадра в телевизионной камере для панорамного компьютерного наблюдения в условиях сложной освещенности и/или сложной яркости объектов, когда высокой освещенности (яркости) на одних участках поля зрения сопутствует низкая освещенность (яркость) на других его участках, заключающийся в том, что устанавливают телевизионную камеру в фиксированное положение, осуществляют захват оптического изображения в телевизионной камере с угловым полем в пространстве предметов 360° по азимуту, в «кольцевом» фотоприемнике телевизионной камеры, изготовленном по технологии приборов с зарядовой связью (ПЗС), который выполнен на кристалле в виде кругового кольца, имеет схемотехническую организацию «кольцевой строчный перенос» и состоит из связанных последовательно зарядовой связью «кольцевой» фотоприемной области (мишени) и «кольцевого» регистра сдвига, заканчивающегося блоком преобразования «заряд-напряжение» (БПЗН) с организацией «плавающая диффузия», при этом на мишени линейки светочувствительных элементов, чередующиеся с линейками экранированных от света элементов, расположены вдоль радиальных направлений от воображаемого центра кругового кольца к его внешней периферии и расположенному там «кольцевому» регистру сдвига, а число элементов в каждой «кольцевой» строке мишени равно числу элементов в «кольцевом» регистре сдвига, причем на мишени площадь светочувствительных элементов и равная ей площадь экранированных элементов различны от строки к строке, увеличиваясь по мере движения к внешней периферии до максимальной величины, не превышающей площадь элемента «кольцевого» регистра сдвига, накапливают зарядовое изображение информационного кадра на светочувствительных элементах мишени в соответствии с управляющим напряжением для автоматической регулировки времени накопления (АРВН) фотоприемника, осуществляют «кольцевую» развертку зарядового изображения на мишени с последующим поэлементным считыванием зарядовых пакетов в «кольцевом» регистре сдвига и формированием на выходе БПЗН напряжения аналогового сигнала изображения наблюдаемого пространства, причем в процессе получения видеосигнала сенсора управляют площадью считывающей апертуры за счет того, что от строки к строке изменяют период управляющих импульсов Тп (импульсов сброса) для БПЗН по соотношению

где Тр - период считывания элемента в «кольцевом» фотоприемнике;

- коэффициент, целое число, величина которого для текущей строки считывания в «кольцевом» фотоприемнике равна отношению

где и - соответственно площадь светочувствительного элемента для первой и текущей строк считывания в «кольцевом» фотоприемнике,

обеспечивая одинаковую величину площади считывающей апертуры в пределах всего «кольцевого» растра фотоприемника, преобразуют аналоговый видеосигнал в цифровой видеосигнал, отличающийся тем, что «кольцевая» мишень фотоприемника разделена на изолированные друг от друга фотоприемные области, которые при параллельно действующем управлении имеют форму в виде части кругового кольца, а их число k определяется соотношением

где γг - горизонтальный угол поля зрения в градусах ожидаемого и предлагаемого оператору компьютера «прямоугольного» изображения,

при этом величина управляющего напряжения АРВН и соответственно длительность накопления зарядов за кадр определяются раздельно для каждой этой отдельно взятой мишени путем опережающей и неразрушающей оценки формируемого на ней зарядового рельефа.

2. Способ формирования видеосигнала «кольцевого» кадра по п. 1, отличающийся тем, что «кольцевой» фотоприемник на ПЗС имеет схемотехническую организацию «кольцевой кадровый перенос» и состоит из связанных последовательно зарядовой связью «кольцевой» мишени, «кольцевой» секции памяти, «кольцевого» регистра сдвига и БПЗН с организацией «плавающая диффузия», а его выход является выходом «видео» «кольцевого» фотоприемника, причем число элементов в каждой «кольцевой» строке мишени и в каждой «кольцевой» строке секции памяти равно числу элементов в «кольцевом» регистре сдвига, а площадь светочувствительных элементов на мишени от строки к строке различна, увеличиваясь по мере движения к внешней периферии до максимальной величины, не превышающей площадь элемента секции памяти, при этом «кольцевая» мишень разделена на k изолированных друг от друга фотоприемных областей с параллельно действующим управлением, а число этих областей определяется соотношением (3).

3. Способ формирования видеосигнала «кольцевого» кадра по п. 1, отличающийся тем, что «кольцевой» фотоприемник на ПЗС имеет схемотехническую организацию «кольцевой строчно-кадровый перенос» и состоит из связанных последовательно зарядовой связью «кольцевой» мишени, «кольцевой секции памяти», «кольцевого» регистра сдвига и БПЗН с организацией «плавающая диффузия», а его выход является выходом «видео» «кольцевого» фотоприемника, при этом на мишени радиально расположенные линейки светочувствительных элементов чередуются с радиальными линейками экранированных от света элементов, причем число элементов в каждой «кольцевой» строке мишени и в каждой «кольцевой» строке секции памяти равно числу элементов в «кольцевом» регистре сдвига, а площадь светочувствительных элементов на мишени от строки к строке различна, увеличиваясь по мере движения к внешней периферии до максимальной величины, не превышающей площадь элемента секции памяти, при этом «кольцевая» мишень разделена на k изолированных друг от друга фотоприемных областей с параллельно действующим управлением, а число этих областей определяется соотношением (3).



 

Похожие патенты:

Изобретение относится к анализу изображений. Технический результат заключается в повышении надежности выявления отличия между живым, авторизованным человеком и фальсифицированным видео и/или фальсифицированными изображениями.

Изобретение относится к устройству формирования изображения и способу управления им. Техническим результатом является обеспечение возможности автоматически осуществлять управление включением питания в ответ на сигнал, принятый по бесконтактной связи, и выполнять операцию подготовки к съемке изображения после завершения передачи информации для установки соединения для беспроводной связи.

Изобретение относится к панорамному компьютерному наблюдению, которое выполняется при помощи монохромной или цветной телевизионной камеры кругового обзора в области, близкой к полусфере, выполненной на базе «кольцевого» сенсора («кольцевого» фотоприемника).

Изобретение относится к способам и устройствам обработки изображения. Техническим результатом является расширение арсенала технических возможностей устройства обработки изображения.

Изобретение относится к устройству управления для управления съёмкой в устройстве съёмки изображений, к способу управления этим устройством. Техническим результатом является обеспечение устройства управления, для которого возможно задавать условие съёмки изображения и с помощью которого можно определять состояние снятого изображения.

Изобретение относится к средствам удаления тумана из изображения. Технический результат заключается в реализации устройства высокоточного процесса удаления дымчатости кадра изображения на основе пикселов высокой насыщенности.

Изобретение относится к вычислительной технике. Технический результат заключается в повышении защиты доступа к данным камеры.

Группа изобретений относится к технологиям удаления тумана из содержащих его изображений. Техническим результатом является повышение четкости изображения за счет удаления тумана из содержащих его изображений.

Изобретение относится к технологии захвата изображений, а именно к способу и устройству для захвата изображений. Заявленное устройство захвата изображения, которое реализует способ захвата изображений, содержит по меньшей мере один процессор и по меньшей мере одну память, в которой хранится компьютерный программный код.

Группа изобретений относится к медицине. Группа изобретений представлена способом определения жизненно важных показателей человеческого тела, устройством для определения жизненно важных показателей, способом аутентификации человека и способом для распознавания реакции человека.

Изобретение относится к панорамному телевизионному сканированию, которое выполняется компьютерной системой при помощи однострочного кольцевого фотоприемника монохромного (черно-белого) изображения, выполненного по технологии приборов с зарядовой связью (ПЗС). Техническим результатом является сокращение энергопотребления фотоприемника. Результат достигается тем, что «кольцевой» выходной регистр фотоприемника выполнен в виде двух (первого и второго) «кольцевых» регистров, каждый из которых экранирован от света и содержит половину от общего числа элементов, при этом оба новых «кольцевых» регистра совместно с фотозатвором огибают (окружают) «кольцевую» однострочную фотоприемную область, причем каждый из двух смежных элементов фотоприемной области связан через фотозатвор зарядовой связью с противоположно расположенными на кристалле элементами первого и второго «кольцевых» регистров соответственно. 1 з.п. ф-лы, 4 ил.

Изобретение относится к устройству захвата изображения, способному передавать захваченное изображение на внешнее устройство, и, в частности, относится к способу наложения информации, такой как, например, изображение, на захваченное изображение. Технический результат заключается в обеспечении максимального количества фактически накладываемых изображений с устройства захвата изображения для внешнего устройства, для которого задаются накладываемые изображения. Результат достигается тем, что устройство захвата изображения включает в себя блок приема, выполненный с возможностью приема запроса на получение информации о настройке информации наложения, и блок передачи, выполненный с возможностью, когда блок приема принимает запрос на получение, передачи максимального количества настроек наложения, которые устройство захвата изображения может выполнить, и максимального количества настроек для каждого типа информации наложения. 8 н. и 9 з.п. ф-лы, 25 ил.

Изобретение относится к панорамному компьютерному наблюдению, которое выполняется при помощи монохромной или цветной телевизионной камеры кругового обзора в области, близкой к полусфере, выполненной на базе «кольцевого» сенсора. Техническим результатом является организация в автоматическом режиме повышения чувствительности для фрагментов панорамного изображения, которые контролируются при низкой освещенности соответствующих им объектов «кольцевого» кадра путем увеличения для них времени накопления. Результат достигается тем, что накапливают зарядовое изображение информационного кадра на светочувствительных элементах мишени в соответствии с управляющим напряжением для автоматической регулировки времени накопления фотоприемника, осуществляют «кольцевую» развертку зарядового изображения на мишени с последующим поэлементным считыванием зарядовых пакетов в «кольцевом» регистре сдвига и формированием на выходе блока преобразования «заряд-напряжение», напряжения аналогового сигнала изображения наблюдаемого пространства, причем в процессе получения видеосигнала сенсора управляют площадью считывающей апертуры за счет того, что от строки к строке изменяют период управляющих импульсов Тп для БПЗН, при этом величина управляющего напряжения АРВН и соответственно длительность накопления зарядов за кадр определяются раздельно для каждой этой отдельно взятой мишени путем опережающей и неразрушающей оценки формируемого на ней зарядового рельефа. 2 з.п. ф-лы, 6 ил.

Наверх