Способ создания реактивной тяги пилотируемого космического аппарата


F02K99/00 - Реактивные двигательные установки (размещение и крепление реактивных двигательных установок на наземных транспортных средствах или транспортных средствах вообще B60K; размещение и крепление реактивных двигательных установок на судах B63H; управление положением в пространстве, направлением и высотой полета летательного аппарата B64C; размещение и крепление реактивных двигательных установок на летательных аппаратах B64D; установки, в которых энергия рабочего тела распределяется между реактивными движителями и движителями иного типа, например воздушными винтами F02B,F02C; конструктивные элементы реактивных двигателей, общие с газотурбинными установками, воздухозаборники и управление топливоподачей в воздушно-реактивных двигателях F02C)

Владельцы патента RU 2673920:

Публичное акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" (RU)

Изобретение относится к ракетно-космической технике и может использоваться при разработке реактивных двигательных установок (ДУ), предназначенных для маневрирования пилотируемых космических аппаратов (КА). Способ создания реактивной тяги пилотируемого космического аппарата, включающий получение на борту космического аппарата водорода и кислорода путем электролиза воды с направлением части электролизного кислорода на дыхание экипажа, хранение водорода и оставшегося кислорода под избыточным давлением, направление в заданный момент этих газов в камеру сгорания ракетного двигателя и поджиг этих газов, а также выделение углекислого газа из воздуха обитаемых отсеков, выделенный из воздуха углекислый газ собирают, компримируют и хранят на борту космического аппарата, а после воспламенения кислородоводородной смеси в камере сгорания туда направляют собранный углекислый газ с расходом, не прерывающим процесс горения кислородоводородной смеси. При этом в двигатель водород и кислород подают в массовом соотношении приблизительно 1:4. Изобретение обеспечивает повышение тяговооруженности пилотируемого КА, а также в возможности осуществления более длительных его полетов. 1 з.п. ф-лы.

 

Предлагаемое техническое решение относится к ракетно-космической технике и может использоваться при разработке реактивных двигательных установок (ДУ), предназначенных для маневрирования пилотируемых космических аппаратов (КА).

К аналогам данного предложения можно отнести известные способы производства ракетного топлива в космосе, когда компонентами топлива служат кислород и водород, полученные электролизом воды. Технология такого процесса разработана как для орбитального заправочного комплекса (Notardonato W, Johnson W, Swanger A, McQuade W. 2012 In-space propellant production using water. In Proc. AIAA SPACE 2012 Conference and Exposition, number AIAA 2012-5288, 11-13 September 2012, Pasadena, CA; "Электролизно-криогенный производственный комплекс в орбитальных условиях", www.energoobmen.ru/OZK), так и для применения на борту КА (патенты RU 2215891 от 10.11.2003, МПК: F02K 11/00 (2006.01), RU 2310768 от 20.11.2007, МПК: F02K 11/00 (2006.01), B64G 1/40 (2006.01).

Недостатком этих способов является то, что они не адаптированы для пилотируемых КА, и электролизные газы используются исключительно для создания реактивной тяги.

В существующих и проектируемых обитаемых орбитальных и напланетных станциях электролизные газы применяются также в системах жизнеобеспечения (СЖО), например, на международной космической станции (МКС) имеется электролизная установка (ЭЛУ) для производства кислорода, однако электролизный водород, так же, как и углекислый газ (УГ), в настоящее время выбрасываются за борт (Гузенберг А.С. и др., Выбор комплекса жизнеобеспечения для экипажей долговременных космических станций, Космическая техника и технологии, №1(8)/2015, с. 67-80).

Более близким к данному изобретению (прототипом) является способ работы, реализованный в импульсной реактивной двигательной установке (патент РФ №2605163 от 20.12.2016, МПК: F02K 99/00 (2009.01), B64G 1/40 (2006.01)) и включающий разложение воды в электролизере, использование кислорода в СЖО, сжатие водорода в компрессоре, его накопление в баллоне и подача водорода без нагрева в струйный ракетный двигатель для создания тяги. Недостатком этого способа является низкая удельная тяга двигателя, поскольку отсутствует повышение температуры газа в двигателе. Кроме того, в прототипе не используется углекислый газ (УГ), который также является отходом жизнедеятельности экипажа на пилотируемом космическом аппарате.

Задача настоящего изобретения - повышение эффективности использования материальных ресурсов за счет исключения непроизводительных потерь газов на борту пилотируемого КА. Выброс любых отработанных газов за борту КА должен осуществляться только через его ДУ.

Техническим результатом предлагаемого решения является повышение тяговооруженности пилотируемого КА, возможность осуществления более длительных его полетов.

Технический результат достигается тем, что в способе создания реактивной тяги пилотируемого КА, включающем получение на борту космического аппарата водорода и кислорода путем электролиза воды с направлением части электролизного кислорода на дыхание экипажа, хранение водорода и оставшегося кислорода под избыточным давлением, направление в заданный момент этих газов в камеру сгорания ракетного двигателя и поджиг там этих газов, а также выделение углекислого газа из воздуха обитаемых отсеков, выделенный из воздуха углекислый газ собирают, компримируют и хранят на борту космического аппарата, а после воспламенения кислородо-водородной смеси в камере сгорания туда направляют собранный углекислый газ с расходом, не прерывающим процесс горения кислородо-водородной смеси. Кроме того, в двигатель водород и кислород подают в массовом соотношении приблизительно 1:4.

Суть предложения состоит в том, что бортовая ЭЛУ КА обеспечивает работу не одной его системы (ДУ или СЖО), а сразу их обеих. При этом отбор части кислорода ДУ для СЖО не только не уменьшает, но даже увеличивает общую массу рабочих газов двигателей (для образования УГ к каждой молекуле кислорода добавляется атом углерода). И хотя УГ является балластным газом, суммарная масса выхлопных газов, выбрасываемых из сопла, существенно возрастает, а это позволяет увеличить суммарный импульс и время работы РД. Кроме того, за счет теплоемкости УГ снижаются тепловые нагрузки на камеру сгорания и сопло.

Реализуется предложенный способ следующим образом. В процессе электролиза воды часть генерируемого кислорода (примерно половина) сразу направляется в СЖО КА. Оставшиеся электролизные газы (кислород и водород) собирают и хранят в баллонах при повышенном давлении для уменьшения объема баллонов. Повышенное давление может создаваться либо электролизером, что более предпочтительно, либо механическими компрессорами. Независимо от работы ЭЛУ, в процессе очистки воздуха, на борту КА собирают УГ, компримируют и хранят также в баллоне. Для выделения и концентрирования УГ может применяться один из известных методов: адсорбционный (как это реализовано на МКС), мембранный, электрохимический, а также метод охлаждения и ожижения (Аврущенко А.Е. и др., Системы электрохимической регенерации воздуха атомных подводных лодок, М., Русская история, 2002 г., с. 117-150). Сжатие УГ может производиться механическим компрессором до давления, близкого к давлению хранения кислорода и водорода.

В заданный момент времени электролизные газы - кислород и водород - подают в камеру сгорания РД и поджигают - происходит запуск ДУ. После воспламенения газов в двигатель начинают подавать УГ, при этом расход его не должен превышать предельно допустимый, чтобы не прервать процесс горения кислородно - водородной смеси. Такой способ последовательной подачи компонентов позволяет провести более быстрый и надежный пуск ДУ. В результате ДУ начинает работать на трехкомпонентном топливе (Н22+СО2) с пониженной температурой горения. Горение и воспламенение смеси такого состава изучено («Водород, свойства, получение, хранение, транспортирование, применение», под ред. Гамбурга Д.Ю., М., Химия, 1989 г., с. 268, рис. 6.5б). В частности, для смеси водород-кислород-УГ с массовым соотношением водорода к кислороду 1:4, пределы воспламенения составляют от 20 до 86% объемного содержания водорода. В приведенном ниже примере соотношение объемов водорода, кислорода и УГ составляет 1:4:0,8, т.е. объемная доля водорода равна 69%. Такая смесь, в соответствии с приведенным источником, близка к оптимальной и обеспечивает скорость горения 600 см/с. В процессе нагрева УГ может вступать в обратимые реакции с водородом, но это не меняет теплотворную способность смеси и общую массу компонентов, а может только уменьшить молекулярную массу продуктов реакции, что благотворно скажется на увеличении скорости истечения смеси. Для дальнейших оценок будем считать, что распада УГ и взаимодействия с водородом не происходит.

Подача водорода и кислорода в массовом соотношении, близком к 1:4, позволяет максимально повысить удельную тягу ДУ (Сарнер С., Химия ракетных топлив, М., Мир, 1969, с. 100). Поскольку электролизер производит водород и кислород при стехиометрическом соотношении 1:8, это означает, что половина электролизного кислорода должна идти в ДУ, а вторая половина - в СЖО.

Оценим характеристики предлагаемого способа на примере годового баланса газов на МКС. В соответствии с имеющимися данными (Гузенберг А.С. и др., Выбор комплекса жизнеобеспечения для экипажей долговременных космических станций, Космическая техника и технологии, №1(8)/2015, с. 72) суточное потребление кислорода одним космонавтом равно 0,86 кг, а в год экипажем из 6 человек составляет 1883 кг, а наработка УГ за это же время - 2102 кг. Примем, что такая же масса кислорода - 1883 кг будет потребляться и для работы ДУ. Тогда для электролизного получения суммарного количества 3766 кг кислорода потребуется 4238 кг воды, при этом водорода будет выделено 471 кг. Общая масса топлива для ДУ складывается из масс водорода, кислорода и УГ и составляет 4457 кг. В связи с дефицитом кислорода в смеси, в ДУ сгорать будет только половина водорода, т.е. 235 кг, при этом истекающий из сопла газ будет включать в себя 235 кг несгоревшего водорода, 2119 кг водяного пара и 2104 кг УГ. Теплоемкость этой смеси равна 9300 кДж/К, что в 1,2 раз выше теплоемкости той же смеси, но без УГ (7830 кДж/К). Во столько же раз снизится нагрев смеси с УГ в камере сгорания ДУ из-за наличия балластного газа. Температура сгорания смеси Н22 в соотношении 1:4 составляет 2977 К (Сарнер С., Химия ракетных топлив, М., Мир, 1969, с. 101). Значит, считая, что начальные температуры газов во всех случаях составляют 300 К, в варианте тройной смеси температура в камере составит 2550 К. При такой температуре теоретическая скорость истечения газов в вакуум составляет: водорода - 8537 м/с, водяного пара - 3154 м/с, УГ - 2043 м/с. Умножив эти величины на массы компонентов и сложив результаты, получаем полный годовой имульс тяги ДУ - 12,98 млн. кгм/с, а удельная тяга ДУ, равная отношению полного импульса к полной массе компонентов составляет 2914 м/с.

В настоящее время (2017 год) для поддержания высоты орбиты МКС ежегодно расходуется около 9 тонн доставляемого топлива (гептил-амил) с удельной тягой 3100 м/с, что дает полный импульс тяги 27,9 млн. кгм/с. Из этого полного импульса 12,98 млн. кгм/с может быть обеспечена предложенным способом, значит, экономия доставляемого топлива составит 12,98⋅106/3100=4187 кг. Таким образом, несмотря на то, что в рассмотренном примере предложенный способ потребует доставки на МКС дополнительно около 2 тонн воды для работы ДУ, он позволяет экономить около 4 тонн в год доставляемого на орбиту топлива. Суммарная экономия доставляемого на МКС груза составляет 2 тонны, что при цене доставки 12 тыс. долларов за килограмм означает годовую экономию 24 млн. долларов.

1. Способ создания реактивной тяги пилотируемого космического аппарата, включающий получение на борту космического аппарата водорода и кислорода путём электролиза воды с направлением части электролизного кислорода на дыхание экипажа, хранение водорода и оставшегося кислорода под избыточным давлением, направление в заданный момент этих газов в камеру сгорания ракетного двигателя и поджиг там этих газов, а также выделение углекислого газа из воздуха обитаемых отсеков, отличающийся тем, что выделенный из воздуха углекислый газ собирают, компримируют и хранят на борту космического аппарата, а после воспламенения кислородоводородной смеси в камере сгорания туда направляют собранный углекислый газ с расходом, не прерывающим процесс горения кислородоводородной смеси.

2. Способ по п. 1, отличающийся тем, что в двигатель водород и кислород подают в массовом соотношении приблизительно 1:4.



 

Похожие патенты:

Изобретение относится к двигательным установкам (ДУ) космических аппаратов и может быть использовано в кислородно-водородных двигательных установках с электролизным производством этих газов на космическом аппарате (КА).

Изобретение относится к космической технике, а именно к аммиачным корректирующим двигательным установкам с электротермическими микродвигателями, устанавливаемым на меневрирующих малых космических аппаратах.

Изобретение относится к ракетной технике и может быть применено для запуска ЖРД. Жидкостной ракетный двигатель содержит блок управления, камеру, турбонасосный агрегат, содержащий установленные на валу турбину, насосы окислителя и горючего и газогенератор, установленный на нем и соединенный газоводом с камерой, запальные устройства на камере сгорания и газогенераторе, электрогенератор, установленный на валу турбонасосного агрегата, соединенный силовыми кабелями с средством интенсификации горения, при этом в качестве средства интенсификации горения применены СВЧ-излучатели, установленные на поверхности камеры и/или газогенератора.

Изобретение относится к космической технике и может использоваться для корректировки орбиты обитаемых космических аппаратов (КА). Импульсная реактивная двигательная установка космического аппарата включает твердополимерный электролизер воды, вход водородной полости которого гидравлически связан с герметичным резервуаром с водой, имеющим штуцер наддува, газожидкостной сепаратор, подключенный к выходу водородной полости электролизера и связанный с ее входом байпасной гидромагистралью, на которой установлен насос, баллон для хранения водорода и реактивный двигатель, соединенные пневмомагистралью с клапаном, а также управляемый источник тока, подключенный к электролизеру.
Ракетный двигатель содержит камеру сгорания, причем в камеру сгорания подается боран, или силан, или фосфин, или герман, или другие гидриды, имеющие положительную энтальпию образования из простых веществ, или их смесь при температуре, обеспечивающей самоподдерживающийся характер реакции термического разложения указанных веществ за счет тепла экзотермической реакции.
Ракетный двигатель содержит камеру сгорания с соплом. В камеру сгорания подают жидкий металл и воду.
Ракетный двигатель содержит камеру сгорания с соплом, в которую под давлением подается газообразный, или жидкий, или расплавленный гидрид и вода или антифриз на основе воды, или водяной пар.
Ракетный двигатель содержит камеру сгорания с соплом. В камеру сгорания подается расплавленного гидрида бериллия 40,81±20% и 59,19±20% кислорода или компоненты в следующем соотношении: диборана 10,10%, гидрида бериллия 24,16%, азотной кислоты 23,0% и метана 42,74%.
Ракетный двигатель содержит камеру сгорания, в которую под давлением подается смесь борана и аммиака, или раствор или эмульсия борана в жидком аммиаке. Компоненты подаются в следующем соотношении: диборан 44,8±10%, аммиак 55,2±10%.
Ракетный двигатель содержит камеру сгорания, в которую под давлением подается смесь борана и гидразина, или раствор или эмульсия борана в жидком гидразине. Компоненты подаются в следующем соотношении: диборан 46,33±10%, гидразин 53,67±10%.

Изобретение относится к двигательным установкам (ДУ) космических аппаратов и может быть использовано в кислородно-водородных двигательных установках с электролизным производством этих газов на космическом аппарате (КА).

Изобретение относится к космической технике. Космический аппарат (КА) содержит два телескопа, закрепленных на опорных узлах верхнего пояса фермы, и модуль служебных систем.

Группа изобретений относится к ракетно-космической технике. Способ термостатирования бортовой аппаратуры полезного груза (ПГ), размещенного внутри головного обтекателя (ГО) космической головной части (КГЧ) ракеты космического назначения (РКН), включает вдув термостатирующей среды во внутреннее пространство ГО, ее перетекание вдоль ГО с последующим истечением из него.

Изобретение относится к наземным электротехническим испытаниям космических аппаратов. Способ заключается в проведении заряда и разряда аккумуляторных батарей (АБ) с активным термостатированием и контролем температуры штатных АБ и в хранении их без проведения термостатирования.

Изобретение относится к управлению ориентацией космического аппарата (КА) с солнечными батареями (СБ). Способ включает ориентацию первой оси КА на центр Земли путем разворотов относительно второй и третьей осей по информации с прибора ориентации на Землю, а также ориентацию панелей СБ на Солнце путем разворота КА относительно первой оси до совмещения второй оси КА с плоскостью Солнце - КА - Земля по информации с прибора ориентации на Солнце (ПОС).

Изобретение относится к управлению ориентацией космического аппарата (КА) с солнечными батареями (СБ). Способ включает ориентацию первой оси КА на центр Земли путем его разворотов вокруг второй и третьей осей по информации с прибора ориентации на Землю.

Изобретение относится к космической технике и может быть использовано при создании связных (телекоммуникационных) космических аппаратов (КА) для бесконтактного неразрушающего контроля качества полупроводниковых фотопреобразователей (ФП) солнечных батарей (БС).

Изобретение относится к средствам увода с орбиты выработавших свой ресурс или отказавших автоматических космических аппаратов (КА). Устройство содержит контейнер (1) с надувной конструкцией в виде эластичной оболочки (2), механизм ее крепления к контейнеру, выталкивания и раскрытия.

Группа изобретений относится к ракетной технике. В первом варианте космической головной части (КГЧ), включающей переходной отсек для крепления головного обтекателя и полезную нагрузку, на внутренней поверхности переходного отсека посредством узлов крепления размещены отделяемые части разделяемых плат электросоединителей и бортовая аппаратура.

Изобретение относится к спутниковым системам наблюдения Земли. Способ включает перевод спутника с кратной геосинхронной орбиты на близкую по высоте компланарную квазисинхронную орбиту с малой периодичностью наблюдения заданного района Земли.

Изобретение относится к двигательным установкам (ДУ) космических аппаратов и может быть использовано в кислородно-водородных двигательных установках с электролизным производством этих газов на космическом аппарате (КА).
Наверх