Вакуумная установка для нанесения наноструктурированного покрытия из материала с эффектом памяти формы на поверхности детали

Изобретение относится к вакуумной установке для получения наноструктурированного покрытия из материала с эффектом памяти формы на поверхности детали. Вакуумная установка содержит раму с установленной на ней вакуумной камерой. Камера соединена с вакуумным насосом. Установка также содержит механизм закрепления детали, газопламенную горелку, механизм подачи порошкового материала в газопламенную горелку, технологический модуль для ионной очистки обрабатываемой детали, пирометр, два магнетрона с источником питания и источник для ионной имплантации металлов с блоком питания. Блок управления соединен с баллонами с газом. Механизм закрепления детали выполнен в виде трехкулачкового патрона, размещенного на установленном в вакуумной камере поворотном столе. Стол соединен с электродвигателем. Газопламенная горелка закреплена в оснащенном пирометром и лазерным сканером и обеспечивающем ее поворот 30-150 градусов в вертикальной плоскости относительно оси винта поворотном механизме. Поворотный механизм установлен в передаче винт-гайка, закрепленной в нижней части вакуумной камеры и связанной с электродвигателем. Технический результат заключается в обеспечении равномерности и точности нанесения покрытий на поверхности детали и повышении степени автоматизации процесса. 1 ил.

 

Изобретение относится к области машиностроения и металлургии, в частности к установкам для комбинированных способов нанесения покрытия из материалов с эффектом памяти формы на поверхности детали.

Аналогом изобретения является установка для получения наноструктурированных покрытий деталей с цилиндрической поверхностью с эффектом памяти формы (патент №2402628, МПК С23С 4/00, опубл. 27.10.2010, бюл. №30) содержащая раму, размещенные на раме механизмы закрепления и вращения детали и плазмотрон, установленный на механизме его продольного перемещения углом 46-50° к поверхности детали, также устройство снабжено механизмом подачи порошкового материала с эффектом памяти формы, пирометром для измерения температуры детали перед фронтом плазменной дуги и управляющим устройством, связанным с механизмами подачи порошкового материала и перемещения плазмотрона и пирометром, при этом установка содержит приспособление для поверхностно-пластического деформирования детали, установленное на механизме продольного перемещения плазмотрона, а также второй пирометр, установленный в зоне поверхностно-пластического деформирования, понижающий трансформатор для дополнительного нагрева поверхности детали и устройство для охлаждения поверхности детали.

Недостатком данной установки является низкое качество нанесения покрытия в виду неравномерности нанесения покрытия на деталь.

Прототипом изобретения является вакуумная установка для получения наноструктурированных покрытий из материала с эффектом памяти формы на поверхности детали (Патент №2502829, МПК С23С 14/56, опубл 27.12.2013, бюл. №36), содержащая раму с установленной на ней вакуумной камерой, соединенной с вакуумным насосом, механизм закрепления детали, газопламенную горелку для высокоскоростного газодинамического напыления, установленную под углом 45° к поверхности детали, механизм подачи порошкового материала с эффектом памяти формы в газопламенную горелку, пирометр для измерения температуры обрабатываемой детали, технологический модуль для ионной очистки обрабатываемой детали, приспособление для поверхностно-пластического деформирования детали для формирования наноструктурированного слоя, понижающий трансформатор для дополнительного нагрева поверхности детали, устройство для охлаждения поверхности детали для отрицательного интервала температур мартенситного превращения при поверхностно-пластическом деформировании и управляющее устройство, при этом дополнительно содержит два магнетрона и источник для ионной имплантации металлов, закрепленные в корпусе вакуумной камеры с возможностью направления на обрабатываемую деталь, при этом приспособление для поверхностно пластического деформирования выполнено в виде пресса с верхней неподвижной и нижней подвижной траверсами, расположенными в вакуумной камере, причем, на нижней подвижной траверсе установлены зажимной механизм закрепления детали и устройство для охлаждения поверхности детали, а газопламенная горелка жестко закреплена в корпусе вакуумной камеры.

Недостатком данной установки является низкое качество нанесения покрытия ввиду неравномерности покрытия на поверхности детали.

Задачей изобретения является усовершенствование вакуумной установки для получения наноструктурированных покрытий из материала с эффектом памяти формы на поверхности детали, позволяющее повысить качество нанесения покрытия и расширить функциональные возможности установки, а также сократить время технологического процесса.

Техническим результатом является обеспечение равномерности и точности нанесения покрытий на поверхности детали, а так же повышение степени автоматизации процесса.

Технический результат достигается тем, что вакуумная установка для получения наноструктурированных покрытий из материала с эффектом памяти формы на поверхности детали, содержит раму с установленной на ней вакуумной камерой, соединенной с вакуумным насосом, механизм закрепления детали, газопламенную горелку для высокоскоростного напыления с источником питания, механизм подачи порошкового материала с эффектом памяти формы в газопламенную горелку, технологический модуль для ионной очистки обрабатываемой детали, пирометр для измерения температуры обрабатываемой детали, два магнетрона с источником питания и источник для ионной имплантации металлов с блоком питания, закрепленные в корпусе вакуумной камеры с возможностью направления на обрабатываемую деталь, блок управления, сообщенный с баллонами с газом, при этом механизм закрепления детали выполнен в виде трехкулачкового патрона, размещенного на, дополнительно установленном в вакуумной камере, поворотном столе, проводимым в движение вокруг своей оси посредством сообщенного с ним через магнитную муфту электродвигателем, при этом газопламенная горелка для высокоскоростного газопламенного напыления закреплена в оснащенном пирометром и лазерным сканером и обеспечивающим ее поворот на угол от 30 до 150 градусов в вертикальной плоскости относительно оси винта, поворотном механизме, установленном в передаче винт-гайка, закрепленной в нижней части вакуумной камеры и сообщенной посредством магнитной муфты с электродвигателем.

Равномерность нанесения покрытия на поверхность детали обеспечивается путем одновременного нанесения покрытия по окружности и высоте детали, за счет вращения детали вокруг своей оси и перемещения газопламенной горелки вдоль вертикальной оси детали. При этом вращение детали вокруг своей оси, обусловлено закреплением детали в трехкулачковом патроне, размещенном на дополнительно установленном в вакуумной камере, поворотном столе, приводимом в движение вокруг своей оси посредством сообщенного с ним через магнитную муфту электродвигателем, а возможность перемещения газопламенной горелки вдоль вертикальной оси детали, обусловлена ее возвратно-поступательным движением вдоль оси винта передачи винт-гайка, закрепленной в нижней части вакуумной камеры и приводимой в движение посредством сообщенного с ней через магнитную муфту электродвигателем.

Размещение газопламенной горелки и лазерного сканера в поворотном механизме, установленном в передаче винт-гайка, закрепленной в нижней части вакуумной камеры обеспечивает поворот газопламенной горелки на угол от 30 до 150 градусов в вертикальной плоскости относительно оси винта, позволяя менять угол напыления в зависимости от геометрии детали и наносить наноструктурированное покрытие из материала с эффектом памяти формы на необходимый участок поверхности детали, например, только на рабочие части детали, а лазерный сканер, установленный в поворотном механизме, обеспечивает нанесение покрытия по заданной траектории.

Повышение степени автоматизации достигается за счет возможности автоматической смены плоскостей напыления обеспечиваемой поворотом детали вокруг своей оси, закрепленной в трехкулачковом патроне, размещенном на, дополнительно установленном в вакуумной камере, поворотном столе, приводимым в движение через магнитную муфту электродвигателем, а также за счет возможности корректировки блоком управления скоростей вращения поворотного стола и винта передачи винт-гайка задаваемых через магнитные муфты электродвигателями, на основании данных полученных с лазерного сканера, установленного совместно с газопламенной горелкой для высокоскоростного газопламенного напыления и пирометром на поворотном механизме.

Таким образом, совокупность приведенных конструктивных признаков обеспечивает достижение заявляемого технического результата.

На фиг. представлена вакуумная установка для нанесения наноструктурированного покрытия из материала с эффектом памяти формы на поверхности детали.

Вакуумная установка для получения наноструктурированных покрытий из материала с эффектом памяти формы на поверхности детали, содержит раму 17 с установленной на ней вакуумной камерой 3, соединенной с вакуумным насосом 18, газопламенную горелку 7 для высокоскоростного напыления с источником питания 8, механизм подачи порошкового материала с эффектом памяти формы в газопламенную горелку 7, состоящий из порошкового дозатора 13 и линии транспортировки 26, технологический модуль 19 для ионной очистки обрабатываемой детали 12, пирометр 23 для измерения температуры обрабатываемой детали 12, два магнетрона 2 с источником питания 5 и источник для ионной имплантации металлов 4 с блоком питания 6, закрепленные в корпусе вакуумной камеры 3 с возможностью направления на обрабатываемую деталь 12, блок управления 1, сообщенный с баллонами с газом 16. Поворотный стол 10, установленный в вакуумной камере 3, оснащен трехкулочковым патроном 20 для закрепления и вращения детали 12. К поворотному столу 10 с помощью магнитной муфты 14 подключен электродвигатель 21. Газопламенная горелка 7 для высокоскоростного газопламенного напыления закреплена в, оснащенном пирометром 23 и лазерным сканером 11 поворотном механизме 15. Поворотный механизм 15 обеспечивающий поворот газопламенной горелки 7 для высокоскоростного газопламенного напыления на угол от 30 до 150 градусов в вертикальной плоскости относительно оси винта 22, установлен в передаче винт-гайка, состоящей из винта 22 и гайки 9 и подключенной с помощью магнитной муфты 25 к электродвигателю 24.

Установка работает следующим образом: обрабатываемую деталь 12 устанавливают на поворотный стол 10, при помощи трехкулачкового патрона 20. С помощью вакуумного насоса 18 производят откачку воздуха из вакуумной камеры 3, расположенной на раме 17 до давления 6,5⋅10-3÷6,8⋅10-3 Па. Далее осуществляют заполнение посредством штуцера (на рисунке не показано) вакуумной камеры 3 аргоном до давления 0,1÷0,2 МПа. При помощи технологического модуля 19 производят ионную очистку обрабатываемой детали 12, после чего при помощи источника питания 8 и блока управления 1 производят включение газопламенной горелки 7 для высокоскоростного газопламенного напыления с одновременной подачей порошка с эффектом памяти формы по линии транспортировки 26 из порошкового дозатора 13 в газопламенную струю, получаемую при сгорании газа из баллонов с газом 16. Также включают при помощи источника питания 5 и блока питания 6 два магнетрона 2 для магнетронного напыления порошка с эффектом памяти формы и источник 4 для ионной имплантации поошка с эффектом памяти формы, расположенные на вакуумной камере 3. Одновременно включают электродвигатели 21 и 24, которые начинают вращать через магнитные муфты 14 и 25 поворотный стол 10 с трехкулачковым патроном 20 и винт 22 передачи винт-гайка, обеспечивая одновременное вращение детали 12 вокруг своей оси и перемещение в вертикальной плоскости газопламенной горелки 7 для высокоскоростного газопламенного напыления, пирометра 23 и лазерного сканера 11, установленных на поворотном механизме 15, закрепленном на гайке 9 передачи винт-гайка. Поворачиванием поворотного механизма 15 на угол от 30 до 150 градусов в вертикальной плоскости относительно оси винта 22 задают угол напыления порошка с эффектом памяти формы на деталь 12 газопламенной горелки 7 для высокоскоростного газопламенного напыления. Измерение температуры детали 12 в зоне обработки производят пирометром 23, установленном на поворотном механизме 15. Лазерный сканер 11, установленный на поворотном механизме 15 совместно с газопламенной горелкой 7 для высокоскоростного газопламенного напыления и пирометром 23, передает данные в блок управления 1. Блок управления 1 на основании данных полученных с лазерного сканера 11 осуществляет корректировку скоростей вращения поворотного стола 10 и винта 22 передачи винт-гайка задаваемых через магнитные муфты 14 и 25 электродвигателями 21 и 24.

Пример 1.

Обрабатываемую деталь 12 цилиндрической формы из стали 45 устанавливают на поворотный стол 10, при помощи трехкулачкового патрона 20. С помощью вакуумного насоса 18 производят откачку воздуха из вакуумной камеры 3, расположенной на раме 17 до давления 6,5⋅10-3 Па. Далее осуществляют заполнение посредством штуцера (на рисунке не показано) вакуумной камеры 3 аргоном до давления 0,1 МПа. При помощи технологического модуля 19 производят ионную очистку обрабатываемой детали 12, после чего при помощи источника питания 8 и блока управления 1 производят включение газопламенной горелки 7 для высокоскоростного газопламенного напыления с одновременной подачей порошка с эффектом памяти формы Ni45Ti50Cu5 по линии транспортировки 26 из порошкового дозатора 13 в газопламенную струю, получаемую при сгорании газа из баллонов с газом 16. Также включают при помощи источника питания 5 и блока питания 6 два магнетрона 2 для магнетронного напыления порошка с эффектом памяти формы и источник 4 для ионной имплантации порошка с эффектом памяти формы, расположенные на вакуумной камере 3. Одновременно включают электродвигатели 21 и 24, которые начинают вращать через магнитные муфты 14 и 25 поворотный стол 10 с трехкулачковым патроном 20 и винт 22 передачи винт-гайка, обеспечивая одновременное вращение детали 12 вокруг своей оси и перемещение в вертикальной плоскости газопламенной горелки 7 для высокоскоростного газопламенного напыления, пирометра 23 и лазерного сканера 11, установленных на поворотном механизме 15, закрепленном на гайке 9 передачи винт-гайка. Поворачиванием поворотного механизма 15 на угол 135 градусов в вертикальной плоскости относительно оси винта 22 задают угол 45 градусов напыления порошка с эффектом памяти формы к обрабатываемой поверхности детали 12 цилиндрической формы газопламенной горелкой 7 для высокоскоростного газопламенного напыления. Измерение температуры детали 12 в зоне обработки производят пирометром 23, установленном на поворотном механизме 15. Лазерный сканер 11, установленный на поворотном механизме 15 совместно с газопламенной горелкой 7 для высокоскоростного газопламенного напыления и пирометром 23, передает данные в блок управления 1. Блок управления 1 на основании данных полученных с лазерного сканера 11 осуществляет корректировку скоростей вращения поворотного стола 10 и винта 22 передачи винт-гайка задаваемых через магнитные муфты 14 и 25 электродвигателями 21 и 24.

Пример 2.

Обрабатываемую деталь 12 конической формы с углом наклона образующей к основанию 75 градусов из стали 45 устанавливают на поворотный стол 10, при помощи трехкулачкового патрона 20. С помощью вакуумного насоса 18 производят откачку воздуха из вакуумной камеры 3, расположенной на раме 17 до давления 6,7⋅10-3 Па. Далее осуществляют заполнение посредством штуцера (на рисунке не показано) вакуумной камеры 3 аргоном до давления 0,15 МПа. При помощи технологического модуля 19 производят ионную очистку обрабатываемой детали 12, после чего при помощи источника питания 8 и блока управления 1 производят включение газопламенной горелки 7 для высокоскоростного газопламенного напыления с одновременной подачей порошка с эффектом памяти формы Ni50Ti40Hf10 по линии транспортировки 26 из порошкового дозатора 13 в газопламенную струю, получаемую при сгорании газа из баллонов с газом 16. Также включают при помощи источника питания 5 и блока питания 6 два магнетрона 2 для магнетронного напыления порошка с эффектом памяти формы и источник 4 для ионной имплантации порошка с эффектом памяти формы, расположенных на вакуумной камере 3. Одновременно включают электродвигатели 21 и 24, которые начинают вращать через магнитные муфты 14 и 25 поворотный стол 10 с трехкулачковым патроном 20 и винт 22 передачи винт-гайка, обеспечивая одновременное вращение детали 12 вокруг своей оси и перемещение в вертикальной плоскости газопламенной горелки 7 для высокоскоростного газопламенного напыления, пирометра 23 и лазерного сканера 11, установленных на поворотном механизме 15, закрепленном на гайке 9 передачи винт-гайка. Поворачиванием поворотного механизма 15 на угол 150 градусов в вертикальной плоскости относительно оси винта 22 задают угол 45 градусов напыления порошка с эффектом памяти формы на деталь 12 конической формы с углом наклона образующей к основанию 75 градусов газопламенной горелкой 7 для высокоскоростного газопламенного напыления. Измерение температуры детали 12 в зоне обработки производится пирометром 23, установленном на поворотном механизме 15. Лазерный сканер 11, установленный на поворотном механизме 15 совместно с газопламенной горелкой 7 для высокоскоростного газопламенного напыления и пирометром 23, передает данные в блок управления 1. Блок управления 1 на основании данных полученных с лазерного сканера 11 осуществляет корректировку скоростей вращения поворотного стола 10 и винта 22 передачи винт-гайка задаваемых через магнитные муфты 14 и 25 электродвигателями 21 и 24.

Пример 3.

Обрабатываемую деталь 12 конической формы с углом наклона образующей к основанию 105 градусов из стали 45 устанавливают на поворотный стол 10, при помощи трехкулачкового патрона 20. С помощью вакуумного насоса 18 производят откачку воздуха из вакуумной камеры 3, расположенной на раме 17 до давления 6,8⋅10-3 Па. Далее осуществляют заполнение посредством штуцера (на рисунке не показано) вакуумной камеры 3 аргоном до давления 0,2 МПа. При помощи технологического модуля 19 производят ионную очистку обрабатываемой детали 12, после чего при помощи источника питания 8 и блока управления 1 производят включение газопламенной горелки 7 для высокоскоростного газопламенного напыления с одновременной подачей порошка с эффектом памяти формы Ni25Ti40Hf10Cu25 по линии транспортировки 26 из порошкового дозатора 13 в газопламенную струю, получаемую при сгорании газа из баллонов с газом 16. Также включают при помощи источника питания 5 и блока питания 6 два магнетрона 2 для магнетронного напыления порошка с эффектом памяти формы и источник 4 для ионной имплантации порошка с эффектом памяти формы, расположенных на вакуумной камере 3. Одновременно включают электродвигатели 21 и 24, которые начинают вращать через магнитные муфты 14 и 25 поворотный стол 10 с трехкулачковым патроном 20 и винт 22 передачи винт-гайка, обеспечивая одновременное вращение детали 12 вокруг своей оси и перемещение в вертикальной плоскости газопламенной горелки 7 для высокоскоростного газопламенного напыления, пирометра 23 и лазерного сканера 11, установленных на поворотном механизме 15, закрепленном на гайке 9 передачи винт-гайка. Поворачиванием поворотного механизма 15 на угол 30 градусов в вертикальной плоскости относительно оси винта 22 задается угол 45 градусов напыления порошка с эффектом памяти формы на деталь 12 конической формы с углом наклона образующей к основанию 105 градусов газопламенной горелки 7 для высокоскоростного газопламенного напыления. Измерение температуры детали 12 в зоне обработки производят пирометром 23, установленном на поворотном механизме 15. Лазерный сканер 11, установленный на поворотном механизме 15 совместно с газопламенной горелкой 7 для высокоскоростного газопламенного напыления и пирометром 23, передает данные в блок управления 1. Блок управления 1 на основании данных полученных с лазерного сканера 11 осуществляет корректировку скоростей вращения поворотного стола 10 и винта 22 передачи винт-гайка задаваемых через магнитные муфты 14 и 25 электродвигателями 21 и 24.

Вакуумная установка для получения наноструктурированных покрытий из материала с эффектом памяти формы на поверхности детали, содержащая раму с установленной на ней вакуумной камерой, соединенной с вакуумным насосом, механизм закрепления детали, газопламенную горелку для высокоскоростного напыления с источником питания, механизм подачи порошкового материала с эффектом памяти формы в газопламенную горелку, технологический модуль для ионной очистки обрабатываемой детали, пирометр для измерения температуры обрабатываемой детали, два магнетрона с источником питания и источник для ионной имплантации металлов с блоком питания, закрепленные в корпусе вакуумной камеры с возможностью направления на обрабатываемую деталь, блок управления, связанный с газовыми баллонами, отличающаяся тем, что механизм закрепления детали выполнен в виде трехкулачкового патрона, размещенного на дополнительно установленном в вакуумной камере поворотном столе, соединенном через магнитную муфту с электродвигателем, при этом упомянутая газопламенная горелка закреплена в оснащенном пирометром и лазерным сканером и обеспечивающем ее поворот на угол от 30 до 150 градусов в вертикальной плоскости относительно оси винта поворотном механизме, установленном в передаче винт-гайка, закрепленной в нижней части вакуумной камеры и соединенной посредством магнитной муфты с электродвигателем.



 

Похожие патенты:

Изобретение относится к области металловедения, а именно к химико-термической обработке металлических изделий, к созданию наноструктурированных материалов конструкционного назначения, к решению проблемы трения и износа, и может быть использовано для повышения долговечности деталей машин в любой отрасли промышленности.

Изобретение относится к способу модификации поверхности титана с получением структурированного пористого слоя, содержащего нано- и микропоры, и может быть использовано в медицинской технике при изготовлении обладающих биологической совместимостью эндопротезов и имплантатов для травматологии, ортопедии, пластической хирургии, зубных имплантатов, для подготовки поверхности титановых имплантатов под нанесение биоактивных покрытий, а также для изготовления носителей катализаторов и композитных материалов, находящих применение в различных областях техники.

Изобретение относится к области газотермических технологий и может быть использовано при нанесении порошковых покрытий методом низкоскоростного газопламенного напыления.

Изобретение относится к способу плазменного напыления износостойких порошковых покрытий на детали различных механизмов, используемых в машиностроении, металлургии, энергетике, авиации, судостроении, оборонной промышленности и других сферах производства.

Изобретение относится к формированию на медных электрических контактах покрытий на основе оксида олова и серебра, которые могут быть использованы в электротехнике.

Изобретение относится к формированию на медных электрических контактах покрытий на основе оксида кадмия и серебра, которые могут быть использованы в электротехнике.

Изобретение относится к формированию на стальных поверхностях покрытий на основе карбида титана, титана и алюминия, которые могут быть использованы в штамповочном производстве и других отраслях промышленности.

Изобретение относится к формированию на стальных поверхностях покрытий на основе диборида титана, титана и алюминия, которые могут быть использованы в штамповочном производстве и других отраслях промышленности.

Изобретение относится к формированию на стальных поверхностях покрытий на основе карбида титана и никеля, которые могут быть использованы в штамповочном производстве и других отраслях промышленности.

Изобретение относится к формированию на стальных поверхностях покрытий на основе карбида титана, никеля и алюминия, которые могут быть использованы в штамповочном производстве и других отраслях промышленности.

Изобретение относится к области получения высокопрочных, износостойких и экструдируемых полимерных нанокомпозитов на основе сверхвысокомолекулярного полиэтилена для трибоузлов, в том числе работающих в экстремальных условиях Крайнего Севера.

Изобретение относится к способу получения урокиназы, энтрапированной в коллоидный магнитный керамический нанокомпозитный материал, и может быть использовано в медицине для топической терапии тромботических состояний конечностей.

Изобретение относится к области получения композиционных материалов с применением нанотехнологии. Описан способ получения полиимидного композиционного материала, наполненного наноструктурированным карбидом кремния с модифицированной поверхностью, осуществляемый реакцией конденсации диангидридов ароматических поликарбоновых кислот и 4,4'-оксидианилина в токе инертного газа в среде полярного органического растворителя (выбранном из группы: N-метилпирролидон, NN-диметилацетамид) в присутствии модифицированного наноструктурированного карбида кремния, полученного из немодифицированного наноструктурированного карбида кремния, предварительно окисленного на воздухе при температуре от 700 до 1200°С в течение 5-20 минут и охлажденного до комнатной температуры в вакууме или токе инертного газа, суспендированного в сухом органическом растворителе (выбранном из группы: N-метилпирролидон, NN-диметилацетамид) под воздействием ультразвука с частотой 20 кГц в течение 20-40 минут, который в виде суспензии, содержащей 20-40 мас.% карбида кремния от веса получаемого композита при 80-100°С, перемешивается с 3-аминопропилтриэтоксисиланом, вводимым в количестве, соответствующем весовому соотношению силана к карбиду кремния, равному 1:(5-10), в течение 40-60 минут, после чего суспендированный модифицированный карбид кремния отфильтровывают и перемешивается с 4,4'-оксидианилином в сухом органическом растворителе (выбранном из группы: N-метилпирролидон, NN-диметилацетамид) под воздействием ультразвука с частотой 20 кГц в токе инертного газа в течение 20-40 минут, охлаждается до 5-10°С, к образовавшейся реакционной массе порционно при перемешивании добавляется эквимолярное по отношению к 4,4'-оксидианилину количество диангидрида ароматической поликарбоновой кислоты, и образовавшаяся реакционная масса подвергается воздействию ультразвука с частотой 20 кГц в течение 15-25 минут, затем перемешивается при 20-25°С в течение 5-9 часов, затем образовавшееся полимерное соединение помещается в термостойкую емкость и сушится при ступенчатом нагреве по следующей схеме: от 50 до 65°С в течение 2-3 часов, от 90 до 115°С в течение 3-4 часов, от 150 до 250°С в течение 2-3 часов, от 280 до 300°С в течение 0,5-1 часов, с последующим вакуумным охлаждением или охлаждением в токе инертного газа.
Изобретение может быть использовано в электронике. Германат редкоземельных элементов состава Ca2La8(1-х)Eu8хGe6O26, где 0,05≤х≤0,15, в наноаморфном состоянии используют в качестве люминофора белого цвета свечения.

Изобретение относится к противообледенительному составу для различных поверхностей, таких как асфальт, бетон, металл, сплав, стекло, ситалл, керамика. Противообледенительный состав включает, мас.

Изобретение относится к установке для получения наноструктурированных покрытий из материалов с эффектом памяти формы на поверхности детали. Установка выполнена с возможностью достижения в вакуумной камере давления 2÷4 бар.
Изобретение относится в области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул сухого экстракта босвелии характеризуется тем, что сухой экстракт босвелии добавляют в суспензию альгината натрия в толуоле в присутствии 0,01 г сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты в качестве поверхностно-активного вещества при перемешивании 900 об/мин, далее приливают 6 мл метиленхлорида, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро : оболочка составляет 1:1, 1:2 или 1:3.

Изобретение может быть использовано для покрытия металлических поверхностей в автомобилестроении, строительстве, при изготовлении электротехнических приборов и бытовой техники.
Изобретение может быть использовано в физико-химических и биологических исследованиях. Сначала готовят водную суспензию наноалмазов со средним размером полученных агрегатов частиц не более 125 нм и содержанием дисперсной фазы от 0,15 до 0,4 мг.

Изобретение относится к промышленности огнеупорных материалов и может быть использовано при изготовлении изделий из динасового жаростойкого бетона. Технический результат - повышение термической стойкости и водостойкости изделий из динасового жаростойкого бетона.

Способ создания в теле листового материала скрытого изображения из множества пар объемных наноструктур для защиты от подделки ценных бумаг и идентификационных документов несколькими публичными признаками. Способ осуществляют путем воздействия на заданные точки поверхности листового материала из слоя металла между двумя слоями пластика, расположенного на слое микролинз в виде стеклянных микрошариков, нанесенных на пластиковую подложку и частично погруженных в слой люминофора импульсами лазерного излучения надпороговой мощности. В результате в листовом материале в пределах лазерного пятна возникает огромное давление, вытесняющее составляющие лазерный луч световые волны на периферию лазерного пятна Эти волны проникают вовнутрь листового материала, сплавляют в пределах лазерного пятна микролинзы с частицами металла и люминофора, пронизывают пластиковую подложку, образуя в ней каналы, и под действием огромного давления отдачи от микролинз, достигающего 100000 атм, и высокой температуры порядка 3000°С-4000°С образуют в примыкающем к слою металла пластике точки скрытого изображения из пар объемных наноструктур и гряд нановискеров между ними. Фактически пары объемных наноструктур и гряды нановискеров образуются в результате высокоскоростной кристаллизации сплава из металла, стекла, люминофора и пластика. В результате кристаллизации на лицевой поверхности листового материала образуется изображение из точек, являющихся совокупностью кристаллов, а расположенные между ними гряды нановискеров представляют собой эквивалент дифракционных решеток. При повороте листового материала относительно источника света происходит его дисперсия на грядах нановискеров, в результате чего подвергшийся дисперсии белый свет окрашивает кристалл в различные цвета, создавая на лицевой поверхности листового материала цветное переливающееся изображение. Предлагаемый способ обеспечивает создание еще двух публичных признаков для защиты этого материала от подделки, обеспечивая образование на оборотной стороне листового материала черно-белого изображения из каналов в пластиковой подложке и оригинального цветного изображения внутри листового материала, видимого в проходящем свете. Предложенные защитные признаки создаются по предлагаемому способу в тонкой пленке, благодаря чему этим способом можно защищать от подделки как ценные бумаги, так и идентификационные документы. 5 з.п. ф-лы, 4 ил.
Наверх