Модификатор горения топлива

Изобретение раскрывает модификатор горения твердого, жидкого или газообразного топлива, который содержит катализатор горения и органический растворитель, при этом в качестве катализатора горения используется дициклопентадиенилтрикарбонил марганца, а в качестве органического растворителя - метилбензол при следующем соотношении компонентов, масс.%:

дициклопентадиенилтрикарбонил марганца 5-20 органический растворитель 80-95.

Технический результат заключается в повышении температуры горения твердого, жидкого или газообразного топлива при уменьшении количества токсичных веществ в отходящих газах процесса горения топлива. 14 пр., 2 табл., 1 ил.

 

Изобретение относится к области каталитической химии, а именно к модификаторам горения топлива разного агрегатного состояния (твердого, жидкого или газообразного), различного состава и происхождения, в частности, угля, природного газа, древесины, дизельного топлива, мазута, растительных и органических отходов разного состава и происхождения.

Модификатор предназначен для интенсификации процесса горения топлива в открытых и закрытых камерах и котлах энергетических установок.

Из уровня техники известны различные катализаторы и модификаторы, предназначенные для интенсификации процесса сжигания топлива.

Например, из заявки RU 2008139658 известно использование активированной добавки, состоящей из углеродного фуллероидного нанокластера, для сжигания пылеугольной смеси.

Из патента Швейцарии CH 599464 известно применение ферроцена в качестве катализатора процессов горения для добавления в топливо, применяемое в двигателях, например, в автомобильных двигателях.

Из патента RU 2299232 известно использование присадок к топливу в виде натуральных и синтетических органических веществ, в частности, производных фуллеренов, для оптимизации горения жидких углеводородных топлив, предназначенных для использования в двигателях внутреннего сгорания (карбюраторных, дизельных, роторно-поршневых и т.п.). При этом горение жидких углеводородных топлив ведут путем добавления чистого углерода в концентрации 0,01-0,10 масс.% в растворе органических растворителей. Раствор чистого углерода дополнительно смешивают с форсирующей добавкой в объемном соотношении 1:1, добавляют в эту смесь ингибитор окисления алюминиевых сплавов в количестве 0,007-0,008 масс. %.

Недостатком известных решений является ограниченность области применения указанного состава только в двигателях внутреннего сгорания, хотя и разного типа.

Из патента RU 2384553 известен модификатор горения для баллиститных твердых ракетных топлив (БТРТ), состоящий из свинцово-медного (ФМС) или свинцово-никелевого (ФНС) комплекса фталевой кислоты, технического углерода, 1,2-дибутоксибензола, хром(III)-медь(II) окиси, или двуокиси титана, или дисилицида титана, или карбоната кальция в сочетании с полезным соотношением компонентов БТРТ.

Недостатком данного решения является то, что в состав катализатора горения включены соединения свинца (1,5-4,0 масс.%), что может вносить вклад в загрязнение атмосферы свинцом, относящимся к 1 классу опасности.

Из патента RU 2292383 известен металлосодержащий катализатор горения, включающий трикарбонильные соединения марганца.

Однако данный катализатор направлен на снижение оксидов азота в отходящих газах горения угля (только) в печи коммунального энергоснабжения и не обеспечивает повышение температуры процесса горения топлива.

Наиболее близким к предлагаемому изобретению является модификатор горения твердого, жидкого и газообразного топлива по патенту RU 2515988, включающий катализатор горения и органический растворитель. Модификатор предназначен для сжигания древесины, природного газа, угля, мазута и других углеводородов, в энергетических котлах, в закрытых или открытых камерах. Данный модификатор содержит от 10 до 30 масс. % воды, от 20 до 80 масс.% по меньшей мере одного алифатического спирта, от 5 до 15 масс.% карбамида или его производных, выбранных из алкилмочевины типа R1R2N(CO)NR1R2, где R1, R2, R3, R4 являются одинаковыми или различными и представляют собой С1-С6 алкильные группы, и от 5 до 15 масс.% моноацетилферроцена.

Недостатком данного решения является многокомпонентность состава модификатора, включающего органические и неорганические компоненты, и необходимость подбирать концентрации компонентов в зависимости от используемого топлива, что может нарушить стабильность процесса горения топлива разного агрегатного состояния. Кроме того, известный модификатор не обеспечивает достижения высоких температур горения топлива.

Технической проблемой настоящего изобретения является разработка эффективного модификатора горения топлива разного агрегатного состояния (твердого, жидкого или газообразного), различного состава и происхождения (в частности, угля, природного газа, древесины, дизельного топлива, мазута, растительных и органических отходов), обеспечивающего высокотемпературное сжигание топлива и детоксикацию отходящих газов

Технический результат заключается в повышении температуры горения твердого, жидкого или газообразного топлива при уменьшении количества токсичных веществ в отходящих газах процесса горения топлива.

Предлагаемый модификатор позволяет увеличить полноту выгорания твердого топлива, приводит к уменьшению механического недожога и снижает необходимость использования подсветки, а также снижает содержание токсичных оксидов азота и углерода в отходящих газах до уровня предельно-допустимых концентраций (обеспечивает экологическую чистоту процесса горения органических и неорганических веществ).

Технический результат достигается тем, что модификатор горения твердого, жидкого или газообразного топлива, включающий катализатор горения и органический растворитель, согласно предлагаемому решению, в качестве катализатора горения содержит дициклопентадиенилтрикарбонил марганца, а в качестве органического растворителя – метилбензол, при следующем соотношении компонентов, масс.%:

дициклопентадиенилтрикарбонил марганца 5-20

органический растворитель 80-95.

Дициклопентадиенилтрикарбонил марганца представляет собой "сэндвич" с атомом переходного металла, расположенным между двумя циклопентадиенильными кольцами, который в условиях горения топлива разлагается в присутствии кислорода воздуха с образованием оксида марганца.

Дициклопентадиенилтрикарбонил марганца может быть получен в соответствии со способом по патенту US №2818417 или по Авторскому свидетельству № 647303, основанному на взаимодействии соединений двухвалентного марганца с солями циклопентадиенила: калия, натрия, лития и алюминия (или с бромистым циклопентадиенилмагнием, или циклопентадиенильными соединениями других элементов) и окисью углерода. Наиболее часто используют циклопентадиениды щелочных металлов (натрия, калия, лития), в случае которых достигаются лучшие выходы.

Способ получения модификатора заключается в растворении дициклопентадиенилтрикарбонила марганца в количестве 5-20 % масс. в метилбензоле, взятом в количестве 80-95 % масс.

Для подтверждения достижения технического результата были приготовлены модификаторы с различным содержанием входящих в них компонентов.

Пример 1. Дициклопентадиенилтрикарбонила марганца взято 4,0 г., метилбензола – 96,0 г. Готовый модификатор содержит, масс.%: дициклопентадиенилтрикарбонила марганца – 4,0; метилциклопентадиенилтрикарбонила марганца – 96,0.

Пример 2. Дициклопентадиенилтрикарбонила марганца взято 4,5 г., метилбензола – 95,5 г. Готовый модификатор содержит, масс.%: дициклопентадиенилтрикарбонила марганца – 4,5; метилциклопентадиенилтрикарбонила марганца – 95,5.

Пример 3. Дициклопентадиенилтрикарбонила марганца взято 5,0 г., метилбензола – 95,0 г. Готовый модификатор содержит, масс.%: дициклопентадиенилтрикарбонила марганца – 5,0; метилциклопентадиенилтрикарбонила марганца – 95,0.

Пример 4. Дициклопентадиенилтрикарбонила марганца взято 6,0 г., метилбензола – 94,0 г. Готовый модификатор содержит, масс.%: дициклопентадиенилтрикарбонила марганца – 6,0; метилциклопентадиенилтрикарбонила марганца – 94,0.

Пример 5. Дициклопентадиенилтрикарбонила марганца взято 7,0 г., метилбензола – 93,0 г. Готовый модификатор содержит, масс.%: дициклопентадиенилтрикарбонила марганца – 7,0; метилциклопентадиенилтрикарбонила марганца – 93,0.

Пример 6. Дициклопентадиенилтрикарбонила марганца взято 10,0 г., метилбензола – 90,0 г. Готовый модификатор содержит, масс.%: дициклопентадиенилтрикарбонила марганца – 10,0; метилциклопентадиенилтрикарбонила марганца – 90,0.

Пример 7. Дициклопентадиенилтрикарбонила марганца взято 12,0 г., метилбензола – 88,0 г. Готовый модификатор содержит, масс.%: дициклопентадиенилтрикарбонила марганца – 12,0; метилциклопентадиенилтрикарбонила марганца – 88,0.

Пример 8. Дициклопентадиенилтрикарбонила марганца взято 15,0 г., метилбензола – 85,0 г. Готовый модификатор содержит, масс.%: дициклопентадиенилтрикарбонила марганца – 15,0; метилциклопентадиенилтрикарбонила марганца – 85,0.

Пример 9. Дициклопентадиенилтрикарбонила марганца взято 18,0 г., метилбензола – 82,0 г. Готовый модификатор содержит, масс.%: дициклопентадиенилтрикарбонила марганца – 18,0; метилциклопентадиенилтрикарбонила марганца – 82,0.

Пример 10. Дициклопентадиенилтрикарбонила марганца взято 19,0 г., метилбензола – 81,0 г. Готовый модификатор содержит, масс.%: дициклопентадиенилтрикарбонила марганца – 19,0; метилциклопентадиенилтрикарбонила марганца – 81,0.

Пример 11. Дициклопентадиенилтрикарбонила марганца взято 20,0 г., метилбензола – 80,0 г. Готовый модификатор содержит, масс.%: дициклопентадиенилтрикарбонила марганца – 20,0; метилциклопентадиенилтрикарбонила марганца – 80,0.

Пример 12. Дициклопентадиенилтрикарбонила марганца взято 20,5 г., метилбензола – 79,5,0 г. Готовый модификатор содержит, масс.%: дициклопентадиенилтрикарбонила марганца – 20,5; метилциклопентадиенилтрикарбонила марганца – 79,5.

Пример 13. Дициклопентадиенилтрикарбонила марганца взято 21,0 г., метилбензола – 79,0 г. Готовый модификатор содержит, масс.%: дициклопентадиенилтрикарбонила марганца – 21,0; метилциклопентадиенилтрикарбонила марганца – 79,0.

Пример 14. Дициклопентадиенилтрикарбонила марганца взято 22,0 г., метилбензола – 78,0 г. Готовый модификатор содержит, масс.%: дициклопентадиенилтрикарбонила марганца – 22,0; метилциклопентадиенилтрикарбонила марганца – 78,0.

Предлагаемый модификатор может быть использован для модифицирования процесса горения топлива разного агрегатного состояния, различного состава и происхождения, в частности, угля, природного газа, растительных отходов и древесины, дизельного топлива, мазута и органических отходов.

Было исследовано влияние полученных в примерах 1-14 составов модификаторов на температуру в зоне горения угля, результаты исследований приведены в таблице 1.

Промышленные испытания проводились в процессе сжигания пылевидного угля марки АШ в промышленном котлоагрегате ТПП-210. При этом модификатор горения топлива разбавляли водой в соотношении 4,0 – 50,0 мл модификатора на 1000 мл воды. Полученную композицию равномерно распыляли в камеру сгорания топлива через систему аэрации совместно с воздухом в количестве 70-100 мл на 1000 кг твердого, жидкого или 1000 м3 газообразного топлива.

Температуру продуктов горения определяли термопарой, а состав отходящего газа - газоанализатором АГМ-510М.

Наилучшего результата удалось достигнуть при содержании 5-20 масс. % дициклопентадиенилтрикарбонил марганца в органическом растворителе за счет увеличения глубины использования энергетического потенциала топлива путем каталитического превращения промежуточных компонентов генераторного газа (СО, СхНу, NOх).

Таблица 1. Влияние состава модификатора на температуру в зоне горения угля


примера
Содержание
дициклопентадиенил-
трикарбонила марганца,
масс. %
Содержание
метилбензола
масс. %
Температура в зоне горения угля,
°С
1 4,0 96,0 1500
2 4,5 95,5 1500
3 5,0 95,0 1620
4 6,0 94,0 1650
5 7,0 93,0 1640
6 10,0 90,0 1670
7 12,0 88,0 1650
8 15,0 85,0 1670
9 18,0 82,0 1650
10 19,0 81,0 1650
11 20,0 80,0 1630
12 20,5 79,5 1450
13 21,0 89,5 1440
14 22,0 88,0 1400

Таким образом, с использованием предлагаемого модификатора удалось повысить температуру в зоне горения угля до 1670 °С, снизив, при этом, выброс токсичных веществ ниже уровня предельно-допустимых значений (см. таблицу 2). На Фиг. представлена закономерность влияния содержания дициклопентадиенилтрикарбонила марганца в составе модификатора на увеличение температуры сжигания угля.

Таблица 2. Состав отходящих газов при горении топлив с модификатором, масс. %

Вид
топлива

Состав отходящих газов
NOX, мг/м3 CH4, мг/м3 CO, мг/м3 CO2,
% об.
O2,
% об.
Уголь 87 52 17 7,4 12,2
Природный
газ
54 24 29 8,8 11,7
Мазут 60 68 76 19,0 9,8

Таким образом, предлагаемый катализатор обеспечивает высокую теплоотдачу топлива, сокращает в 2 раза количество подсветки (природного газа) и одновременно позволяет осуществить эффективную очистку дымовых газов от оксидов азота и углерода (II).

1. Модификатор горения твердого, жидкого или газообразного топлива, включающий катализатор горения и органический растворитель, отличающийся тем, что в качестве катализатора горения содержит дициклопентадиенилтрикарбонил марганца, а в качестве органического растворителя – метилбензол при следующем соотношении компонентов, масс.%:

дициклопентадиенилтрикарбонил марганца 5-20
органический растворитель 80-95



 

Похожие патенты:
Изобретение раскрывает способ получения бездымного бытового топлива, включающий смешение исходных компонентов – углеродсодержащего материала, связующего, минеральной добавки и воды, прессование брикетной смеси и сушку сформированного брикет, при этом в качестве углеродсодержащего материала используют мелочь коксовую марки МК-1, получаемую посредством среднетемпературной карбонизации бурого угля, с исходным гранулометрическим составом 0-15 мм, в качестве связующего используют муку злаковых культур или крахмал, в качестве минеральной добавки используют глину, алевролит или бентонит, где исходные компоненты берут в следующем соотношении, мас.%: углеродсодержащий материал не менее 50; связующее 3,5–20,0; минеральная добавка 1,0-10,0; вода – остальное.
Изобретение раскрывает пеллеты из гидролизного лигнина, выполненные в виде топливных гранул, спрессованных из гидролизного лигнина, полученного методом гидролиза древесных отходов растворами серной кислоты, характеризующиеся тем, что перед переработкой гидролизный лигнин обогащается производными отходами гидролизного производства, а перед прессованием проходит тонкую очистку с сортировкой на фракции с последующим удалением минеральных элементов и уменьшением зольности.

Изобретение описывает способ получения твердого топлива, включающий стадии, на которых приготавливают суспензию путем смешивания порошкообразного низкосортного угля и масла; испаряют влагу, содержащуюся в суспензии, с помощью нагревания и разделяют суспензию, полученную после стадии испарения, на твердый материал и жидкость, при этом стадия испарения включает в себя стадии, на которых подогревают суспензию в первом пути циркуляции и нагревают подогретую суспензию во втором пути циркуляции, который отличен от первого пути циркуляции, причем технологический пар, образующийся на стадии испарения, используется в качестве теплоносителя для любой одной из стадии подогрева и стадии нагревания, и вводимый извне пар используется в качестве теплоносителя для другой стадии.

Изобретение описывает способ брикетирования углеродных восстановителей, преимущественно буроугольного или каменного полукокса (кокса), включающий смешение связующих материалов с полукоксом (коксом), прессование и сушку брикетов, отличающийся тем, что в качестве связующих материалов используют комбинированное связующее, содержащее высокотемпературный и низкотемпературный компоненты, причем сначала смешивают углеродный восстановитель с высокотемпературным компонентом, затем добавляют низкотемпературный компонент, при этом в качестве высокотемпературного компонента используют кубовые продукты переработки нефти в виде смолы пиролиза или каталитического газойля в количестве 25-30 масс.

Согласно настоящему изобретению способ хранения модифицированного угля включает стадию штабелирования посредством укладки в штабель агломерированного и измельченного в порошок модифицированного угля.
Изобретение раскрывает способ получения кускового топлива путем смешения исходных компонентов – углеродсодержащего материала, зернистого наполнителя и связующего, формования полученной смеси и сушки, при этом в качестве углеродсодержащего материала используют осадок фильтр-прессов углеобогатительной фабрики, получаемый в результате обогащения угля марок Д, ДГ, Г, с исходным гранулометрическим составом 0-100 мкм, в качестве связующего - смесь муки и смолы пиролизной тяжелой в соотношении 1:1, при этом исходные компоненты берут в следующем количестве, масс.

Изобретение описывает способ производства модифицированного угля из низкокачественного угля как исходного материала, включающий стадию дегидратации в масле низкокачественного угля; стадию добавления воды в дегидратированный уголь; стадию агломерации содержащего добавленную воду угля и стадию постепенного окисления агломерированного угля, в котором на стадии добавления воды добавляемое количество воды регулируется таким образом, что содержащий добавленную воду уголь имеет содержание воды, составляющее 5 мас.% или более и 20 мас.% или менее, и на стадии окисления агломерированный уголь выдерживается на воздухе при температуре, составляющей 70°C или более и 100°C или менее, где скорость потребления кислорода окисленным углем после стадии окисления составляет 1 мг/г в сутки или менее.

Изобретение описывает композиционное топливо на основе твердого углеродного остатка пиролиза автошин, включающее твердый остаток пиролиза автошин, предварительно обогащенный методом масляной агломерации, при этом в качестве реагента обогащения содержит топочный мазут М-100 в количестве 4,0-6,0% к массе твердого остатка пиролиза автошин, в качестве связующего - вторичный полимер (полиэтилен) в количестве 7,0-10% к массе обогащенного концентрата при следующем соотношении компонентов, % мас.: обогащенный концентрат - 90-93, полиэтилен - 7,0-10.

Изобретение описывает способ получения топливных брикетов из древесных отходов, включающий измельчение, сушку до влажности 12-16%, смешение компонентов смеси, включающей технический гидролизный лигнин, причем подготовку связующей шихты осуществляют путем добавления к техническому гидролизному лигнину 70-80% карбоната натрия 5-10% и дальнейшей механоактивации с последующим добавлением подогретого до 90°C таллового пека 15-20%, полученную шихту в количестве 10-15% смешивают с древесными отходами, измельченными до 1-5 мм в количестве 85-90%, а брикетирование смеси осуществляют при температуре 90±2°C и давлении 45-50 МПа.

Изобретение раскрывает способ автоматизированного управления процессом прессования торфяного топлива, включающий измерение влажности, температуры, расхода сырья и последующее сравнение измеренных данных с значениями, заданными на микроконтроллере, при этом дополнительно включает в себя автоматическое измерение и регулирование давления прессования, скорости движения, а также времени выдержки материала в матричном (прессующем) канале.

Изобретение относится к устройствам обработки жидких углеводородных топлив. Предложено устройство для обработки жидких и газообразных веществ, содержащих водород и углеводород, состоящее из немагнитного, цилиндрического, выполненного из латуни наружного корпуса 1, содержащего выпускную часть 6 и внутреннюю часть 3 с резьбой, в которую вставлен узел цилиндрических магнитов, состоящий из тринадцати неодимовых редкоземельных магнитов, выполненных в форме круглого кольца с центральным отверстием и разделенных немагнитными ПВХ-прокладками, выполненными в форме тонкого круглого кольца.

Изобретение относится к способу удаления кислотных газов, прежде всего диоксида углерода и сероводорода, из богатой углеводородом фракции, прежде всего природного газа.

Изобретение описывает способ получения твердого топлива, включающий стадии, на которых приготавливают суспензию путем смешивания порошкообразного низкосортного угля и масла; испаряют влагу, содержащуюся в суспензии, с помощью нагревания и разделяют суспензию, полученную после стадии испарения, на твердый материал и жидкость, при этом стадия испарения включает в себя стадии, на которых подогревают суспензию в первом пути циркуляции и нагревают подогретую суспензию во втором пути циркуляции, который отличен от первого пути циркуляции, причем технологический пар, образующийся на стадии испарения, используется в качестве теплоносителя для любой одной из стадии подогрева и стадии нагревания, и вводимый извне пар используется в качестве теплоносителя для другой стадии.

Изобретение относится к газообрабатывающей промышленности. Для декарбонизации углеводородного газа путем промывки растворителем газ приводят в контакт с поглотительным раствором для получения газа, обедненного CO2, и поглотительного раствора, наполненного CO2.

Изобретение раскрывает способ подготовки попутных нефтяных и природных газов для использования в энергоустановках, состоящий в снижении концентрации соединений газа, имеющих низкую детонационную стойкость и повышающих вероятность смоло- и сажеобразования, путем каталитической пароуглекислотной конверсии при температуре, не превышающей 450ºС с последующей подачей конвертируемых газов в топливный тракт двигателя энергоустановки, при этом в качестве двигателя энергоустановки применяют двухтопливный газодизельный двигатель, который первоначально запускают на дизельном топливе, отходящие газы газодизельного двигателя подают на катализаторный блок каталитического риформера для его разогрева, после чего осуществляют подачу в каталитический блок попутных нефтяных и природных газов, при этом в качестве окислителя для проведения каталитической пароуглекислотной конверсии используют атмосферный воздух и часть продуктов отходящих газов газодизельного двигателя, содержащих пары воды и двуокись углерода, а перед подачей конвертируемых газов в топливный тракт газодизельного двигателя осуществляют дополнительную очистку от механических частиц и охлаждение.

Изобретение относится к двум вариантам способа получения метана. Один из вариантов включает в себя приведение в контакт водной текучей среды, содержащей по меньшей мере одно нежелательное составляющее, с гетерогенным катализатором при давлении от приблизительно 20 атм до приблизительно 240 атм и температуре от 150°C до приблизительно 373°C для гидролиза по меньшей мере одного нежелательного составляющего в текучей среде и генерирования количества метана, причем гетерогенный катализатор содержит элемент, выбранный из группы, состоящей из рутения, никеля, кобальта, железа и их сочетаний, и твердую подложку, выбранную из группы, состоящей из оксида алюминия, диоксида кремния и карбида.

Изобретение относится к установке для получения гидрата метана, содержащая выполненный в виде вертикальной колонки реактор, внутри которого выполнены функциональные камеры и к которому подведены магистральный газопровод метана, водопровод с насосом и компрессором, и холодильная система.
Изобретение относится к способу переработки природных и попутных нефтяных углеводородных газов с повышенным содержанием тяжелых гомологов метана в топливный газ путем смешивания углеводородного газа с кислородом или кислородсодержащим газом в мольном соотношении углерод тяжелых компонентов : кислород 10÷1:1 и проведения прямого парциального окисления тяжелых компонентов при температуре 350-420°С и давлении 10-40 бар с получением паро-газовой смеси, содержащей углеводородные газы, СО, оксигенаты и Н2О, которую затем смешивают с кислородом или кислородсодержащим газом до содержания кислорода 2-5% об.

Изобретение раскрывает установку паровой конверсии сернистого углеводородного газа, которая оснащена линией ввода сырьевого газа и линией вывода конвертированного газа с рекуперационным устройством, включает также нагреватель и конвертор, при этом установка оборудована узлом адсорбционного обессеривания, состоящим, по меньшей мере, из двух переключаемых адсорберов, по меньшей мере один из которых, находящийся в режиме регенерации адсорбента, соединен с линией вывода конвертированного газа в дефлегматор, установленный в качестве рекуперационного устройства и оснащенный линией вывода подготовленного газа, а остальные адсорберы, находящиеся в режиме адсорбции, установлены на линии ввода сырьевого газа, кроме того, установка оснащена блоком подготовки воды, соединенным линией подачи подготовленной воды с линией подачи сырьевого газа после адсорбера и оснащенным линиями ввода воды, подачи дегазированного водного конденсата из дефлегматора и вывода солевого концентрата, при этом нагреватель установлен на линии подачи парогазовой смеси из дефлегматора в конвертор.

Изобретение относится к способу одновременного получения обработанного природного газа, фракции обогащенной С3+ углеводородами и обогащенного этаном потока. Способ характеризуется тем, что включает следующие стадии: отбор рециркуляционного потока в верхнем потоке, выходящем из колонны выделения; установление определенного теплообменного взаимодействия между рециркуляционным потоком и по меньшей мере одной частью верхнего потока, выходящего из колонны выделения; повторное введение, после расширения, охлажденного и расширенного рециркуляционного потока в колонну выделения; отбор в кубе колонны выделения по меньшей мере одного кубового потока повторного кипячения и обеспечение теплообмена между потоком повторного кипячения и по меньшей мере одной частью исходного природного газа или/и с рециркуляционным потоком, при этом осуществление повторного кипячения кубовой жидкости обеспечивается за счет калорий, поглощаемых из исходного потока природного газа или/и рециркуляционного потока.

Изобретение описывает топливную эмульсию для дизелей на основе дизельного топлива с добавлением спирта и эмульгатора, при этом она дополнительно содержит дисульфид молибдена при следующих соотношениях компонентов, мас.

Изобретение раскрывает модификатор горения твердого, жидкого или газообразного топлива, который содержит катализатор горения и органический растворитель, при этом в качестве катализатора горения используется дициклопентадиенилтрикарбонил марганца, а в качестве органического растворителя - метилбензол при следующем соотношении компонентов, масс.: дициклопентадиенилтрикарбонил марганца 5-20 органический растворитель 80-95. Технический результат заключается в повышении температуры горения твердого, жидкого или газообразного топлива при уменьшении количества токсичных веществ в отходящих газах процесса горения топлива. 14 пр., 2 табл., 1 ил.

Наверх