Способ получения гидрированного воска

Изобретение относится к способу получения гидрированного воска, который включает в себя стадии: (a) обеспечение наличия углеводородного сырья, которое содержит больше чем 4 мас.% углеводородов, выкипающих в диапазоне от 550 до 800°C; (b) гидроочистки углеводородного сырья с использованием катализатора гидроочистки в присутствии водородсодержащего газа в условиях гидроочистки с получением продукта гидроочистки; (c) гидрокрекинг по меньшей мере части продукта гидроочистки, полученного на стадии (b), с использованием катализатора гидрокрекинга в присутствии водородсодержащего газа в условиях гидрокрекинга с получением продукта гидрокрекинга, причем катализатор гидрокрекинга содержит цеолитный компонент, который присутствует в количестве по меньшей мере 14 мас.%, в расчете на общую массу катализатора гидрокрекинга, и объемное отношение катализатора гидроочистки, используемого на стадии (b), и катализатора гидрокрекинга составляет больше чем 1; и (d) извлечения гидрированного воска из продукта гидрокрекинга, полученного на стадии (c). Целью настоящего изобретения является разработка способа, в котором при заданном качестве сырья и уровне конверсии получается повышенное соотношение между тяжелым гидрированным воском и легким гидрированным воском. 14 з.п. ф-лы.

 

Область техники, к которой относится изобретение

Настоящее изобретение относится к способу получения гидрированного воска. Уровень техники

Гидрированный воск представляет собой парафиновую фракцию с температурой кипения обычно в диапазоне от 340 до 560°С, которая может быть получена в реакторе гидрокрекинга. Гидрированный воск может быть использован, например, в производстве базовых смазочных масел и в качестве сырья для получения низших олефинов. Обычно гидрированный воск получают, подвергая нефтезаводскую дистилляционную фракцию гидроочистке и последующему гидрокрекингу на соответствующих стадиях.

В документе ЕР 0 697 455 А2 описан способ получения гидрированного воска, в котором смесь дистиллята однократного испарения и гидрированного деметаллизированного масла деасфальтизации подвергают гидрокрекингу в многоярусном слое традиционного катализатора гидрокрекинга первой стадии (NiMoP на оксиде алюминия) сверху специализированного второго катализатора гидрокрекинга (NiW на аморфном алюмосиликате). Полученный таким образом гидрированный воск может быть использован в качестве сырья в реакторе крекинга с водяным паром для получения этилена и пропилена или в качестве сырья для установок депарафинизации или гидрогенизационной обработки для получения базовых смазочных масел.

Обычно при повышенной степени превращения в реакторе гидрокрекинга улучшается качество гидрированного воска в качестве сырья для реактора крекинга с водяным паром или в качестве сырья для установки базового масла. Однако повышенная степень превращения также означает снижение выхода гидрированного воска в реакторе гидрокрекинга.

Недостатком известных способов получения гидрированного воска является то, что с повышением степени превращения значительно снижается соотношение между тяжелым гидрированным воском и легким гидрированным воском, что, в свою очередь, значительно снижает соотношение между тяжелыми базовыми смазочными маслами и легкими базовыми смазочными маслами.

При постоянном уровне конверсии более тяжелое сырье в реакторе крекинга будет превращаться в более тяжелый гидрированный воск. Однако с целью поддержания характеристик гидрированного воска, полученного в реакторе гидрокрекинга из более тяжелого сырья, необходимо повышать уровень конверсии что, в свою очередь, уменьшает соотношение между тяжелым гидрированным воском и легким гидрированным воском.

Целью настоящего изобретения является разработка способа, в котором при заданном качестве сырья и уровне конверсии получается повышенное соотношение между тяжелым гидрированным воском и легким гидрированным воском.

Раскрытие изобретения

Соответственно, в настоящем изобретении предложен способ получения гидрированного воска, который включает стадии:

(a) получение углеводородного сырья, которое содержит больше, чем 4 масс. % углеводородов, выкипающих в диапазоне от 550 до 800°С;

(b) гидроочистка углеводородного сырья с использованием катализатора гидроочистки в присутствии водородсодержащего газа в условиях гидроочистки, чтобы получить продукт гидроочистки;

(c) гидрокрекинг, по меньшей мере, части продукта гидроочистки, полученного на стадии (b), под действием катализатора гидрокрекинга в присутствии водородсодержащего газа в условиях гидрокрекинга, чтобы получить продукт гидрокрекинга, причем катализатор гидрокрекинга содержит цеолитный компонент, который присутствует в количестве, по меньшей мере, 14 масс. %, в расчете на общую массу катализатора гидрокрекинга, и где объемное отношение катализатора гидроочистки, используемого на стадии (b), и катализатора гидрокрекинга составляет больше, чем 1; и

(d) извлечение гидрированного воска из продукта гидрокрекинга, полученного на стадии (с).

В соответствии с настоящим изобретением может быть получено желательное более высокое соотношение между С тяжелым гидрированным воском и легким гидрированным воском по сравнению с традиционными способами.

Осуществление изобретения

Углеводородное сырье, полученное на стадии (а), предпочтительно содержит больше, чем 8 масс. % углеводородов, выкипающих в диапазоне от 550 до 800°С. Более предпочтительно, углеводородное сырье содержит между 8 и 30 масс. % углеводородов, выкипающих в диапазоне от 550 до 800°С. В углеводородном сырье, полученном на стадии (а), отношение фракции углеводородов, выкипающих в диапазоне от 370-543°С, к фракции углеводородов, выкипающих в диапазоне от 550 до 800°С, предпочтительно меньше, чем 25. Углеводородное сырье, используемое в способе настоящего изобретения, может быть или фракциями тяжелого газойля, полученными при атмосферной дистилляции сырой нефти или дистиллятными фракциями однократного испарения, полученными при вакуумной флеш-дистилляции или вакуумной дистилляции остатка атмосферной перегонки углеводородного масла. Для целей настоящего изобретения не требуется определенное использование вполне конкретных дистиллятных фракций (таких, которые получены при вакуумной дистилляции) и поэтому предпочтительно, чтобы дистиллятные фракции были получены с помощью менее дорогостоящей вакуумной флеш-дистилляции остатка атмосферной перегонки углеводородного масла.

По меньшей мере, часть углеводородного сырья, полученного на стадии (а), может быть смесью, полученной путем смешения, по меньшей мере, одной дистиллятной фракции, предпочтительно вакуумной дистиллятной фракции, и масла деасфальтизации (DAO). Масло DAO, которое может быть использовано, удобно получать путем деасфальтизации остаточного углеводородного масла, предпочтительно вакуумного остатка. Деасфальтизация может быть осуществлена любым традиционным способом. Хорошо известным и подходящим способом деасфальтизации является деасфальтизация растворителем, которая включает обработку остаточного углеводородного масла экстрагирующим растворителем в режиме противотока. Обычно экстрагирующим растворителем является легкий углеводородный растворитель, содержащий парафиновые соединения, имеющие от 3 до 8 атомов углерода, такие как пропан, бутан, изобутан, пентан, изопентан, гексан и смеси из двух или более указанных углеводородов. Предпочтительными парафиновыми углеводородами являются те, которые имеют от 3 до 5 атомов углерода, причем бутан, пентан и их смеси являются наиболее предпочтительными. Деасфальтизирующая обработка растворителем удобно осуществляется в контактном аппарате с вращающимся диском или в колонне с тарелками, причем сырье - остаточное углеводородное масло поступает сверху, а экстрагирующий растворитель поступает снизу. Более легкие углеводороды, присутствующие в остаточном углеводородном масле, растворяются в экстрагирующем растворителе и выводятся сверху аппарата. Их указанной верхней фракции получают DAO после рекуперации экстрагирующего растворителя. Асфальтены, которые не растворимы в экстрагирующем растворителе, выводятся внизу аппарата. Условия, при которых протекает деасфальтизация, известны из уровня техники. Целесообразно деасфальтизацию проводят при отношении общей массы экстрагирующего растворителя к остаточному углеводородному маслу 1,5-8 по массе, давлении 1-50 бар и температуре 160-230°С.

Масло деасфальтизации может быть получено путем деасфальтизации дистиллятной фракции, предпочтительно вакуумной дистиллятной фракции, содержащей углеводороды, которые имеют температуру кипения в диапазоне от 550 до 800°С.По меньшей мере, часть масла деасфальтизации может быть произведена в установке коксования, в которой перерабатывается сырье, содержащее углеводороды, выкипающие в диапазоне 370-543°С.

На стадии (b) углеводородное сырье подвергается гидроочистке с помощью катализатора гидроочистки в присутствии водородсодержащего газа в условиях гидроочистки, чтобы получить продукт гидроочистки.

На стадии (с), по меньшей мере, часть продукта гидроочистки, полученного на стадии (b), подвергается гидрокрекингу на катализаторе гидрокрекинга в присутствии водородсодержащего газа в условиях гидрокрекинга, чтобы получить продукт гидрокрекинга, причем катализатор гидрокрекинга содержит цеолитный компонент, который присутствует в количестве, по меньшей мере, 14 масс. %, предпочтительно в диапазоне от 18 до 30 масс. %, в расчете на общую массу катализатора гидрокрекинга, и объемное отношение катализатора гидроочистки, который используется на стадии (b), и катализатора гидрокрекинга составляет больше, чем 1.

Предпочтительно, объемное отношение катализатора гидроочистки, который используется на стадии (b), и катализатора гидрокрекинга составляет больше, чем 1,5, более предпочтительно, в диапазоне от 2 до 4.

Цеолитный компонент предпочтительно содержит цеолит Y. Предпочтительно, цеолит имеет отношение Si/Al в диапазоне от 8 до 50.

Целесообразно, чтобы катализатор гидрокрекинга также содержал аморфный алюмосиликат в количестве меньше, чем 50 масс. %, предпочтительно меньше, чем 45 масс. %, и более предпочтительно в диапазоне от 20-40 масс. %, в расчете на общую массу катализатора гидрокрекинга.

В контексте настоящего изобретения количество цеолитного компонента и аморфного алюмосиликата определяют на основе общей массы свежего катализатора гидрокрекинга в оксидном состоянии.

Типичными примерами катализатора гидрокрекинга являются NiW/цеолит и NiW/цеолит/алюмосиликат. Кроме того, катализатор гидрокрекинга может содержать промотор в форме фосфора (Р).

Подходящие условия гидрокрекинга на стадии (с) включают температуру в диапазоне от 350-460°С, предпочтительно в диапазоне от 370-420°С; давление в диапазоне от 80-240 бар, предпочтительно в диапазоне от 150 до 210 бар; и часовую массовую скорость подачи сырья в диапазоне от 0,4 до 7 ч-1, предпочтительно в диапазоне от 2 до 5 ч1.

Для цели настоящего изобретения способ гидрокрекинга может быть одностадийным или многостадийным процессом. В случае одностадийного процесса удобно может быть использован многоярусный слой катализатора первой стадии гидрокрекинга/гидродеазотирования сверху катализатора конверсии. Особенно подходящим катализатором первой стадии гидрокрекинга/гидродеазотирования является NiMo/оксид алюминия и СоМо/оксид алюминия, необязательно промотированный фосфором и/или фтором.

Катализатор конверсии гидрокрекинга представляет собой катализатор гидрокрекинга, который содержит цеолитный компонент, который присутствует в количестве, по меньшей мере, 14 масс. %, как описано выше.

Предпочтительно, весь продукт гидроочистки, полученный на стадии (b), подвергается гидрокрекингу на стадии (с).

Целесообразно, по меньшей мере, часть продукта гидрокрекинга, полученного на стадии (с), рециркулировать на стадию (Ъ).

Согласно настоящему изобретению гидрированный воск является весьма полезным в качестве сырья для термического крекинга с водяным паром с целью получения низших олефинов.

Термический крекинг с водяным паром является известным способом получения низших олефинов, особенно этилена и, в несколько меньшей степени, пропилена. Этот процесс является сильно эндотермическим и, по существу, включает нагревание нефтяного углеводородного сырья до достаточно высокой температуры, для осуществления процесса крекинга, с последующим быстрым охлаждением потока, выходящего из реактора, и фракционирования этого потока с получением различных продуктов. Реактор крекинга с водяным паром, который также обычно называют «этиленовая установка крекинга», обычно состоит из горячей секции и холодной секции. Горячая секция включает в себя крекинг-печь, секцию охлаждения и первичную фракционирующую колонну для разделения выходящего потока на крекированный остаток, подовое масло, крекированный газойль и крекированный газ. Пар вводится в крекинг-печь для разбавления сырья. Это благоприятно сказывается на окончательном выходе олефинов, и в то же время добавка пара также подавляет осаждение кокса в крекинг-печи. В холодной секции крекированный газ дополнительно разделяется на различные конечные продукты, среди которых находятся чистый этилен и пропилен. Обычно, указанное разделение достигается путем первоначального сжатия крекированного газа из первичной фракционирующей колонны до давления приблизительно 30-40 бар, с последующим охлаждением сжатого газа до температуры ниже -100°С, чтобы обеспечить разделение на различные чистые конечные продукты. Кроме того, происходит удаление таких газов, как диоксид углерода и сероводород, в холодной секции реактора крекинга с водяным паром. В связи с сильным эндотермическим эффектом процесса крекинга с водяным паром весьма важным фактором является соответствующая и эффективная рекуперация тепла, чтобы процесс стал экономически жизнеспособным.

Согласно настоящему изобретению падрированный воск является весьма полезным в качестве сырья для получения базовых смазочных масел.

Поэтому гидрированный воск, извлеченный на стадии (d), целесообразно обрабатывать на стадии депарафинизации. Предпочтительно, гадрированный воск, извлеченный на стадии (d), обрабатывается на стадии депарафинизации, и полученный таким образом депарафинизированный продукт обрабатывается на стадии гидроочистки. Стадия депарафинизации может быть осуществлена как стадия депарафинизации растворителем или как каталитическая депарафинизация. Предпочтительно стадия депарафинизации является стадией каталитической депарафинизации. Поэтому в конкретном выгодном варианте осуществления настоящего изобретения гидрированный воск, извлеченный на стадии (d), обрабатывается на стадии каталитической депарафинизации, и полученный таким образом депарафинизированный продукт направляется на стадию гидроочистки.

Гидрированный воск, извлеченный на стадии (d), имеет высокий индекс вязкости (ИВ), что обеспечивает получение базовых смазочных масел с высоким ИВ.

В настоящем изобретении термин каталитическая депарафинизация означает процесс снижения температуры потери текучести продуктов базового смазочного масла путем селективного превращения компонентов нефтяного сырья, которые приводят к высокой температуре потери текучести, в продукты, которые не приводят к высокой температуре потери текучести. Продукты, которые приводят к высокой температуре потери текучести, представляют собой соединения, имеющие высокую температуру плавления. Такие соединения называются восками. Воскообразные соединения включают, например, нормальные парафины с высокой температурой плавления, изо-парафины и моноциклические соединения. Предпочтительно температура потери текучести снижается, по меньшей мере, на 10°С и более предпочтительно, по меньшей мере, на 20°С.Таким образом, углеводородные масла, которые используются в качестве сырья в способе согласно настоящему изобретению, могут содержать воскообразные соединения, которые приводят к нежелательно высокой температуре потери текучести. Небольшие количества этих соединений могут существенно повлиять на температуру потери текучести. Целесообразно, сырье может содержать приблизительно между 1% и до 100% указанных воскообразных соединений.

На стадии каталитической депарафинизации согласно изобретению гидрированный воск контактирует в условиях каталитической депарафинизации с каталитической композицией, которая содержит металлосиликатные кристаллиты, связующий агент и гидрирующий компонент.

Условия каталитической депарафинизации известны из уровня техники и обычно включают температуру эксплуатации в диапазоне от 200 до 500°С, удобно от 250 до 400°С, давление водорода в диапазоне от 10 до 200 бар, удобно от 15 до 100 бар, более удобно от 15 до 65 бар, часовую массовую скорость подачи сырья в диапазоне от 0,1 до 10 ч-1, удобно от 0,2 до 5 ч-1, более удобно от 0,5 до 3 ч-1 и отношение водород/масло в диапазоне от 100 до 2000 литров водорода на литр масла. В применяемом катализаторе депарафинизации весовое отношение металлосиликатных кристаллитов к связующему агенту предпочтительно находится между 5:95 и 35:65. Предпочтительными катализаторами депарафинизации, которые применяются в соответствии с настоящим изобретением, были описаны в патенте США №6,576,120, который включен в изобретение как ссылка.

Депарафинизированный продукт, полученный на стадии каталитической депарафинизации согласно изобретению, может обрабатываться на стадии гидроочистки. Гидроочистка известна из уровня техники, причем примеры подходящих стадий гидроочистки раскрыты, например, в патенте США №А-5139647, в документах WO-A-9201657 и WO-A-9201769. Обычно гидроочистка заключается в контактировании углеводородного сырья, согласно изобретению сырья, которое содержит депарафинизированное базовое смазочное масло, с катализатором гидрогенизации при относительно мягких условиях, чтобы насытить, по меньшей мере, часть ароматических соединений, еще присутствующих в депарафинизированном базовом масле. Подходящими катализаторами являются те, которые обычно применяются с указанной целью, причем предпочтительными вариантами являются катализаторы на основе благородных металлов, например, такие которые содержат Pt и/или Pd, нанесенные на аморфном алюмосиликатном носителе, или содержащие Pt на алюминийоксидном носителе. Обычно условия гидроочистки включают температуру эксплуатации до 350°С и предпочтительно в диапазоне от 150 до 300°С, рабочее давление в диапазоне от 10 до 200 бар и часовую массовую скорость подачи сырья в диапазоне от 0,5 до 7,5 ч-1.

Поток, выходящий из процесса каталитической депарафинизации или необязательно поток, выходящий из установки гидроочистки, используемой последовательно, разделяется на газообразную фракцию и жидкую фракцию. Указанное разделение или фракционирование может быть осуществлено традиционными методами, такими как дистилляция при атмосферном или пониженном давлении. Из указанных методов, наиболее удобно использовать дистилляцию при пониженном давлении, в том числе однократное испарение в вакууме и вакуумная дистилляция. Точку (точки) отбора дистиллятной фракции (фракций) выбирают таким образом, чтобы каждый извлеченный дистиллятный продукт имел заданные свойства для предполагаемого применения фракции.

1. Способ получения гидрированного воска, который включает в себя стадии:

(a) обеспечение наличия углеводородного сырья, которое содержит больше чем 4 мас.% углеводородов, выкипающих в диапазоне от 550 до 800°C;

(b) гидроочистки углеводородного сырья с использованием катализатора гидроочистки в присутствии водородсодержащего газа в условиях гидроочистки с получением продукта гидроочистки;

(c) гидрокрекинг по меньшей мере части продукта гидроочистки, полученного на стадии (b), с использованием катализатора гидрокрекинга в присутствии водородсодержащего газа в условиях гидрокрекинга с получением продукта гидрокрекинга, причем катализатор гидрокрекинга содержит цеолитный компонент, который присутствует в количестве по меньшей мере 14 мас.%, в расчете на общую массу катализатора гидрокрекинга, и объемное отношение катализатора гидроочистки, используемого на стадии (b), и катализатора гидрокрекинга составляет больше чем 1; и

(d) извлечения гидрированного воска из продукта гидрокрекинга, полученного на стадии (c).

2. Способ по п. 1, в котором углеводородное сырье на стадии (a) содержит больше чем 8 мас.% углеводородов, выкипающих в диапазоне от 550 до 800°C.

3. Способ по п. 1 или 2, в котором углеводородное сырье на стадии (a) содержит между 8 и 30 мас.% углеводородов, выкипающих в диапазоне от 560 до 800°C.

4. Способ по п. 1 или 2, в котором в углеводородном сырье на стадии (a) отношение фракции углеводородов, выкипающих в диапазоне от 370 до 543°C, к фракции углеводородов, выкипающих в диапазоне от 550 до 800°C, составляет меньше, чем 25.

5. Способ по п. 1 или 2, в котором цеолитный компонент в катализаторе гидрокрекинга присутствует в количестве в диапазоне от 18 до 30 мас.% в расчете на общую массу катализатора гидрокрекинга.

6. Способ по п.5, в котором цеолитный компонент содержит цеолит Y.

7. Способ по п. 6, в котором цеолит имеет отношение Si/Al в диапазоне от 8 до 50.

8. Способ по п.1 или 2, в котором катализатор гидрокрекинга дополнительно содержит аморфный алюмосиликат в количестве меньше чем 50 мас.%, в расчете на общую массу катализатора гидрокрекинга.

9. Способ по п.1 или 2, в котором условия гидроочистки на стадии (b) включают температуру в диапазоне от 250 до 480°C, давление в диапазоне от 30 до 250 бар и часовую массовую скорость подачи сырья в диапазоне от 0,2 до 10 ч-1.

10. Способ по п.1 или 2, в котором условия гидрокрекинга на стадии (c) включают температуру в диапазоне от 350 до 460°C, давление в диапазоне от 80 до 240 бар и часовую массовую скорость подачи сырья в диапазоне от 0,4 до 7 ч-1.

11. Способ по п.1 или 2, в котором весь продукт гидроочистки, полученный на стадии (b), подвергают гидрокрекингу на стадии (c).

12. Способ по п.1 или 2, в котором по меньшей мере часть продукта гидрокрекинга, полученного на стадии (c), рециркулируют на стадию (b).

13. Способ по п.1 или 2, в котором катализатор гидроочистки, используемый на стадии (b), содержит один или несколько металлов из групп VB, VIB и/или VIII периодической системы элементов, на твёрдом носителе.

14. Способ по п.1 или 2, в котором катализатор гидрокрекинга, используемый на стадии (с), содержит один или несколько металлов из групп VIB и/или VIII периодической системы элементов.

15. Способ по п.1 или 2, в котором гидрированный воск, извлеченный на стадии (d), пригоден для обработки на стадии каталитической депарафинизации и стадии гидроочистки.



 

Похожие патенты:

Настоящее изобретение относится к способу получения фракции газойля, фракции тяжелого дистиллята и фракции остаточного базового масла из полученного в синтезе Фишера-Тропша сырья.

Изобретение относится к способу обработки или очистки воска для получения очищенного воска. Промышленные воски, в частности парафиновые воски, используются для различных применений, таких как свечи, пищевые покрытия, клейкие материалы, гидрофобизирующие средства для древесины, резин и пр.

Изобретение предназначено для лакокрасочной, резинотехнической, электротехнической, пищевой промышленности, а также может быть использовано при изготовлении адсорбентов.

Изобретение относится к способу улучшения свойств дистиллятного исходного сырья, характеризующегося концентрацией азота, концентрацией полиароматических соединений и цетановым индексом.

Изобретение относится к способам получения компонентов для буровых растворов. Технический результат – высокая пожаробезопасность и улучшенные низкотемпературные свойства компонента бурового раствора, а именно температура вспышки не ниже 80°C, температура помутнения порядка минус 68°C, предельная температура фильтруемости порядка минус 78°C и температура застывания порядка минус 79°C.

Изобретение относится к способу переработки сырой нефти, который включает применение определенной установки гидроконверсии. В частности, изобретение относится к способу, который позволяет оптимизировать переработку нефтяного сырья на нефтеперерабатывающем предприятии, оборудованном установкой коксования.

Настоящее изобретение относится к способу гидропереработки газойля, включающему: (а) приведение газойля в контакт с водородом и, необязательно, первым разбавителем для получения первого жидкого питающего потока, где водород растворяют в первом жидком питающем потоке; (b) приведение первого жидкого питающего потока в контакт с первым катализатором в заполненной жидкостью реакционной зоне гидрообработки для получения первого выходящего потока; (c) необязательно возврат части первого выходящего потока, которая используется в качестве всего первого разбавителя или его части в стадии (a); (d) в зоне сепарации, сепарация растворенных газов из части первого выходящего потока, не возвращенной на стадию (c), с получением продукта сепарации; (e) приведение продукта сепарации в контакт с водородом и, необязательно, вторым разбавителем с образованием второго жидкого питающего потока, где водород растворен во втором жидком питающем потоке; (f) приведение второго жидкого питающего потока в контакт со вторым катализатором в заполненной жидкостью реакционной зоне гидрокрекинга с получением второго выходящего потока; (g) необязательно возврат части второго выходящего потока, которая используется в качестве всего второго разбавителя или его части в стадии (е); и (h) в зоне перегонки, находящейся выше или ниже по технологическому потоку относительно реакционной зоны гидрокрекинга, разделение одного или нескольких продуктов перегонки и тяжелой нефтяной фракции из (1) невозвращаемой части первого выходящего потока, если зона перегонки находится выше по технологическому потоку относительно реакционной зоны гидрокрекинга, или (2) невозвращаемой части второго выходящего потока, если зона перегонки находится ниже по технологическому потоку относительно реакционной зоны гидрокрекинга.

Изобретение относится к процессам нефтеперерабатывающей промышленности, в частности к способам переработки нефти с целью получения керосина и дизельного топлива.

Изобретение относится к способу деоксигенирования смолы таллового масла, где смола таллового масла, которая содержит некоторую долю жирных и смоляных кислот и/или их производные, нагревается до температуры, достаточной для превращения ее в жидкость; указанная жидкость вводится в слой катализатора (7), для приведения ее в контакт с водородом и одним или несколькими катализаторами (2, 3) в указанном слое катализатора, где указанные катализаторы включают катализатор (2) деоксигенирования NiMo; поступающие материалы каталитически деоксигенируются с помощью водорода; и газообразный эффлюент из слоя охлаждается, с получением жидкого продукта (10), который содержит алифатические и ароматические углеводороды, и которые по существу полностью деоксигенируются.

Настоящее изобретение относится к способу получения фракции газойля, фракции тяжелого дистиллята и фракции остаточного базового масла из полученного в синтезе Фишера-Тропша сырья.

Изобретение относится к способам гидрообработки углеводородного сырья, где способ, в частности, включает (a) приведение в контакт углеводородного сырья с водородом и первым разбавителем для образования первого жидкого сырьевого потока, при этом водород растворяют в указанном первом жидком сырьевом потоке и при этом углеводородное сырье представляет собой легкий рецикловый газойль (ЛРГ) с содержанием полиароматических соединений более 25 мас.%, содержанием азота более 300 частей на миллион по массе (wppm) и плотностью более 890 кг/м3 при 15,6°С при 15,6°С; (b) приведение в контакт смеси первого жидкого сырьевого потока с первым катализатором в первой зоне полностью жидкофазной реакции для получения первого исходящего потока; (c) осуществление рециркуляции части первого исходящего потока для применения в качестве всего или части первого разбавителя на стадии (a); (d) отделение аммиака и, необязательно, других газов из нерециркулируемой части первого исходящего потока для получения второго исходящего потока с содержанием азота менее 100 wppm; (e) приведение в контакт второго исходящего потока с водородом и вторым разбавителем для получения второго жидкого сырьевого потока, при этом водород растворяют в указанном втором жидком сырьевом потоке; (f) приведение в контакт второго жидкого сырьевого потока со вторым катализатором во второй зоне полностью жидкофазной реакции для получения третьего исходящего потока с плотностью менее 865 кг/м3 при 15,6°С и содержанием полиароматических соединений менее 11 мас.%; (g) осуществление рециркуляции части третьего исходящего потока для применения в качестве всего или части второго разбавителя на стадии (e); и (h) отбор нерециркулируемой части третьего исходящего потока в качестве потока продукта, причем первый катализатор представляет собой катализатор гидрирования и второй катализатор представляет собой катализатор размыкания циклов.

Изобретение относится к способу получения дизельного топлива из потока углеводородов, включающему: подачу потока углеводородов в реактор гидроочистки; гидроочистку указанного потока углеводородов в присутствии потока водорода и катализатора предварительной очистки с получением предварительно очищенного выходящего потока; разделение указанного предварительно очищенного выходящего потока на парообразный предварительно очищенный поток и жидкий предварительно очищенный поток; осуществление гидрокрекинга указанного жидкого предварительно очищенного потока в присутствии катализатора гидрокрекинга и водорода с получением выходящего потока гидрокрекинга; смешивание указанного парообразного предварительно очищенного потока со всем указанным выходящим потоком гидрокрекинга с получением смешанного выходящего потока гидрокрекинга; фракционирование по меньшей мере части указанного смешанного выходящего потока гидрокрекинга с получением потока дизельного топлива; и гидроочистку указанного потока дизельного топлива в присутствии потока водорода гидроочистки и катализатора гидроочистки с получением выходящего потока гидроочистки.
Изобретение относится к способу регенерации использованного катализатора гидроочистки, содержащего, по меньшей мере, 8% вес. кокса и один или несколько неблагородных металлов VIII группы и/или VIb группы, включающему стадии: (i) удаление кокса с использованного катализатора гидроочистки; (ii) обработка катализатора, полученного на стадии (i), водным раствором глюконовой кислоты, содержащим от 2 до 60% вес.

Изобретение относится к процессам получения светлых нефтеполимерных смол гидрированием при повышенной температуре при давлении водорода в присутствии катализатора и может быть использовано для получения компонентов адгезивов и клеев-расплавов, а также в пищевой и полиграфической промышленности.

Изобретение относится к области получения эфиров путем каталитических превращений спиртов, а именно фурфурилового спирта, и может найти применение в парфюмерной промышленности, производстве моторных топлив и других областях, в которых применяют эфиры левулиновой кислоты.
Изобретение относится к способу приготовления сульфидированного катализатора, содержащему стадии, на которых: (а) обрабатывают носитель катализатора одним или более компонентами металлов Группы VIB, одним или более компонентами металлов Группы VIII и соединением этоксилата простого эфира гликолевой кислоты в соответствии с формулой: R-(CH2)x-CH2-O-[-(CH2)2-O]m-CH2-COOH (I), в которой R представляет собой гидрокарбильную группу, содержащую от 5 до 20 атомов углерода, x составляет в диапазоне от 1 до 15, а m составляет в диапазоне от 1 до 10, и при этом молярное соотношение соединения (I) и содержания металлов Группы VIB и Группы VIII составляет от по меньшей мере 0,01:1 до 1:0,01; (b) высушивают обработанный носитель катализатора при температуре самое большее 200ºС с образованием высушенного пропитанного носителя; и (с) сульфидируют высушенный пропитанный носитель с получением сульфидированного катализатора.

Изобретение относится к области нефтепереработки и, более конкретно, к способам приготовления наноразмерных и ультрадисперсных катализаторов без носителя для гидрогенизационной переработки высокомолекулярного углеводородного сырья, в частности высококипящих остатков переработки нефти, природных битумов, битуминозных нефтей, углеродсодержащих отходов и др., и может быть использовано в нефтеперерабатывающей промышленности с получением углеводородного газа, бензиновых и дизельных фракций, вакуумного газойля.
Изобретение касается способа обработки ex-situ катализатора, содержащего, по меньшей мере, одну гидрирующую фазу и, по меньшей мере, один аморфный алюмосиликат или цеолит, содержащий кислотные центры.

Изобретение относится к способу получения гидрированного воска, который включает в себя стадии: обеспечение наличия углеводородного сырья, которое содержит больше чем 4 мас. углеводородов, выкипающих в диапазоне от 550 до 800°C; гидроочистки углеводородного сырья с использованием катализатора гидроочистки в присутствии водородсодержащего газа в условиях гидроочистки с получением продукта гидроочистки; гидрокрекинг по меньшей мере части продукта гидроочистки, полученного на стадии, с использованием катализатора гидрокрекинга в присутствии водородсодержащего газа в условиях гидрокрекинга с получением продукта гидрокрекинга, причем катализатор гидрокрекинга содержит цеолитный компонент, который присутствует в количестве по меньшей мере 14 мас., в расчете на общую массу катализатора гидрокрекинга, и объемное отношение катализатора гидроочистки, используемого на стадии, и катализатора гидрокрекинга составляет больше чем 1; и извлечения гидрированного воска из продукта гидрокрекинга, полученного на стадии. Целью настоящего изобретения является разработка способа, в котором при заданном качестве сырья и уровне конверсии получается повышенное соотношение между тяжелым гидрированным воском и легким гидрированным воском. 14 з.п. ф-лы.

Наверх