Способ дистанционного измерения внутриглазного давления

Изобретение относится к области медицинской техники и может быть использовано в офтальмологии для дистанционного измерения внутриглазного давления. Техническая проблема заключается в повышении эффективности бесконтактного метода измерений внутриглазного давления за счёт повышения точности и быстроты измерительных действий. Техническая проблема изобретения решается тем, что в способе дистанционного измерения внутриглазного давления, заключающемся в воздействии на глаз пневмоимпульсом с одновременным воздействием электромагнитного излучения, преобразовании отражённого от глаза сигнала в автодинный сигнал, регистрации его мощности, оцифровке сигнала, определении функции движения участка глаза, величины деформации глаза и ускорения движения оболочки, получении калибровочной кривой, описывающей зависимость давления внутри модели глаза от отношения величины деформации глаза к ускорению, определении по калибровочной кривой внутриглазного давления, согласно изобретению, в качестве электромагнитного излучения используют СВЧ-излучение, создают с помощью линии передачи зону действия ближнего поля СВЧ-излучения, значение потока которого не превышает 100 мкВт/см2, а глаз располагают в зоне действия ближнего поля на расстоянии от источника СВЧ-излучения, не превышающем 1/10 длины волны линии передачи, воздействие пневмоимпульса осуществляют перпендикулярно поверхности глаза в зону действия ближнего поля, при этом функцию движения участка глаза Z(t) определяют из соотношения:

,

где U(t) – цифровой автодинный сигнал; t – интервал времени; – коэффициент, который определяют как отношение: , где – изменение уровня автодинного сигнала при изменении расстояния от источника СВЧ-излучения до объекта. 1 з.п. ф-лы, 4 ил.

 

Изобретение относится к области медицинской техники и может быть использовано в офтальмологии для дистанционного измерения внутриглазного давления (ВГД).

Известен способ измерения внутриглазного давления с использованием системы для измерения и/или контроля внутриглазного давления с инерциальным датчиком. Система включает в себя устройство для измерения внутриглазного давления, содержащее опору и датчик давления, объединенный с опорой, причем опора выполнена с возможностью приведения датчика давления в контакт с глазом пользователя для измерения его внутриглазного давления (ВГД); портативное записывающее устройство; инерциальный датчик для сбора информации о движении и/или физической активности пользователя (патент РФ №2618173, МПК А61В3/16, опуб.02.05.2017).

Недостатком этого способа является использование при измерении в качестве опоры и датчика давления контактной линзы или опоры, выполненной с возможностью ее имплантации в глаз, что связано с дискомфортом пациента при установке и измерении.

Известен также способ измерения внутриглазного давления, который заключается в измерении с использованием тонометров аппланационного типа: Маклакова или Гольдмана, при атмосферном давлении от 740 до 760 мм.рт.ст. При атмосферном давлении менее 740 мм рт.ст. и более 760 мм рт.ст. измерение внутриглазного давления осуществляют приборами другого типа, в том числе тонометром ТГДц-02 или ТГДц-03 или индикатором ИГД-03 (патент РФ №2453263, МПК А61В3/16, опуб. 20.06.2012).

Недостатком известного способа является то, что все измерения внутриглазного давления проводятся в результате контакта измерителей с глазом, что вызывает необходимость анестезии. Кроме того, измерение внутриглазного давления приборами типа ТГДц-02 или ТГДц-03 или индикатором ИГД-03, которые тоже являются контактными, имеет ряд ограничений при патологическом состоянии верхнего века.

Наиболее близким к предлагаемому решению является способ измерения внутриглазного давления, который заключается в воздействии на глаз пневмоимпульсом с одновременным освещением его поверхности лазером, в измерении ВГД по величине деформации глаза, возникающее в результате воздействия на глаз пневмоимпульсом с одновременным освещением его поверхности лазером (Патент РФ №2485879, МПК А61В3/16, опубл. 27.06.2013).

Недостатками данного способа являются применение в измерении внутриглазного давления полупроводникового лазерного автодина, работающего в оптическом диапазоне, что приводит к ограничению в выборе «места» исследования, к вероятности негативного влияния на сетчатку глаза и т.д. Воздействие воздушной струей не перпендикулярно к поверхности сферической оболочки может приводить к неконтролируемой погрешности в измерении.

Техническая проблема заключается в повышении эффективности бесконтактного метода измерений внутриглазного давления за счёт повышения точности и быстроты измерительных действий.

Технический результат заключается в снижении погрешности измерений внутриглазного давления.

Техническая проблема решается тем, что в способе дистанционного измерения внутриглазного давления, заключающемся в воздействии на глаз пневмоимпульсом с одновременным воздействием электромагнитного излучения, преобразовании отражённого от глаза сигнала в автодинный сигнал, регистрации его мощности, оцифровке сигнала, определении функции движения участка глаза, величины деформации глаза и ускорения движения оболочки, получении калибровочной кривой, описывающей зависимость давления внутри модели глаза от отношения величины деформации глаза к ускорению, определении по калибровочной кривой внутриглазного давления, согласно изобретению, в качестве электромагнитного излучения используют СВЧ-излучение, создают с помощью линии передачи зону действия ближнего поля СВЧ-излучения, значения потока которого не превышает 100 мкВт/см2, а глаз располагают в зоне действия ближнего поля на расстоянии от источника СВЧ-излучения, не превышающем 1/10 длины волны линии передачи, воздействие пневмоимпульсом осуществляют перпендикулярно поверхности глаза в зону действия ближнего поля, при этом, функцию движения участка глаза Z(t) определяют из соотношения:

,

где U – цифровой автодинный сигнал;

– интервал времени;

– коэффициент, который определяют как отношение: , где – изменение уровня автодинного сигнала при изменении расстояния от источника СВЧ-излучения до объекта.

Ускорение движения оболочки может быть определено из решения обратной задачи, получающегося в результате нахождения минимума функционала, определяемого как сумма квадратов отклонения экспериментальных и теоретических величин функции движения для различных временных интервалов: .

Значение ускорения может быть также определено как вторая производная от функции .

Изобретение поясняется чертежами, где представлены:

-на фиг. 1 - блок-схема экспериментальной установки,

- на фиг. 2 – функция движения сферической оболочки при воздействии пневмоимпульса,

-на фиг. 3 – калибровочная кривая зависимости величины деформации от давления внутри модели глаза.

- на фиг. 4 – схема измерительной головки.

Позициями на фиг. 1 и 4 обозначено:

1 – СВЧ- автодин;

2 – линия передачи;

3 – зонд;

4 – макет или объект (глаз);

5 – компрессор;

6 – аналого-цифровой преобразователь;

7 – компьютер;

8 – трубка.

Ближнее поле может быть создано с помощью любой линии передачи, например, на основе волноводной, коаксиальной, микрополосковой и др.

Предлагаемый способ дистанционного измерения внутриглазного давления осуществляется следующим образом.

Предварительно получают калибровочную кривую на макете.

Для моделирования деформации глазного яблока при различном внутриглазном давлении был выбран резиновый шарик, заполненный гелем с плотностью, близкой к плотности внутриглазной жидкости. Внутреннее давление изменялось путем введения внутрь дополнительного объема геля. Излучение электромагнитного сигнала от СВЧ – автодина 1 (см. фиг. 1), на выходе которого выявляют зону действия ближнего поля с частотой 13 ГГц и значением потока, не превышающего 100 мкВт/см2, что соответствует нормам (СанПиН 2.1.8/2.2.4.1383-03), через линию передачи 2 и зонд 3 направляют на макет 4, на который перпендикулярно к поверхности макета воздействуют воздушным импульсом от компрессора 5. Макет фиксируют и располагают на расстоянии, не превышающем 1/10 длины волны в линии передачи. (Усанов Д.А., Горбатов С.С. Эффекты ближнего поля в электродинамических системах с неоднородностями и их использование в технике СВЧ // Саратов, Издательство: Саратовский государственный университет. 2011, С.392).

Часть излучения, отраженного от макета 4, возвращается в СВЧ – автодин 1. Сигнал с СВЧ – автодина поступает на аналого-цифровой преобразователь 6, данные с которого сохраняют в памяти компьютера 7. После оцифровки получают цифровой автодинный сигнал :

где – амплитуда автодинного сигнала, – набег фазы автодинного сигнала, – длина волны СВЧ – излучения, – интервал времени, – функция, описывающая продольные перемещения участка поверхности исследуемого объекта (функция движения участка глаза).

Исходя из экспериментальных данных, амплитуда движения объекта как минимум на порядок меньше длины волны излучения, форма автодинного сигнала повторяет форму функции движения объекта с точностью до коэффициента, т.е. функцию можно определить по переменной составляющей автодинного сигнала с помощью обратной функции, т.е.:

,

где U – цифровой автодинный сигнал; – интервал времени; – коэффициент, который определяют как отношение: , где – изменение уровня автодинного сигнала при изменении расстояния от источника СВЧ-излучения до объекта.

Восстанавливают функцию (фиг. 2) для каждого значения давления внутри макета. Определяют величину деформации оболочки , как разницу между точками и . Неизвестный параметр ускорения движения оболочки определяют из решения обратной задачи, получающегося в результате нахождения минимума функционала, определяемого как сумма квадратов отклонения экспериментальных и теоретических величин восстановленной функции, описывающей продольные перемещения участка поверхности исследуемого объекта, для различных временных интервалов: . Искомое значение ускорения соответствовало минимальному значению функционала.

Рассчитанному значению отношения величины деформации оболочки к ускорению ставят в соответствие давление внутри глаза, измеренное с помощью глазного тонометра.

На фиг. 3 показана калибровочная кривая, полученная из экспериментальных данных. Калибровочная кривая определяется один раз для данной автодинной системы как зависимость отношения от давления внутри макета. Тестовое измерение величины внутреннего давления сферических оболочек проводят по методу Маклакова грузом массой 10 г. (Любимов Г.А. История развития и биомеханическое содержание измерения внутриглазного давления по методу Маклакова // Глаукома. 2006. №1. С.43–49.). Измерение диаметра сегмента деформации выполняют по отпечаткам с помощью цифрового штангенциркуля, деформация сферической оболочки коррелирует с величиной давления внутри макета, определяемый по методу Маклакова.

В таблице 1 приведены результаты экспериментальных исследований, проведённых на макете.

Таблица 1

Внутреннее давление макета, мм рт.ст. ΔZ, м⋅10-6
13 132.962 0.131 11.66
15 90.016 0.136 8.518
16 74.038 0.165 4.741
17 58.442 0.195 3.255
19 57.394 0.286 3.146
20 52.578 0.324 1.938
25 43.561 0.358 1.337
34 39.221 0.420 1.045
43 39.174 0.532 0.77

Предлагаемый способ был реализован на примере определения неизвестного внутреннего давления глаз с использованием калибровочных кривых с помощью коаксиальной линии передачи

Экспериментальные исследования были проведены с использованием СВЧ – автодина, на выходе которого выявляют зону действия ближнего поля СВЧ-излучения частотой 13 ГГц и значением потока, не превышающего 100 мкВт/см2.

Для получения значений глаз помещают в ближнее поле (совокупность нераспространяющихся волн высших типов) СВЧ – автодина 1. Для этого глаз фиксируют согласно способу на расстоянии не более 3 мм от зонда 3. Затем на склеру глаза воздействуют СВЧ-излучением от зонда 3 и направленным перпендикулярно к поверхности глаза воздушным импульсом от компрессора 5. Отражённый от глаза сигнал возвращается в СВЧ-автодин и поступает в аналого-цифровой преобразователь 6, данные с которого сохраняются в памяти компьютера 7. Далее сигнал оцифровывают, определяют функцию движения участка глаза, величину деформации глаза и ускорения движения оболочки и по отношению с помощью калибровочной кривой, полученной ранее, находят величину внутриглазного давления.

Измеренное значение составило 5.4, что на калибровочной кривой (фиг. 3) соответствует величине давления 15.8 мм.рт.ст.

На фиг. 4 представлен пример реализации схемы измерительной головки, позволяющей направить воздушный пневмоимпульс соосно с зондом СВЧ-автодина. К зонду 3 прикрепляют трубку 8, через которую проходит воздушный импульс от компрессора 5 к макету 4. Таким образом, соблюдают перпендикулярность воздействия струи воздуха от компрессора. Предлагаемый метод согласуется с общепринятым за эталон, но в отличие от прототипа позволяет проводить измерения с высокой точностью в любой области глаза, без вероятности повреждения сетчатки глаза оптическим излучением.

В случае если удар воздушной струи происходит не перпендикулярно к поверхности сферической оболочки, в исследуемом объекте возникают колебательные процессы, точное описание которых крайне затруднительно и может серьёзно усложнить используемую математическую модель. Пренебрежение этим описанием приводит к возникновению трудно устранимой и неконтролируемой погрешности.

Способ позволяет ускорить измерительные процессы за счёт снижения количества операций, при определении механических характеристик исследуемого объекта.

1. Способ дистанционного измерения внутриглазного давления, заключающийся в воздействии на глаз пневмоимпульсом с одновременным воздействием электромагнитного излучения, преобразовании отражённого от глаза сигнала в автодинный сигнал, регистрации его мощности, оцифровке сигнала, определении функции движения участка глаза, величины деформации глаза и ускорения движения оболочки, получении калибровочной кривой, описывающей зависимость давления внутри модели глаза от отношения величины деформации глаза к ускорению, определении по калибровочной кривой внутриглазного давления, отличающийся тем, что в качестве электромагнитного излучения используют СВЧ-излучение, создают с помощью линии передачи зону действия ближнего поля СВЧ-излучения, значение потока которого не превышает 100 мкВт/см2, а глаз располагают в зоне действия ближнего поля на расстоянии от источника СВЧ-излучения, не превышающем 1/10 длины волны линии передачи, воздействие пневмоимпульсом осуществляют перпендикулярно поверхности глаза в зону действия ближнего поля, при этом функцию движения участка глаза Z(t) определяют из соотношения:

,

где U(t) – цифровой автодинный сигнал;

t – интервал времени;

K – коэффициент, который определяют как отношение: , где – изменение уровня автодинного сигнала при изменении расстояния от источника СВЧ-излучения до объекта.

2. Способ по п.1, отличающийся тем, что ускорение движения оболочки определяют из решения обратной задачи, получающегося в результате нахождения минимума функционала, определяемого как сумма квадратов отклонения экспериментальных и теоретических величин функции движения для различных временных интервалов: .



 

Похожие патенты:

Устройство относится к медицинской технике, а именно к устройству для измерения внутриглазного давления (ВГД) через веко. Устройство содержит установленную в корпусе подвижную втулку для создания постоянной заданной нагрузки с направляющими, опорой с выступами; шток с металлическим ограничителем его перемещения и плоским основанием; электромагнитную измерительную катушку; модуль контроля вертикальности устройства при измерении; сигнализатор контроля вертикальности и элемент питания.

Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано для тонометрии глаза. Воздействуют на глаз вибрирующим датчиком.

Группа изобретений относится к медицинской технике. Способ измерения внутриглазного давления заключается в воздействии на поверхность роговицы глаза воздушным потоком в виде множества пневматических импульсов, величина которых изменяется от минимального значения по возрастающей.

Группа изобретений относится к области медицины, а именно к офтальмологии. Для сбора данных интраоперационной биометрии и/или рефракционных измерений используют датчик давления, ассоциированный с глазом и выполненный с возможностью выявления внутриглазного давления; и устройство для интраоперационной диагностики, содержащее блок управления, соединенный с датчиком давления и установленный для того, чтобы приводить устройство для интраоперационной диагностики в действие для сбора данных интраоперационной биометрии и/или рефракционных измерений, когда датчик давления выявляет, что величина интраокулярного давления снижена от повышенного значения до естественного интраокулярного давления, и в то время как значение интраокулярного давления сохраняется равным естественному интраокулярному давлению в течение периода времени.

Изобретение относится к средствам метрологического обеспечения устройств для определения внутриглазного давления и может быть использовано для поверки/калибровки контактных тонометров.

Группа изобретений относится к медицине. Система для обеспечения ирригации в глазу пациента во время медицинской хирургической процедуры содержит инфузионную линию, выполненную с возможностью размещения источника текучей среды в сообщении по текучей среде с глазом пациента.

Группа изобретений относится к области медицины. Для измерения ВГД через веко осуществляют статическую деформацию века с последующей периодической резонансной динамической деформацией глазного яблока через веко штоком, связанным с корпусом упругими элементами.

Изобретение относится к медицине. Система для измерения и/или контроля внутриглазного давления содержит: устройство для измерения внутриглазного давления, содержащее опору и датчик давления, объединенный с опорой, причем опора выполнена с возможностью приведения датчика давления в контакт с глазом пользователя для измерения его внутриглазного давления (ВГД); портативное записывающее устройство, выполненное с возможностью связи с устройством для измерения внутриглазного давления и с возможностью хранения данных, полученных от этого устройства для измерения внутриглазного давления, причем портативное записывающее устройство содержит антенну для обеспечения беспроводной связи с устройством для измерения внутриглазного давления; инерциальный датчик для сбора информации о движении и/или физической активности пользователя.

Группа изобретений относится к медицине. Офтальмологическое устройство с системой контроля интраокулярного давления содержит: несущую вставку с передней и задней криволинейными дугообразными поверхностями, образующие полость, способную вмещать источник энергии, выполненный по размеру в соответствии с площадью внутри полости, причем источник энергии электрически соединен и способен обеспечивать энергией систему контроля интраокулярного давления, содержащую микропьезоэлектрический элемент, измерительный преобразователь, электронную схему обратной связи, включающую усилитель и фильтр, элемент беспроводной связи, и контроллер, причем контроллер содержит вычислительный процессор, осуществляющий цифровую связь с цифровым устройством хранения данных, и причем в цифровом устройстве хранения данных хранится программный код, при этом элемент беспроводной связи является связанным с контроллером; передатчик, находящийся в логической связи с процессором, а также в логической связи с сетью передачи данных, причем программное обеспечение выполняется по запросу и позволяет процессору: подавать сигнал в направлении поверхности глаза с использованием микропьезоэлектрического элемента; обнаруживать обратный сигнал и его изменение после отражения от поверхности глаза с использованием электронной схемы обратной связи; определять интраокулярное давление глаза пользователя, используя обнаруженное изменение указанного сигнала в разные моменты времени в течение суток.

Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано для ранней диагностики первичной открытоугольной глаукомы. Для этого проводят измерение и оценку внутриглазного давления, исследование полей зрения и слезной жидкости с последующим определением уровня провоспалительных и противоспалительных цитокинов с дополнительным определением их уровня в сыворотке крови.

Изобретение относится к области медицинской техники и может быть использовано в офтальмологии для дистанционного измерения внутриглазного давления. Техническая проблема заключается в повышении эффективности бесконтактного метода измерений внутриглазного давления за счёт повышения точности и быстроты измерительных действий. Техническая проблема изобретения решается тем, что в способе дистанционного измерения внутриглазного давления, заключающемся в воздействии на глаз пневмоимпульсом с одновременным воздействием электромагнитного излучения, преобразовании отражённого от глаза сигнала в автодинный сигнал, регистрации его мощности, оцифровке сигнала, определении функции движения участка глаза, величины деформации глаза и ускорения движения оболочки, получении калибровочной кривой, описывающей зависимость давления внутри модели глаза от отношения величины деформации глаза к ускорению, определении по калибровочной кривой внутриглазного давления, согласно изобретению, в качестве электромагнитного излучения используют СВЧ-излучение, создают с помощью линии передачи зону действия ближнего поля СВЧ-излучения, значение потока которого не превышает 100 мкВтсм2, а глаз располагают в зоне действия ближнего поля на расстоянии от источника СВЧ-излучения, не превышающем 110 длины волны линии передачи, воздействие пневмоимпульса осуществляют перпендикулярно поверхности глаза в зону действия ближнего поля, при этом функцию движения участка глаза Z определяют из соотношения: ,где U – цифровой автодинный сигнал; t – интервал времени; – коэффициент, который определяют как отношение:, где – изменение уровня автодинного сигнала при изменении расстояния от источника СВЧ-излучения до объекта. 1 з.п. ф-лы, 4 ил.

Наверх