Способ получения полуфабриката из сплава на основе циркония (варианты)

Изобретение относится к области металлургии, а именно к способам получения полуфабриката из сплава на основе циркония, и может быть использовано для производства мишеней для реакционного магнетронного распыления в окислительной среде с плазмохимическим осаждением керамических слоев на основе оксидов, а также для изготовления деталей конструкций и экранов защиты от рентгеновского излучения. Способ включает размещение тигля из оксида циркония или иттрия в вакуумной индукционной печи, загрузку в тигель шихтовых материалов в виде циркония и по меньшей мере одного редкоземельного металла в количестве от 4 до 21 мас.%, вакуумную индукционную выплавку сплава с формированием отливки в среде аргона, получение слитка с последующей горячей прокаткой. Выплавку отливки производят при температуре 1450-1950°C, которую подвергают нагреву в процессе одно-четырехстадийного переплава вакуумным дуговым методом при силе тока от 1,8 до 3,6 кА в течение от 5 до 12 мин, а затем полученный слиток подвергают ковке при температуре 950-1150°C, горячей прокатке при температуре 900-1050°C и отжигу при температуре 740-760°C. В качестве редкоземельных металлов используют иттрий, гадолиний, неодим, самарий, лантан, празеодим, диспрозий. Изобретение позволяет получить полуфабрикат из сплава на основе циркония с равномерным распределением РЗМ, пониженной пористостью от 0,4 до 1,9%, а также увеличить коэффициент использования металлов. 2 н. и 2 з.п. ф-лы, 5 пр.

 

Изобретение относится к области металлургии, а именно к способам получения полуфабриката из сплава на основе циркония и может быть использовано для производства мишеней для реакционного магнетронного распыления в окислительной среде с плазмохимическим осаждением керамических слоев на основе оксидов, а также для изготовления деталей конструкций и экранов защиты от рентгеновского излучения.

Актуальность вопроса обусловлена необходимостью повышения ресурса рабочих лопаток турбины высокого давления, ограниченного стойкостью жаростойкого защитного покрытия и высокими рабочими температурами, достигающими значений 1100-1150°C. Теплозащитное покрытие (ТЗП), состоящее из металлического жаростойкого слоя (подслоя) и внешнего керамического слоя, позволит снизить температуру тела лопатки на 100°C, что обеспечивает увеличение ресурса покрытия и лопатки турбины более чем в 2 раза. Основным направлением в данной области является создание ТЗП с внешним керамическим слоем на основе стабилизированного диоксида циркония, наносимого электронно-лучевым способом испарения керамики на основе стабилизированного диоксида циркония, а также процессы высокоскоростного и атмосферного плазменного напыления. Для получения керамического слоя ТЗП могут использовать магнетронную установку типа УОКС, на которой реализован способ среднечастотного распыления материала мишеней в окислительной среде и плазмохимического осаждения керамических слоев на основе оксидов редкоземельных металлов (РЗМ).

Из уровня техники (Патент РФ №2613005, опубликован 14.03.2017 г.) известно керамическое теплозащитное покрытие, которое наносят методом магнетронного распыления. Известное изобретение не обеспечивает требуемого качества керамического слоя ТЗП из-за сильной ликвации элементов в материале мишени. Из-за высокой активности редкоземельных металлов в жидком состоянии получение качественных мишеней с равномерным распределением в них легирующих редкоземельных металлов требует разработки специальных вакуумных технологий их выплавки и передела с использованием методов горячей деформации.

Аналогом предлагаемого изобретения может быть описанный в изобретении (Патент РФ 2596696, опубликован 10.09.2016 г.) сплав на основе циркония и способ его получения в условиях низкого вакуума. Способ получения сплава на основе циркония характеризуется тем, что осуществляют загрузку в тигель из оксида циркония меди (20-25% ат.), железа (5% ат.), алюминия (10% ат.), самария (0,5% ат.) и циркония чистотой 99,9%, размещают тигель в индукционной печи и осуществляют плавку при остаточном давлении 10-2-10-3 торр с последующей разливкой расплава при температуре 1100-1200°C в медную изложницу в среде аргона. К недостаткам описанного способа следует отнести невозможность выплавки сплавов на основе циркония с относительно высоким содержанием редкоземельных элементов, в виду низкой стойкости тиглей из оксида циркония к воздействию расплавов редкоземельных металлов.

Еще одним аналогом предлагаемого изобретения является описанный в Патенте РФ 2141540, опубликован 20.11.1999 г. сплав на основе циркония с содержанием в своем составе следующих легирующих элементов, % масс: ниобий 0,5-3,0, олово 0,5-2,0, железо 0,3-1,0, хром 0,002-0,2, углерод 0,003-0,04, кислород 0,04-0,15, кремний 0,002-0,15, а также одного из группы следующих элементов: вольфрам, молибден, ванадий в количестве 0,001-0,4. Слитки из сплава указанного выше состава изготавливают методом вакуумной дуговой плавки с последующей ковкой при температуре от 1070°C до 900°C, нагревом до температуры 1050°C и закалкой в воде. Далее отливки отжигали при температуре 620°C и подвергали прессованию при температуре 620°C, после чего проводили повторную закалку при температуре 950°C со скоростью 500°C/с и отжиг при температуре 425°C. Окончательный отжиг при температуре 580°C проводили после холодной прокатки. К недостаткам описанного способа получения сплава следует отнести длительный энергозатратный и многоступенчатый технологический процесс его изготовления.

Наиболее близким аналогом предлагаемого способа является способ изготовления полуфабриката из сплава на основе циркония для мишеней (CN 101629276, опубликован 20.01.2010 г.), в котором для получения сплава проводят вакуумную индукционную выплавку в среде инертного газа, а именно аргона. Отливку формируют в печи подогрева форм при температуре, позволяющей сформировать отливку из сплава на основе циркония, с последующим приданием формы мишени посредством горячей накатки, закалки и отжига для снятия напряжений. Содержание иттрия в сплаве на основе циркония составляет от 5 до 20% масс., при относительном отклонении его содержания в сплаве ±1% масс. и плотности полученного сплава на уровне 98% от теоритически достижимой, при размере зерен на уровне 5 класса. К недостаткам описанного способа изготовления полуфабриката из сплава на основе циркония для мишеней следует отнести довольно высокую пористость слитка, получаемого методом вакуумной индукционной выплавки, которая при последующей горячей обработке давлением может приводить к образованию протяженных полостей и несплошностей, по всей видимости и формирующей собой пористость от 2%, как по границе накатки, так и непосредственно в сплаве на основе циркония для мишеней, что в свою очередь приводит к образованию капельной фазы в процессе плазмохимического синтеза оксидной керамики при нанесении теплозащитных покрытий магнетронным способом в окислительной среде.

Технической задачей предлагаемой группы изобретений является получение полуфабриката из сплава на основе циркония, который не содержит перечисленных выше недостатков, применимого для изготовления и использования в качестве мишеней для магнетронного распыления в реакционной (окислительной) среде, а также в атомной энергетике.

Техническим результатом является получение полуфабриката из сплава на основе циркония с равномерным распределением РЗМ, пониженной пористостью (от 0,4 до 1,9%), увеличение коэффициента использования металлов.

Технический результат достигается способом получения полуфабриката из сплава на основе циркония, включающим в себя размещение тигля из оксида циркония или иттрия в вакуумной индукционной печи, загрузку в тигель шихтовых материалов - циркония и, по меньшей мере, одного редкоземельного металла в количестве от 4 до 21 масс %, вакуумную индукционную выплавку сплава в среде аргона, получение отливки с последующей горячей прокаткой и отжигом, причем, выплавку сплава производят при температуре 1450-1950°C с формированием отливки, которую подвергают одно-четырех стадийному переплаву вакуумным дуговым методом при силе тока от 1,8 до 3,6 кА в течение от 5 до 12 минут, а затем полученный слиток подвергают ковке при температуре 950-1150°C, горячей прокатке при температуре 900-1050°C с получением полуфабриката и его отжигу при температуре 740-760°C.

Предпочтительно, в качестве редкоземельных металлов используют иттрий, гадолиний, неодим, самарий, лантан, празеодим, диспрозий.

Технический результат также достигается способом получения полуфабриката из сплава на основе циркония, включающим в себя размещение тигля из оксида циркония или иттрия в вакуумной индукционной печи, загрузку в тигель шихтовых материалов - циркония и, по меньшей мере, одного редкоземельного металла, получение отливки с последующей горячей прокаткой и отжигом, отличающийся тем, что получают отливку лигатуры путем введения редкоземельного металла в количестве от 21 до 75% в процессе вакуумной индукционной выплавки в среде аргона при температуре 1450-1800°C, полученную отливку лигатуры подвергают одно-четырех стадийному переплаву вакуумным дуговым методом при силе тока от 1,8 до 3,6 кА в течение от 5 до 12 минут с введением иодидного циркония в количестве 15-50 масс. %, а затем полученный слиток подвергают ковке при температуре 950-1150°C, горячей прокатке при температуре 900-1050°C с получением полуфабриката и его и отжигу при температуре 740-760°C.

Предпочтительно, в качестве редкоземельных металлов используют иттрий, гадолиний, неодим, самарий, лантан, празеодим, диспрозий.

Технический результат обеспечивается предлагаемыми вариантами способа получения полуфабриката из сплава на основе циркония, легированного, по меньшей мере, одним редкоземельным металлом: иттрием, гадолинием, неодимом, самарием, лантаном, празеодимом, диспрозием и др. РЗМ, причем РЗМ в сплаве должен быть равномерно распределен, что обеспечивает его равномерное распределение в паро-газовой фазе в процессе плазмохимического синтеза оксидов металлов, и пористость от 0,4 до 1,9%. Повышение коэффициента использования материала достигается за счет применения ковки при температуре 950-1150°C, горячей прокатки при температуре 900-1050°C и отжига при температуре 740-760°C.

Для достижения описанного выше технического результата в предлагаемом изобретении используется либо вакуумная индукционная выплавка сплава на свежих шихтовых материалах в тигле из оксида циркония или иттрия в условиях инертного газа: аргона с, по меньшей мере, одним РЗМ в количестве от 4 до 21 масс %, и цирконий остальное, либо вакуумная индукционная выплавка отливки лигатуры обогащенной, по меньшей мере, одним редкоземельным металлом с содержанием последнего от 21 до 75 масс % и разбавлением иодидным цирконием в количестве от 15 до 50 масс % в условиях инертного газа: аргона в тигле из оксида циркония или иттрия с последующей разливкой расплава и формированием отливки. Практическое исполнение выплавки отливки лигатуры требует применения специальных огнеупорных материалов, стойких к воздействию реакционно-активного расплава с высоким содержанием редкоземельного металла. Выплавка отливки лигатуры позволяет постепенно вводить в основу искомого сплава - циркония, легирующие редкоземельные элементы, благодаря чему стало возможным обеспечить их равномерное распределение в искомом циркониевом сплаве. Следует отметить, что полученная отливка лигатуры, как и сплава с заданным составом, характеризуется довольно распространенной пористостью, что препятствует получению качественной листовой заготовки при прокатке слитка непосредственно после этапа выплавки вакуумным индукционным способом. В этой связи в предлагаемых вариантах способа получения полуфабриката из сплава на основе циркония применен метод вакуумного дугового переплава.

В одном случае проводят вакуумный дуговой переплав отливки сплава, а в другом варианте предлагаемого способа проводят вакуумный дуговой переплав отливки лигатуры. В обоих вариантах предлагаемого способа проводят одно-четырех стадийный переплав вакуумным дуговым методом. Полученную отливку лигатуры подвергают, одно, двух, трех или четырех стадийному вакуумному дуговому переплаву, с введением иодидного циркония в количестве 15-50 масс %. В процессе переплава вакуумным дуговым методом в обоих вариантах предлагаемого изобретения достигается плотность слитка близкой к теоретической при обеспечении условия равномерного распределения легирующего редкоземельного металла. Переплав вакуумным дуговым методом проводили при силе тока от 1,8 до 3,6 кА в течение от 5 до 12 минут, с предварительным прогревом. Предварительный прогрев переплавляемой отливки осуществляли по стандартному режиму при силе тока от 1,4 до 1,8 кА в течение от 1 до 4 мин, известного из уровня техники. Рабочая сила тока поддерживалась при первичном переплаве от 1,8 до 2,6 кА в течение от 5 до 9 минут, при вторичном переплаве от 2,4 до 3,1 кА в течение от 5 до 9 минут, при третьем переплаве - от 2,9 до 3,6 кА в течение от 5 до 9 минут, а при четвертом переплаве поддерживали режим от 2,4 до 3,1 кА в течение от 5 до 12 минут, с учетом выведения усадочной раковины. Выведение усадочной раковины проводили при постепенном снижении силы тока от рабочих значений до 1,4, 1,9 и 2,4 кА, соответственно. Напряжение поддерживали в диапазоне значений от 22 до 25 В. Далее следовала ковка, которая проводилась при температуре от 950-1150°C, горячая прокатка, проводимая при температуре от 900-1050°C и отжиг при температуре 740-760°C с формированием полуфабриката, например, листовой заготовки мишеней и для изготовления деталей конструкций и экранов защиты от рентгеновского излучения. При температурах ниже 900°C сплав не достигает необходимого уровня технологической пластичности, что приводит к его растрескиванию в процессе горячей деформации, как при ковке, так и при горячей прокатке, тогда как при повышенных температурах более 1150°C происходит интенсивное окисление сплава. Отжиг при температуре 740-760°C позволяет снять внутренние напряжения и исключить коробление полуфабриката. Предлагаемые варианты способа обеспечивают, таким образом, повышение коэффициента использования металла с формированием полуфабриката из сплава на основе циркония с максимально возможной плотностью (до 99,6% от теоретически возможной) и пористостью от 0,4 до 1,9% при равномерном распределении в нем, по меньшей мере, одного РЗМ (с отклонением от среднего значения не более 0,5% масс.) и требуемом уровне (до 50 ррм) газовых включений (азот).

Пример 1

Полуфабрикат из сплава на основе циркония получали следующим образом.

Выплавка сплава на основе циркония производилась с использованием свежих шихтовых материалов вакуумным индукционным способом в тигле на основе оксида иттрия. В тигель загружали шихтовые материалы: редкоземельный металл - иттрий в количестве 4% масс., цирконий - остальное. Выплавку сплава производили при температуре 1900±50°C. Сформированная отливка содержала в прибыльной части усадочную раковину, после удаления которой на поверхности реза отмечена довольно существенная пористость. Далее слиток резали на штабики из которых формировали расходуемую переплавляемую отливку для вакуумного дугового переплава. Вакуумный дуговой переплав проводили при силе тока 2,6 кА в течение 5 минут при первичном переплаве и при силе тока 3,1 кА в течение 7 минут при переплаве вторичном. Предварительный прогрев расходуемой переплавляемой отливки проводили в течение 1 минуты при силе тока 1,7 кА. Выведение усадочной раковины проводили при постепенном снижении силы тока с рабочих значений - с 3,1 кА до 1,9 кА за совокупное время не более 3-х минут. Напряжение дуги поддерживали на уровне от 22,5 до 24,5 В. После двойного вакуумного дугового переплава и резки донной и «корончатой» частей слиток подвергали ковке на сутунку при температуре 960±10°C, из которой методом горячей прокатки при температуре 910±10°C с последующим отжигом при температуре 750±10°C формировали полуфабрикат, например, листовую заготовку мишени.

Пример 2

Полуфабрикат из сплава на основе циркония получали следующим образом.

Выплавка сплава на основе циркония производилась с использованием свежих шихтовых материалов вакуумным индукционным способом в тигле на основе оксида циркония. В тигель загружали шихтовые материалы: редкоземельные металлы - иттрий и гадолиний в совокупном количестве 21% масс., цирконий - остальное. Выплавку производили при температуре 1500±50°C. Сформированная отливка содержала в прибыльной части усадочную раковину, после удаления которой на поверхности реза отмечена довольно существенная пористость. Далее слиток резали на штабики, из которых формировали расходуемую переплавляемую отливку для вакуумного дугового переплава. Вакуумный дуговой переплав проводили один раз при силе тока от 1,8 кА в течение 12 минут. Предварительный прогрев расходуемой переплавляемой отливки проводили в течение от 1 минуты при силе тока от 1,5 кА. Выведение усадочной раковины в этом случае не проводили. Напряжение дуги поддерживали на уровне от 22,5 до 24,5 В. После вакуумного дугового переплава и резки донной и «корончатой» частей слиток подвергали ковке на сутунку при температуре 1140±10°C, из которой методом горячей прокатки при температуре 1040±10°C с последующим отжигом при температуре 750±10°C формировали полуфабрикат, например, горячедеформированную полосу.

Пример 3

Полуфабрикат из сплава на основе циркония получали следующим образом.

Выплавка сплава лигатуры на основе циркония с, по меньшей мере, одним РЗМ производилась с использованием свежих шихтовых материалов вакуумным индукционным способом в тигле на основе оксида циркония. В тигель загружали шихтовые материалы: редкоземельные металлы - гадолиний, лантан и празеодим в совокупном количестве 21% масс., цирконий - остальное. Выплавку производили при температуре 1750±50°C. Сформированная отливка лигатуры содержала в прибыльной части усадочную раковину, после удаления которой на поверхности реза отмечена довольно существенная пористость. Далее слиток резали на штабики из которых, располагая на прутках иодидного циркония в количестве 15% масс, формировали расходуемую переплавляемую отливку для вакуумного дугового переплава. Первичный вакуумный дуговой переплав проводили при силе тока от 2,1 кА в течение 9 минут. Вторичный вакуумный дуговой переплав проводили при силе тока от 2,9 кА в течение 7 минут, тогда как третий вакуумный дуговой переплав вели при силе тока от 3,6 кА в течение 9 минут с последующим выведением усадочной раковины со снижением силы тока до 1,9 кА в течение не более 2-3 минут. Предварительный прогрев расходуемой переплавляемой отливки проводили в течение от 1 минуты при силе тока от 1,6 кА. Выведение усадочной раковины в этом случае не проводили. Напряжение дуги поддерживали на уровне от 22,5 до 24,5 В. После вакуумного дугового переплава и резки донной и «корончатой» частей слиток подвергали ковке на сутунку при температуре 1040±10°C, из которой методом горячей прокатки при температуре 960±10°C с последующим отжигом при температуре 740-760°C формировали полуфабрикат, например листовую заготовку мишени.

Пример 4

Полуфабрикат из сплава на основе циркония получали следующим образом.

Выплавка сплава лигатуры металла редких земель на основе циркония производилась с использованием свежих шихтовых материалов вакуумным индукционным способом в тигле из инертной оксидной керамики на основе оксида иттрия. В тигель загружали шихтовые материалы: редкоземельные металлы - иттрий, гадолиний, самарий и неодим в совокупном количестве 50% масс., цирконий - остальное. Выплавку производили при температуре 1500±50°C. Сформированная отливка содержала в прибыльной части усадочную раковину, после удаления которой на поверхности реза отмечена довольно существенная пористость. Далее слиток резали на штабики из которых, располагая на прутках иодидного циркония в количестве 35% масс, формировали расходуемую переплавляемую отливку для вакуумного дугового переплава. Вакуумный дуговой переплав проводили при силе тока от 2,3 кА в течение 5 минут при первичном переплаве и при силе тока от 2,9 кА в течение 7 минут при переплаве вторичном. Предварительный прогрев переплавляемой отливки проводили в течение от 1 минуты при силе тока от 1,6 кА. Выведение усадочной раковины проводили при постепенном снижении силы тока с рабочих значений - с 2,9 кА до 1,7 кА за совокупное время не более 3-х минут. Напряжение дуги поддерживали на уровне от 22,5 до 24,5 В. После тройного вакуумного дугового переплава и резки донной и «корончатой» частей слиток подвергали ковке на сутунку при температуре 1060±10°C, из которой методом горячей прокатки при температуре 960±10°C с последующим отжигом при температуре 75±10°C формировали горячекатаную ленту.

Пример 5

Полуфабрикат из сплава на основе циркония получали следующим образом.

Выплавка сплава лигатуры металла редких земель на основе циркония производилась с использованием свежих шихтовых материалов вакуумным индукционным способом в тигле из инертной оксидной керамики на основе оксида иттрия. В тигель загружали шихтовые материалы: редкоземельные металлы - иттрий, гадолиний, лантан, неодим и диспрозий в совокупном количестве 75% масс, цирконий - остальное. Выплавку производили при температуре 1550±50°C.Сформированная отливка содержала в прибыльной части усадочную раковину, после удаления которой на поверхности реза отмечена довольно существенная пористость. Далее слиток резали на штабики из которых, располагая на прутках иодидного циркония в количестве 50%, формировали переплавляемую отливку для вакуумного дугового переплава. Вакуумный дуговой переплав проводили при силе тока от 1,8 кА при первичном переплаве в течение 7 минут и при силе тока от 2,8 кА при переплаве вторичном в течение 9 минут, а при третьем переплаве сила тока составила 3,6 кА в течение 9 минут. Окончательный четвертый переплав проводили на режимах вторичного переплава - при силе тока от 2,8 кА в течение 12 минут с учетом времени на выведение усадочной раковины. Предварительный прогрев переплавляемой отливки проводили в течение от 1 минуты при силе тока от 1,5 кА. Выведение усадочной раковины проводили при постепенном снижении силы тока с рабочих значений - с 2,8 кА до 1,7 кА за совокупное время не более 3-х минут. Напряжение дуги поддерживали на уровне от 22,5 до 24,5 В. После четвертного вакуумного дугового переплава и резки донной и «корончатой» частей слиток подвергали ковке на сутунку при температуре 960±10°C, из которой методом горячей прокатки при температуре 940±10С и отжигом при температуре 750±10°C. формировали полуфабрикат листовой заготовки для формирования рабочего слоя мишени.

1. Способ получения полуфабриката из сплава на основе циркония, включающий размещение тигля из оксида циркония или иттрия в вакуумной индукционной печи, загрузку в тигель шихтовых материалов в виде циркония и по меньшей мере одного редкоземельного металла в количестве от 4 до 21 мас. %, вакуумную индукционную выплавку сплава в среде аргона, получение отливки с последующей горячей прокаткой и отжигом, отличающийся тем, что выплавку сплава производят при температуре 1450-1950°С с формированием отливки, которую подвергают одно-четырехстадийному переплаву вакуумным дуговым методом при силе тока от 1,8 до 3,6 кА в течение от 5 до 12 мин, а затем полученный слиток подвергают ковке при температуре 950-1150°С, горячей прокатке при температуре 900-1050°С с получением полуфабриката и его отжигу при температуре 740-760°С.

2. Способ по п. 1, отличающийся тем, что в качестве редкоземельных металлов используют иттрий, гадолиний, неодим, самарий, лантан, празеодим, диспрозий.

3. Способ получения полуфабриката из сплава на основе циркония, включающий размещение тигля из оксида циркония или иттрия в вакуумной индукционной печи, загрузку в тигель шихтовых материалов в виде циркония и по меньшей мере одного редкоземельного металла, получение отливки с последующей горячей прокаткой и отжигом, отличающийся тем, что получают отливку лигатуры путем введения редкоземельного металла в количестве от 21 до 75% в процессе вакуумной индукционной выплавки в среде аргона при температуре 1450-1800°С, полученную отливку лигатуры подвергают одно-четырехстадийному переплаву вакуумным дуговым методом при силе тока от 1,8 до 3,6 кА в течение от 5 до 12 мин с введением иодидного циркония в количестве 15-50 мас. %, а затем полученный слиток подвергают ковке при температуре 950-1150°С, горячей прокатке при температуре 900-1050°С с получением полуфабриката и его отжигу при температуре 740-760°С.

4. Способ по п. 3, отличающийся тем, что в качестве редкоземельных металлов используют иттрий, гадолиний, неодим, самарий, лантан, празеодим, диспрозий.



 

Похожие патенты:

Настоящее изобретение относится к передвижному плавильному устройству для консолидации загрязненного лома и к соответствующему способу. Плавильное устройство имеет камеру тигля и основание тигля.

Изобретение относится к области металлургии, конкретно к производству высокопрочных мартенситностареющих сталей, микролегированных редкоземельными металлами (РЗМ), и может использоваться для изготовления высоконагруженных деталей большого сечения, силовых деталей, работающих от -70 до 400°C в условиях высоких нагрузок, например валов газотурбинных двигателей, деталей шасси, крыла и других деталей, применяемых в авиационной технике и в машиностроении.

Изобретение может быть использовано в химической промышленности. Способ получения сухих цинковых белил включает испарение цинка в печи испарения при температуре 1200-1350°C и разрежении в системе печь-вытяжной вентилятор 50-100 Па с поверхности расплава цинка 3-5 м2 при толщине слоя расплава цинка 250-350 мм.

Изобретение относится к области металлургии, в частности к плавильным печам индукционного нагревательного типа. .

Изобретение относится к области металлургии, в частности к конструкциям индукционных вакуумных печей для плавки металлов и сплавов. .

Изобретение относится к области порошковой металлургии и направлено на получение порошков, состоящих из сферических гранул жаропрочных и химически активных сплавов.

Изобретение относится к устройству для одновременного получения тугоплавких металлических и неметаллических материалов и возгонов. .

Изобретение относится к электродуговым плазменным реакторам-сепараторам для получения расплава тугоплавких, металлических и неметаллических материалов и возгонов с высокой степенью вязкости расплава и может быть использовано в цементной, химической отраслях промышленности и металлургии.

Изобретение относится к области металлургии и может быть использовано для производства химически активных и сложнолегированных металлов и сплавов, например, таких как титан, цирконий, ниобий, тантал, хром и сплавов на их основе.

Изобретение относится к электродуговым плазменным печам для плавления неметаллических тугоплавких материалов, преимущественно для получения цементного клинкера, и может быть использовано в строительной промышленности.

Группа изобретений относится к геттерному устройству для сорбции водорода и монооксида углерода. Геттерное устройство содержит композицию порошков неиспаряемого геттерного сплава, которая содержит цирконий, ванадий, титан и алюминий.

Изобретение относится к способу получения сплавов, состоящих из титана, железа, хрома и циркония, из водной суспензии частиц руд, содержащих соединения этих элементов, и устройству для его осуществления.

Изобретение относится к области металлургии, а именно к материалу на основе объемных металлических стекол на основе циркония, и может быть использовано для производства деталей микромашин и механизмов с требованиями высокой износостойкости и прочности.

Изобретение может быть использовано для пайки высокотемпературным припоем тугоплавких металлических и/или керамических материалов. Припой выполнен из сплава, содержащего компоненты в следующем соотношении, мас.%: цирконий 45-50, бериллий 2,5-4,5; алюминий 0,5-1,5, титан - остальное.

Изобретение относится к области химии, в частности к водородпоглощающим сплавам. .

Изобретение относится к неиспаряющимся газопоглотительным сплавам, активируемым при относительно низких температурах и способным эффективно сорбировать водород, и может быть использовано при изготовлении термических колб, солнечных коллекторов, ламп разрядного напряжения, генерирующих рентгеновских трубок.
Изобретение относится к области металлургии и может быть использовано в промышленном производстве высококачественных слитков цирконий-ниобиевых сплавов, дополнительно микролегированных железом и кислородом, в том числе для атомной промышленности.
Изобретение относится к металлургии и может быть использовано в энергетическом машиностроении. .

Изобретение относится к металлургии циркониевых сплавов и может быть использовано для тонкостенных экранов и штампосварных высоко и длительно нагруженных конструкций, обеспечивающих защиту от рентгеновского излучения (РИ).
Изобретение относится к металлургии и может быть использовано в энергетическом машиностроении. .
Изобретение относится к области металлургии благородных металлов, в частности к ювелирным сплавам платины, применяемым в ювелирном производстве. Предлагаемый ювелирный сплав платины содержит в своем составе платину, палладий, цинк, цирконий и медь в следующих соотношениях компонентов, мас.%: платина 58,0-60,0; палладий 5,0-10,0; цинк 1,0-2,0; цирконий 0,01-0,05; медь - остальное.
Наверх