Способ контроля периода, мощности и реактивности ядерного реактора и устройство для его осуществления

Изобретение относится к способам и устройствам контроля периода, мощности и реактивностью ядерного реактора. Способ контроля мощности, реактивности и периода ядерного реактора заключается в том, что используют один показывающий прибор, причем по оси абсцисс размещают шкалу в единицах мощности, по оси ординат размещают шкалу в секундах и шкалу в обратных секундах в диапазоне значений слагаемых приведенного к трехчленной форме уравнения кинетики ядерного реактора для контролируемых величин в форме r(t)=α(t)+Iзн(t)/n(t) или r(t)=v(t)/n(t)+Iзн(t)/n(t), где r(t)=ρ(t)/Λ - реактивность в Λ-шкале, ρ - абсолютная реактивность, Λ - время генерации мгновенных нейтронов, t - время, α(t)=v(t)/n(t) - обратный период, v - скорость изменения мощности, n - мощность ядерного реактора, Iзн - интеграл запаздывающих нейтронов, на показывающий прибор выводят график х(n) слагаемого уравнения кинетики и на поле графика накладывают палетку, выполненную в виде сети линий, пересекающих поле графика прямых х(n)=а+b*n, где b есть уставка на относительную скорость изменения выведенной на график величины х: dx/dn≤b. Технический результат – уменьшение количества показывающих приборов, повышение адекватности оценки оператором текущего состояния ядерного реактора. 3 н. и 5 з.п. ф-лы, 2 ил.

 

Предлагаемое техническое решение относится к способам и устройствам контроля за физическими параметрами ядерного реактора, в частности, за периодом, мощностью и реактивностью. Оно может быть применено в системах управления ядерным реактором для уменьшения количества показывающих приборов, для повышения адекватности оценки оператором текущего состояния ядерного реактора и для упрощения визуального прогноза поведения реактора.

Уровень техники, характеристика аналогов

Согласно правилам эксплуатации ядерных реакторов [Правила ядерной безопасности реакторных установок атомных станций HП-082-07] предусмотрено непрерывное измерение и отображение на показывающих приборах текущих значений плотности нейтронного потока (мощности ядерного реактора); скорости изменения плотности нейтронного потока (периода ядерного реактора) и реактивности, которая отражает скорость изменения плотности нейтронного потока за счет процессов на мгновенных нейтронах.

Оператор ЯЭУ должен осуществлять контроль указанных величин в следующих отношениях:

- устанавливать факт стабилизации контролируемой величины на определенном временном интервале;

- сопоставлять достигнутое значение с заданными уставкам;

- оценивать допустимость скорости изменения контролируемой величины;

- оценивать направленность изменения контролируемой величины.

Известные способы решают фактически только задачу измерения мощности, периода и реактивности, не предоставляя специальных средств для облегчения контроля данных величин в указанных отношениях. [SU 1693639 А1, 23.11.1991; SU 1688711 A1, 28.02.1994, Погосов А.Ю. Технические средства управления ядерными реакторами с водой под давлением для АЭС. - О.: Наука и техника, 2012; WWER-1000 Reactor Simulator. IAEA-TCS-21/02 IAEA, 2005; Boiling Water Reactor Simulator. IAEA-TCS-23/02. IAEA, 2005.; Lam W.K. Advanced Pressurized Water Reactor Simulator. Cassiopeia Techn. Inc., 2009; Аппаратура контроля нейтронного потока. ООО «СКУ-Атом», 2014; Аппаратура контроля нейтронного потока. ЗAО «СНИИП-Систематом», 2014; Aппаратура контроля нейтронного потока АКНП-ИФ СНПО "Импульс", 2014].

Недостатки известных способов контроля состоят в следующем.

1. Фиксация факта стабилизации контролируемой величины затруднительна на цифровых показывающих приборах, поскольку требует от оператора запоминания предшествующих значений на цифровом приборе и мысленной оценки интервала постоянства этих значений.

2. Отображение контролируемых величин только в виде текущих мгновенных значений не позволяет дать прогноз состояния ядерного реактора.

3. Использование графиков с временной разверткой для отображения контролируемых величин ограничивает представление информации конечным временным интервалом, что затрудняет учет предыстории процесса и ухудшает возможность визуальной экстраполяции контролируемых величин.

4. Измерение контролируемых величин посредством различных технических средств и в различных шкалах обусловливает необходимость использования нескольких показывающих приборов, что ухудшает эргономику щитов управления в АСУ ТП АЭС.

5. Использование нескольких показывающих приборов с различными шкалами затрудняет контроль информации о состоянии ядерного реактора.

6. Не предусмотрено непосредственное отображение скорости изменения контролируемых величин. В частности, визуально не контролируется скорость ввода реактивности.

Техническая задача, технический результат

Задача изобретения в устранении указанных недостатков, то есть в упрощении контроля за наблюдаемыми величинами и в улучшении следующих эргономических характеристик АСУ ТП АЭС:

- легкость совместного восприятия достигнутых значений контролируемых величин на одном показывающем приборе;

- возможность визуальной оценки интервалов стабилизации контролируемых величин и тенденции их дальнейшего поведения;

- простота сопоставления контролируемых величин с заданными уставками;

- упрощение оценки допустимости скорости изменения контролируемой величины.

Сущность изобретения

Поставленная задача решается тем, что в способе контроля мощности, реактивности и периода ядерного реактора, включающем вывод временных зависимостей мощности, реактивности и периода на показывающие приборы в форме графиков, используют один общий показывающий прибор, причем по оси абсцисс размещают шкалу в единицах мощности, охватывающую диапазон возможных значений мощности, по оси ординат размещают шкалу в секундах и шкалу в обратных секундах в диапазоне возможных значений слагаемых приведенного к трехчленной форме уравнения кинетики ядерного реактора для контролируемых величин в форме [Юферов А.Г. Передаточные функции и коэффициенты чувствительности реактиметра. Вопросы атомной науки и техники. Серия: Физика ядерных реакторов, 2007, №1.]

где r(t)=ρ(t)/Λ - реактивность в Λ-шкале,

ρ - абсолютная реактивность,

Λ - время генерации мгновенных нейтронов,

t - время,

α(t)=v(t)/n(t) - обратный период (относительная скорость изменения мощности),

v - скорость изменения мощности,

n - мощность ядерного реактора,

Iзн - интеграл запаздывающих нейтронов,

на показывающий прибор выводят график х(n) минимум одного слагаемого трехчленного уравнения кинетики и на поле графика накладывают контрольную измерительную палетку, выполненную в виде сетки линий в виде пересекающих поле графика прямых х(n)=а+b*n, где b есть уставка на относительную скорость изменения выведенной на график контролируемой величины х: dx/dn≤b, при этом факт достижения или превышения уставки фиксируют визуально как возможное пересечение или асимптотическое достижение одной из прямых х=а+b*n графиком х(n) снизу, факт стабилизации мощности на уровне nc фиксируют как приближение линии графика х(n) к нулевому значению ординаты, факт стабилизации относительной скорости изменения контролируемой величины х фиксируют как появление на графике линейного участка х(n)=c+d*n, относительную скорости изменения контролируемой величины оценивают по линейному участку как dx/dn, осуществляют выдачу управляющих воздействий, соответствующих установившейся относительной скорости изменения контролируемой величины, если интервал линейности по оси абсцисс (приращение мощности при экспоненциальном росте) превышает заданное значение.

В частном случае контроля периода ядерного реактора контроль осуществляют по обратному периоду α=1/р, для чего на показывающий прибор выводят график скорости изменения мощности v(n) и на поле графика накладывают контрольные измерительные палетки, выполненные в виде сетки линий в виде пересекающих поле графика прямых v(n)=c+αn, где коэффициент α принимает значения уставки относительной скорости изменения мощности 0.1, 0.05, 0.025, что соответствует уставкам периода в 10 секунд на сброс AЗ, в 20 секунд на сигнал предупредительной защиты и ввод в активную зону с рабочей скоростью управляющей группы ОР СУЗ, в 40 секунд на запрет на подъем управляющей группы ОР СУЗ. Факт стабилизации периода р, то есть экспоненциальное изменение мощности n(t)=exp(t/p), фиксируют как появление на графике линейного участка v(n)=с+n/р, значение установившегося периода оценивают по линейному участку как dn/dv, факт достижения или превышения уставки α фиксируют визуально как возможное пересечение или достижение одной из прямых v(n)=c+αn графиком v(n) снизу.

В частном случае контроля реактивности на показывающий прибор выводят график реактивности r(n) и на поле графика накладывают контрольную измерительную палетку, выполненную в виде сетки линий в виде пересекающих поле графика прямых r(n)=a+kn, где коэффициент k есть уставка относительной скорости изменения реактивности dr/dn.

В частном случае контроля обратного периода на показывающий прибор выводят графики реактивности r(n) и относительной величины интеграла запаздывающих нейтронов Iзн(n)/n. Значение обратного периода определяют как расстояние между графиками r(n) и Iзн(n)/n. Области превышения уставок обратного периода выделяются соответствующими цветами.

В частном случае контроля периода на показывающий прибор выводят график обратного периода α(n). Соответствующие значения периода определяются по шкале секунд, предусмотренной на оси ординат. Факт стабилизации периода (экспоненциального изменения мощности) фиксируют как асимптотическое приближение графика α(n) к горизонтальной прямой. Выдачу управляющих воздействий, соответствующих установившейся значению периода, осуществляют, если приращение мощности при ее экспоненциальном росте достигнет заданного правилами безопасности значения 5%.

Предлагаемое техническое решение основано на использовании для измерения и контроля уравнения (1), которое выражает связь контролируемых величин как баланс относительных скоростей процессов на мгновенных (реактивность r(t)) и запаздывающих нейтронах (слагаемое Iзн(t)/n(t)), определяющих темп изменения мощности ядерного реактора, характеризуемый обратным периодом α. При этом контролируемые величины (реактивность, обратный период) выражаются в одних единицах - в обратных секундах, что позволяет отображать их на одном графике с общей шкалой фиксированного размаха.

В реальных эксплуатационных режимах ядерного реактора быстро устанавливается равновесие между процессами на мгновенных нейтронах (характеризуемых реактивностью r(t)) и процессами на запаздывающих нейтронах (характеризуемых величиной Iзн(t)/n(t)), то есть значения величин r(t) и Iзн(t)/n(t) всегда достаточно близкие. Поэтому на показывающий прибор удобно выводить именно графики r(n) и Iзн(n)/n. Расстояние между этими графиками равно обратному периоду. В таком случае на одном показывающем приборе фактически отображаются и мощность, и все контролируемые величины - слагаемые балансного уравнения (1).

Перечень фигур

Способ поясняется фиг. 1 и 2.

На фиг. 1, а представлены в традиционной форме графики временной зависимости мощности и реактивности.

На фиг. 1, b информация о ходе мощности и реактивности представляется предложенным способом.

На фиг. 2, а представлены в традиционной форме графики временной зависимости мощности и скорости изменения мощности.

На фиг. 2, b представлены график скорости изменения мощности и линии палетки для контроля периода ядерного реактора предложенным способом.

Осуществление способа

Предлагаемый способ контроля мощности, периода и реактивности ядерного реактора осуществляют в действующих системах АСУ ТП АЭС с использованием предусмотренных в этих системах реактиметров путем реализации в вычислительном блоке реактиметра алгоритма раздельного расчета слагаемых уравнения кинетики ядерного реактора для контролируемых величин (1) и вывода их графиков в требуемых сочетаниях на показывающий прибор с наложенными на поле графика контрольными измерительными палетками.

В результате применения предлагаемого способа повышается степень восприятия и интерпретируемости контролируемых величин, улучшается эргономика щитов управления АСУ TП АЭС.

1. Способ контроля мощности, реактивности и периода ядерного реактора, включающий вывод временных зависимостей мощности, реактивности и периода на показывающие приборы в форме графиков, отличающийся тем, что используют один общий показывающий прибор, причем по оси абсцисс размещают шкалу в единицах мощности, охватывающую диапазон возможных значений мощности, по оси ординат размещают шкалу в секундах и шкалу в обратных секундах в диапазоне возможных значений слагаемых приведенного к трехчленной форме уравнения кинетики ядерного реактора для контролируемых величин в форме

r(t)=α(t)+Iзн(t)/n(t) или r(t)=v(t)/n(t)+Iзн(t)/n(t),

где r(t)=ρ(t)/Λ - реактивность в Λ-шкале,

ρ - абсолютная реактивность,

Λ - время генерации мгновенных нейтронов,

t - время,

α(t)=v(t)/n(t) - обратный период (относительная скорость изменения мощности),

v - скорость изменения мощности,

n - мощность ядерного реактора,

Iзн - интеграл запаздывающих нейтронов,

на показывающий прибор выводят график х(n) минимум одного слагаемого трехчленного уравнения кинетики и на поле графика накладывают контрольную измерительную палетку, выполненную в виде сетки линий в виде пересекающих поле графика прямых х(n)=а+b*n, где b есть уставка на относительную скорость изменения выведенной на график контролируемой величины х: dx/dn≤b, при этом факт достижения или превышения уставки фиксируют визуально как возможное пересечение или достижение одной из прямых х=а+b*n графиком х(n) снизу, факт стабилизации мощности на уровне nc фиксируют как приближение линии графика х(n) к вертикальной асимптоте n=nc, факт стабилизации относительной скорости изменения контролируемой величины х фиксируют как появление линейного участка графика x(n)=c+d*n, относительную скорости изменения контролируемой величины оценивают по линейному участку как dx/dn, осуществляют выдачу управляющих воздействий, соответствующих установившейся относительной скорости изменения контролируемой величины, если интервал линейности по оси абсцисс (приращение мощности при экспоненциальном росте) превышает заданное значение.

2. Способ по п. 1, отличающийся тем, что на показывающий прибор выводят график скорости изменения мощности v(n) и на поле графика накладывают контрольные измерительные палетки, выполненные в виде сетки линий в виде пересекающих поле графика прямых v(n)=c+αn, где коэффициент α принимает значения уставки относительной скорости изменения мощности 0.1, 0.05, 0.025, что соответствует уставкам периода в 10 секунд на сброс АЗ, в 20 секунд на сигнал предупредительной защиты и ввод в активную зону с рабочей скоростью управляющей группы ОР СУЗ, в 40 секунд на запрет на подъем управляющей группы ОР СУЗ, факт стабилизации периода р и экспоненциальное изменение мощности n(t)=exp(t/p) фиксируют как появление линейного участка графика v(n)=с+n/р, значение установившегося периода оценивают по линейному участку как dn/dv, факт достижения или превышения уставки α фиксируют визуально как возможное пересечение или достижение одной из прямых v(n)=c+αn графиком v(n) снизу.

3. Способ по п. 1, отличающийся тем, что на показывающий прибор выводят график реактивности r(n) и на поле графика накладывают контрольную палетку, выполненную в виде сетки линий в виде пересекающих поле графика прямых r(n)=a+kn, где коэффициент k есть уставка относительной скорости изменения реактивности dr/dn, при этом факт достижения или превышения уставки фиксируют визуально как возможное пересечение или асимптотическое достижение одной из прямых r(n)=а+kn графиком r(n) снизу.

4. Способ по п. 1, отличающийся тем, что на показывающий прибор выводят графики реактивности r(n) и относительной величины интеграла запаздывающих нейтронов Iзн(n)/n, значение обратного периода определяют как расстояние между графиками r(n) и Iзн(n)/n, области превышения уставок обратного периода выделяются соответствующими цветами.

5. Способ по п. 1, отличающийся тем, что на показывающий прибор выводят график обратного периода α(n), соответствующие значения периода определяются по шкале секунд, предусмотренной на оси ординат, факт стабилизации периода (экспоненциального изменения мощности) фиксируют как асимптотическое приближение графика α(n) к горизонтальной прямой, выдачу управляющих воздействий, соответствующих установившейся значению периода, осуществляют, если приращение мощности при ее экспоненциальном росте достигнет заданного правилами безопасности значения 5%.

6. Палетка, выполненная из прозрачной пластинки, на которой образована сеть мерных линий, отличающаяся тем, что сеть мерных линий выполнена в виде пересекающих поле графика прямых х(n)=а+b*n, где b есть уставка на относительную скорость изменения выведенной на график контролируемой величины х: dx/dn≤b.

7. Палетка по п. 6, выполненная для каждой контролируемой величины.

8. Палетка, выполненная на экране монитора в поле графика контролируемой величины, на котором образована сеть мерных линий, отличающаяся тем, что сеть мерных линий выполнена в виде пересекающих поле графика прямых х(n)=а+b*n, где b есть уставка на относительную скорость изменения выведенной на график контролируемой величины х: dx/dn≤b.

9. Палетка по п. 8, выполненная для каждой контролируемой величины.



 

Похожие патенты:

Изобретение относится к ядерной энергетике. Установка для контроля характеристик виброуплотненных тепловыделяющих элементов (твэлов) содержит расположенные в ряд блок детектирования гамма-излучения, держатели верхней и нижней заглушки твэла, установленные с противоположных сторон вдоль оси перемещения твэла, источник гамма-излучения, механизм перемещения твэла и блок управления, связанный с блоком детектирования и механизмом перемещения твэла.

Изобретение относится к способу обучения определению области радиационной аварийной ситуации на основе смоделированной аварии. Технический результат – обеспечение способа обучения определению области радиационной аварии аналогично реальной радиационной аварийной ситуации.

Группа изобретений относится к области техники изготовления фильтрующего элемента ядерного класса. Испытательный стенд для оценки характеристики фильтрующего элемента ядерного класса по методу флуоресцеина-натрия включает в себя: приточный фильтр, генератор флуоресцеина-натрия, наливной штуцер флуоресцеина-натрия, манометр до фильтра, пробоотборник до фильтра, отверстие пробоотбора до фильтра, бокс для установки фильтрующего элемента, манометр после фильтра, обратный наливной штуцер после фильтра, пробоотборник после фильтра, отверстие пробоотбора после фильтра, регулирующий клапан количества воздуха, вентилятор.

Изобретение относится к управляющим системам безопасности или к системам управления технологическими процессами (АСУ ТП). Техническим результатом заявленного изобретения является повышение надежности порогового блока управления и безопасности контролируемого технологического объекта.

Изобретение относится к области измерительной техники и может быть использовано для обнаружения дефектов на начальном этапе эксплуатации в высокотемпературных устройствах высокого давления, используемых в химических установках, таких как высокотемпературные системы и резервуары высокого давления.

Изобретение относится к химии, нефтехимии и нефтепереработке, сосудам, аппаратам и трубопроводам, эксплуатируемым под давлением, а также к трубопроводному транспорту, а именно к капитальному ремонту и реконструкции трубопроводов, в частности к определению технического состояния и срока службы трубопроводов, подвергавшихся в процессе эксплуатации водородной коррозии и деформационному старению.

Изобретение относится к способу обнаружения и определения параметров фрагментов ядерного топлива в кладке остановленного уран-графитового реактора. Поиск скважин выполняют путем измерения потоков тепловых нейтронов в ячейках графитовой кладки остановленного уран-графитового реактора в определенном порядке на расстоянии не более 1,4 м между ячейками и шагом 1 м по высоте графитовой кладки.

Группа изобретений относится к ядерной технике, в частности к обращению с отработавшим ядерным топливом (ОЯТ). Защитная пробка гнезда хранения пеналов с ОЯТ включает корпус, образованный верхним и нижним дисками и обечайкой, заполненный бетоном.

Изобретение относится к устройствам для контроля внешнего вида цилиндрических изделий и, в частности, может быть использовано в производстве ядерного топлива. Устройство для обнаружения дефектов на образующей поверхности цилиндрических изделий содержит последовательно установленные на транспортерах узел формирования столба изделия, узел линейного перемещения изделий, узел контроля образующих изделий и узел разбраковки изделий.
Изобретение относится к методам испытаний конструкционных материалов, преимущественно для прогнозирования ресурсоспособности сталей, работающих в зонах нейтронного облучения объектов атомной техники.
Наверх