Фотодетекторный свч модуль

Изобретение относится к области радиотехники, а именно к радиофотонике, и может быть использовано при конструировании систем возбуждения антенн и активных фазированных антенных решеток (АФАР) для связи, радиолокации, радионавигации и радиоэлектронной борьбы. Фотодетекторный СВЧ модуль включает симметричный оптоволоконный разветвитель оптических СВЧ импульсов, подводимых через входное оптоволокно, СВЧ фотодиоды, оптически стыкованные с выходными оптоволокнами разветвителя, к каждому фотодиоду приложено обратное смещение, величина напряжения которого задана последовательно соединенной с фотодиодом через нагрузочное сопротивление сборкой вентильных фотоэлементов, работающих без обратного напряжения смещения и облучаемых через оптоволокна непрерывным оптическим излучением, количество вентильных фотоэлементов в одной сборке установлено не более отношения максимально допустимого обратного напряжения смещения каждого СВЧ фотодиода к рабочему напряжению, генерируемому каждым вентильным фотоэлементом, параллельно сборке вентильных фотоэлементов подсоединен конденсатор, емкость которого установлена не менее удвоенного отношения длительности импульсов к величине нагрузочного сопротивления, нагрузочные сопротивления соединены между собой последовательно, а общие выводы последовательной сборки нагрузочных сопротивлений подсоединены через СВЧ тракт к СВЧ нагрузке, причем величина каждого нагрузочного сопротивления установлена равной отношению волнового сопротивления СВЧ нагрузки к количеству СВЧ фотодиодов, установленному равным заданной выходной импульсной мощности модуля, умноженной на коэффициент заполнения импульсного оптического сигнала и деленной на суммарную мощность вентильных фотоэлементов в одной сборке. Изобретение обеспечивает повышение мощности фотодетекторного СВЧ модуля, преобразующего импульсы оптического излучения в мощные электрические импульсы, и оптимальное согласование с СВЧ нагрузкой. 1 з.п. ф-лы, 2 ил., 2 пр.

 

Изобретение относится к области радиотехники, а именно к радиофотонике, и может быть использовано при конструировании систем возбуждения антенн и активных фазированных антенных решеток (АФАР) для связи, радиолокации, радионавигации и радиоэлектронной борьбы.

Недостатком существующих приемо-передающих модулей АФАР является их низкий КПД и связанные с этим проблемы энергопотребления и охлаждения, большие габариты и избыточная масса. Волоконно-оптические фотонные линии передачи мощных информационно-энергетических СВЧ сигналов имеют большие перспективы использования для совершенствования бортовых и стационарных радиолокационных систем на основе АФАР.

Одним из важнейших требований к АФАР является необходимость разнесения в пространстве антенного полотна АФАР (СВЧ излучатели) и аппаратурной основной части приемно-передающего модуля АФАР. Реализация этого требования с использованием обычных (радиоэлектронных) приемо-передающих модулей АФАР чрезвычайно трудна. Использование фотонных трактов на основе мощных информационно-энергетических фотодетекторных модулей для преобразования импульсного лазерного излучения позволит кардинально снизить нагрузку на антенное полотно, уменьшить его массу и габариты. При этом фотодетекторные СВЧ модули должны обеспечить высокоэффективное преобразование мощных импульсов лазерного излучения в гигагерцевом диапазоне частот.

Работа предлагаемого устройства основана на фотоэлектрическом преобразовании наносекундных и субнаносекундных оптических (лазерных) импульсов, передаваемых по оптоволокну, в мощные электрические импульсы с помощью быстродействующего мощного фотодетекторного СВЧ модуля.

Известен фотодетекторный СВЧ модуль, предназначенный для калибровки и контроля фазы каждого излучающего элемента в активной фазированной антенной решетке (см.

https://www.researchgate.net/publication/235084654_RF_Photonic_In-Situ_Real-Time_Phased_Array_Antenna_Calibration_System, W.M. Dorsey, M.G. Parent, S.A. Long, Ch.S. McDermitt, F. Bucholtz). В данном модуле используется фотонное устройство возбуждения, в состав которого входит маломощный фотодетектор, преобразующий промодулированный оптический сигнал в высокочастотный калиброванный (эталонный) электрический сигнал, способный возбудить небольшую дипольную антенну, находящуюся перед каждым излучающим элементом фазированной антенной решетки и работающую в ближней зоне.

Недостатками известного устройства служит малая (1 мВт) выходная мощность модуля, которой возбуждается небольшая дипольная антенна, передающая высокочастотный калиброванный сигнал на излучающий элемент антенной решетки, а сама дипольная антенна находится в ближней зоне каждого из элементов фазированной антенной решетки, то есть предлагаемое устройство не рассчитано для работы в дальней зоне для излучения высокочастотного сигнала в открытое пространство на большие расстояния и служит как источник высокочастотного гармонического калиброванного колебания с малой мощностью и узкой полосой пропускания.

Известен фотодетекторный СВЧ модуль (см. http://masters.donntu.org/2012/frt/samoylenko/diss/index.htm, Самойленко Д.А. «Исследование характеристик интегрированных микрополосковых активных антенн в защищенных системах связи»). В данном устройстве реализована концепция фотонной антенны, отличающейся от традиционной микроволновой антенны тем, что коаксиальный кабель заменен оптическим волокном, устройством возбуждения антенны является фотодетектор, а источником оптического сигнала - лазер. В фотодетекторе происходит преобразование амплитудно-модулированного оптического сигнала в электрический, который и возбуждает микроволновую антенну. Недостатком известного устройства, как утверждает автор, является большие потери при преобразовании, которые могут превышать 10 дБ и низкая выходная мощность СВЧ сигнала, ограниченная максимальным фототоком фотодетектора, который не превышает нескольких десятков миллиампер.

Известно устройство (см. патент US20040145026 «Photonic transmitter», Chi-Kuang Sun и др., дата публикаций 29 июля 2004 г., https://www.google.ch/patents/US20040145026), в котором «печатная» щелевая антенна соединена через секцию сопротивлений согласования, через копланарный волновод и интегрирована с фотодетектором. Недостатками известного устройства является низкая мощность, составляющая единицы милливатт.

Наиболее близким техническим решением-прототипом является фото детекторный СВЧ модуль (см. патент US2006140644, «High performance, high efficiency fiber optic link for analog and RF systems», A. Paolella, дата публикации 29 июня 2006 г., http://www.google.ch/patents/US20060140644), состоящий из фотодетектора, оптоволокна и антенны, в котором описан вариант преобразования промодулированного оптического сигнала в высокочастотный электрический сигнал с помощью одного фотодетектора и передача сигнала в антенну за счет прямого преобразования: модулированный оптический сигнал - оптоволокно - детектирование -антенна.

Недостатком известного устройства является небольшая мощность (1 мВт) устройства возбуждения, которая ограничивается мощностью одного фотодетектора, невозможностью оптимального согласования фотодетектора с антенной, что ведет к потере мощности генерируемого антенной сигнала и искажению самого сигнала.

Задача настоящего изобретения - повышение мощности фотодетекторного СВЧ модуля, преобразующего импульсы оптического излучения в мощные электрические импульсы, и оптимальное согласование с СВЧ нагрузкой.

Поставленная задача достигается тем, что фотодетекторный СВЧ модуль включает симметричный оптоволоконный разветвитель оптических СВЧ импульсов, подводимых через входное оптоволокно, и СВЧ фотодиоды, оптически стыкованные с выходными оптоволокнами разветвителя. К каждому фотодиоду приложено обратное смещение, величина напряжения которого задана подключенной к фотодиоду через нагрузочное сопротивление сборкой последовательно соединенных вентильных фотоэлементов, работающих без обратного напряжения смещения и облучаемых через оптоволокна непрерывным лазерным излучением.

Количество вентильных фотоэлементов в одной сборке установлено не более величины отношения максимально допустимого обратного напряжения смещения каждого СВЧ фотодиода к рабочему напряжению, генерируемому каждым вентильным фотоэлементом. Параллельно сборке вентильных фотоэлементов подсоединен конденсатор, емкость которого установлена не менее удвоенного отношения длительности оптических импульсов к величине нагрузочного сопротивления. Величина фототока вентильного фотоэлемента установлена равной фототоку СВЧ фотодиодов, умноженному на коэффициент заполнения СВЧ импульсов. Нагрузочные сопротивления соединены между собой последовательно, а общие выводы последовательной сборки нагрузочных сопротивлений подсоединены через СВЧ тракт к СВЧ нагрузке, например, передающей антенне, причем величина каждого нагрузочного сопротивления установлена равной отношению волнового сопротивления СВЧ нагрузки к количеству СВЧ фотодиодов. Количество СВЧ фотодиодов в модуле установлено равным заданной выходной импульсной мощности модуля, умноженной на коэффициент заполнения оптических импульсов и деленной на мощность вентильных фотоэлементов в одной сборке.

В заявленном фотодетекторном СВЧ модуле СВЧ фотодиоды и вентильные фотоэлементы могут быть выполнены на основе арсенида галлия с величиной допустимого обратного смещения 10В. Длительность оптических импульсов равна 1 не, скважность импульсов равна 8, фототок СВЧ фотодиодов равен 1А. Величина каждого нагрузочного сопротивления равна 8 Ом, волновое сопротивление СВЧ нагрузки равно 64 Ом. Рабочее напряжение вентильного фотоэлемента равно 1В, количество вентильных фотоэлементов в одной сборке равно 8, общее количество вентильных фотоэлементов равно 64, а фототок одного вентильного фотоэлемента равен 125 мА. Заданная импульсная выходная мощность устройства равна 64 Вт, а общая мощность всех вентильных фотоэлементов равна 8 Вт.При коэффициенте заполнения наносекундных оптических импульсов, равном 0,125, количество СВЧ фотодиодов равно 8.

Новизна настоящего фотодетекторного СВЧ модуля и эффективность предлагаемых технических решений состоят в следующем.

Включение в состав модуля симметричного оптоволоконного разветвителя позволяет равномерно распределить мощность импульсного наносекундного и субнаносекундного оптического излучения на несколько последовательно включенных через нагрузочные сопротивления СВЧ фотодиодов. Это позволяет увеличить мощность модуля пропорционально количеству СВЧ фотодиодов и увеличить выходное сопротивление модуля пропорционально величине и количеству нагрузочных сопротивлений, что, в свою очередь, позволяет согласовать выходное сопротивление модуля и волновое сопротивление антенной нагрузки.

Для дополнительного увеличения выходной мощности СВЧ фотодиодов к каждому из них приложено обратное смещение, величина напряжения которого задана сборкой последовательно соединенных вентильных фотоэлементов, работающих без обратного смещения.

Количество вентильных фотоэлементов в одной сборке, питающей один СВЧ фотодиод, должно быть равно отношению максимально допустимого обратного напряжения каждого фотодиода к рабочему напряжению, генерируемому каждым вентильным фотоэлементом и равно величине отношения суммарного количества всех вентильных элементов в модуле к суммарному количеству всех фотодиодов в модуле. Выполнение этого условия необходимо для предотвращения электрического пробоя СВЧ фотодиодов.

Сборка вентильных фотоэлементов подключена к каждому фотодиоду последовательно через нагрузочное сопротивление. Каждый фотоэлемент сборки облучается непрерывным оптическим излучением, генерируя электрическую мощность и заряжая параллельно подключенный к сборке конденсатор. В промежутке времени между приходом оптических импульсов электрическая энергия аккумулируется на конденсаторе и затем разряжается в течение импульса. Емкость конденсатора должна быть не менее удвоенного отношения длительности оптических СВЧ импульсов к величине нагрузочного сопротивления. При выполнении этого условия вся энергия, генерируемая сборкой фотоэлементов, будет перекачена в энергию импульсов фотодиода. При этом импульсная мощность фотодиода будет равна мощности вентильных фотоэлементов в сборке, умноженной на скважность оптических импульсов.

Для исключения «токовых» потерь величина фототока вентильного фотоэлемента установлена равной фототоку, генерируемому в СВЧ фотодиоде импульсным оптическим излучением, умноженному на коэффициент заполнения оптических импульсов.

Нагрузочные сопротивления в модуле соединены между собой последовательно, а крайние выводы последовательной сборки нагрузочных сопротивлений подсоединены через СВЧ тракт к СВЧ нагрузке. Величина каждого нагрузочного сопротивления установлена отношению волнового сопротивления СВЧ нагрузки к количеству СВЧ фотодиодов, то есть к количеству нагрузочных сопротивлений. Это позволяет осуществить согласование выходного сопротивления фотодетекторного СВЧ модуля с волновым сопротивлением антенны.

Импульсная мощность модуля равна суммарной импульсной мощности всех фотодиодов и равна суммарной постоянной мощности всех вентильных фотоэлементов, умноженной на скважность импульсного оптического сигнала. Из этого следует, что количество фотодиодов в модуле должно быть равным заданной импульсной мощности модуля, умноженной на коэффициент заполнения импульсного оптического сигнала и деленной на суммарную выходную мощность вентильных фотоэлементов в одной сборке, питающей один СВЧ фотодиод.

Настоящее техническое решение поясняется чертежами, где:

на фиг. 1 приведено схематическое изображение фотодетекторного СВЧ модуля с тремя СВЧ фотодиодами 6, 7, 8 и девятью вентильными фотоэлементами 12, 13, 14;

на фиг. 2 приведена блок-схема фотодетекторного СВЧ модуля на основе 4-х фотодетекторных блоков 23, 24, 25, 26. ФД - СВЧ фотодиоды, ФЭ - вентильные фотоэлементы, ОВР - оптоволоконный разветвитель.

Фотодетекторный СВЧ модуль, включает симметричный оптоволоконный разветвитель 1 оптических импульсов, подводимых через входное оптоволокно 2, выходные оптоволокна 3, 4, 5 разветвителя оптически стыкованы с СВЧ фотодиодами 6, 7, 8, работающими при обратном смещении (см. фиг. 1 и фиг. 2).

Величина напряжения каждого фотодиода задана подключенной к фотодиоду через нагрузочное сопротивление 9, 10, 11 сборкой последовательно соединенных вентильных фотоэлементов 12, 13, 14, работающих без обратного напряжения смещения и облучаемых через оптоволокна 15, 16, 17 непрерывным оптическим излучением (см. фиг. 1 и фиг. 2).

Количество вентильных фотоэлементов в каждой сборке установлено равным отношению максимально допустимого обратного напряжения смещения каждого СВЧ фотодиода к рабочему напряжению, генерируемому каждым вентильным фотоэлементом. Параллельно сборке вентильных фотоэлементов подсоединен конденсатор 18, емкость которого установлена не менее значения удвоенного отношения длительности импульсов к величине нагрузочного сопротивления.

Величина фототока, генерируемого в вентильных фотоэлементах 12, 13, 14 непрерывным оптическим излучением, установлена равной фототоку фотодиодов 6, 7, 8, умноженному на коэффициент заполнения оптических импульсов.

Нагрузочные сопротивления соединены между собой последовательно, а общие выводы 19, 20 последовательной сборки нагрузочных сопротивлений подсоединены через СВЧ тракт 21 к СВЧ нагрузке, например, антенне 22 (см. фиг. 1 и фиг. 2).

Величина каждого нагрузочного сопротивления 9, 10, 11 установлена равной отношению волнового сопротивления СВЧ нагрузки к количеству СВЧ фотодиодов 6, 7, 8, установленному равным заданной выходной импульсной мощности модуля, умноженной на коэффициент заполнения импульсного оптического сигнала и деленной на суммарную выходную мощность вентильных фотоэлементов 12, 13, 14 в одной сборке (см. фиг. 1 и фиг. 2).

Пример 1.

Фотодетекторный СВЧ модуль изготовлен на основе симметричного оптоволоконного разветвителя (1x8) с одним входным и 8-ю выходными оптоволокнами, оптически стыкованными с 8-ю СВЧ фотодиодами. СВЧ фотодиоды и вентильные элементы изготовлены на основе гетероструктуры AlGaAs/GaAs с фотоактивной областью, выполненной на основе арсенида галлия. Длительность оптических импульсов tимп=1 нс, частота следования импульсов 125 МГц, скважность импульсного оптического сигнала S=8. Величина фототока СВЧ фотодиода равна Iфд=1 А. Величина обратного допустимого напряжения фотодиодов составляет Uфд=10 В. Количество вентильных фотоэлементов (), последовательно соединенных в одной сборке, составляет =8. При величине рабочего напряжения одного вентильного фотоэлемента равной Uфэ=1 В обратное напряжение смещения, приложенного к каждому СВЧ фотодиоду составляет Uфд=8 В, а величина нагрузочного сопротивления Rн=8 Ом. Величина емкости, подсоединенной параллельно каждой сборке вентильных фотоэлементов, составляет С=250 пф. Эта емкость равна удвоенному отношению длительности оптических импульсов tимп=10-9 с к нагрузочному сопротивлению 8 Ом. Величина нагрузочного сопротивления Rн=8 Ом обеспечивает согласование сопротивления сборки из 8-ми последовательно соединенных СВЧ фотодиодов с СВЧ нагрузкой, характеризующейся величиной волнового сопротивления Ra=64 Ом. При величине выходной мощности каждого вентильного фотоэлемента равной 125 мВт и фототоке Iфэ=125 мА, суммарном количестве вентильных фотоэлементов 64 и коэффициенте заполнения импульсного оптического сигнала равном D=0,125 выходная импульсная мощность модуля составляет 64 Вт.

Пример 2.

Фотодетекторный СВЧ модуль изготовлен на основе симметричного оптоволоконного разветвителя 1×16. СВЧ фотодиоды и вентильные элементы изготовлены на основе гетероструктуры AlGaAs/GaAs. Длительность оптических импульсов tимп=1 нс, скважность импульсов S=5. Величина импульсного фототока СВЧ фотодиода равна Iфд=250 мА. Количество вентильных фотоэлементов в одной сборке =8. Величина рабочего напряжения Uфэ=1 В, величина обратного напряжения смещения СВЧ фотодиода Uфд=8 В, а величина нагрузочного сопротивления Rн=16 Ом. Количество СВЧ фотодиодов в устройстве Nфд=16. Величина емкости С=200 пф. Величина нагрузочного сопротивления обеспечивает согласование модуля с СВЧ нагрузкой, имеющей волновое сопротивление Ra=256 Ом. При мощности каждого вентильного фотоэлемента =50 мВт и фототоке Iфэ=50 мА, общем количестве фотоэлементов Nфэ=128 и коэффициенте заполнения импульсов D=0,2 выходная импульсная мощность модуля составляет Рм=32 Вт.

Пример 3.

Фотодетекторный СВЧ модуль изготовлен на основе оптоволоконного разветвите ля 1×8. СВЧ фотодиоды и вентильные элементы изготовлены на основе гетероструктуры AlGaAs/GaAs. tимп=1 нс, S=10, Iфд=1 А, С=200 пф, =6, Uфэ=1 В, Rн=6 Ом, Rа=48 Ом. =100 мВт, Iфэ=100 мА, Nфд=8, Nфэ=48, D=0,1. Импульсная мощность модуля составляет 48 Вт.

1. Фотодетекторный СВЧ модуль, включающий симметричный оптоволоконный разветвитель оптических СВЧ импульсов, подводимых через входное оптоволокно, и СВЧ фотодиоды, оптически стыкованные с выходными оптоволокнами оптического разветвителя, к каждому фотодиоду приложено обратное смещение, величина напряжения которого задана последовательно соединенной с фотодиодом через нагрузочное сопротивление сборкой вентильных фотоэлементов, работающих без обратного напряжения смещения и облучаемых через оптоволокна непрерывным оптическим излучением, количество вентильных фотоэлементов в одной сборке установлено не более величины отношения максимально допустимого обратного напряжения смещения каждого СВЧ фотодиода к рабочему напряжению, генерируемому каждым вентильным фотоэлементом, параллельно сборке вентильных фотоэлементов подсоединен конденсатор, емкость которого установлена не менее удвоенного отношения длительности импульсов к величине нагрузочного сопротивления, величина фототока вентильного фотоэлемента установлена равной величине импульсного фототока, генерируемого в СВЧ фотодиоде импульсным оптическим излучением, умноженной на коэффициент заполнения оптических импульсов, нагрузочные сопротивления соединены между собой последовательно, а общие выводы последовательной сборки нагрузочных сопротивлений подсоединены через СВЧ тракт к СВЧ нагрузке, причем величина каждого нагрузочного сопротивления установлена равной отношению волнового сопротивления СВЧ нагрузки к количеству СВЧ фотодиодов, установленному равным заданной выходной импульсной мощности модуля, умноженной на коэффициент заполнения импульсного оптического сигнала и деленной на суммарную мощность вентильных фотоэлементов в одной сборке.

2. Фотодетекторный СВЧ модуль по п. 1, отличающийся тем, что модуль изготовлен на основе симметричного оптоволоконного разветвителя 1×8 с одним входным и восемью выходными оптоволокнами, длительность оптических СВЧ импульсов составляет 1 нс, СВЧ фотодиоды и вентильные фотоэлементы выполнены на основе арсенида галлия с величиной допустимого обратного смещения 10 В, импульсный фототок СВЧ фотодиода равен 1 А, величина каждого нагрузочного сопротивления равна 8 Ом, величина емкости равна 250 пф, волновое сопротивление СВЧ нагрузки равно 64 Ом, рабочее напряжение вентильного фотоэлемента равно 1 В, количество вентильных фотоэлементов в одной сборке равно 8, общее количество вентильных фотоэлементов равно 64, импульсная выходная электрическая мощность модуля равна 64 Вт, выходная мощность одного вентильного элемента равна 125 мВт при фототоке, равном 125 мА, общая мощность всех вентильных фотоэлементов равна 8 Вт, коэффициент заполнения импульсного оптического сигнала равен 0,125, количество фотодиодов равно 8.



 

Похожие патенты:

Изобретение относится к области оптико-электронного приборостроения и касается способа защиты приемника оптического излучения. Способ включает в себя прием входного оптического потока матричным фотоприемным устройством (МФПУ), измерение величины ii выходного сигнала каждого i-го чувствительного элемента (ЧЭ) МФПУ, где - номер ЧЭ МФПУ, N - количество ЧЭ в МФПУ, и сравнение их значения с пороговым значением iП.

Изобретение относится к области полупроводниковой техники. Входное окно предназначено для использования в вакуумных фотоэлектронных приборах проксимити типа.

Настоящее изобретение относится к люминесцентному фотогальваническому генератору (1) и волноводу для использования в таком фотогальваническом генераторе. Фотогальванический генератор содержит фотогальванический элемент (4) и волновод, содержащий прозрачную матрицу (2), имеющую частицы неорганического люминесцентного материала, рассредоточенные в ней, и/или неорганический люминесцентный материал, расположенный по меньшей мере на одной ее стороне.

Гибридная фоточувствительная схема содержит: алмазный матричный фотоприемник (МФП), индиевые столбики и кремниевый мультиплексор с чувствительными площадками. В состав МФП входят: верхний плоский электрод, на который подается напряжение смещения, алмазная пластина и нижние электроды чувствительных элементов алмазного МПФ, с которых снимается сигнал.
Изобретение относится к гибридному органически-неорганическому мономерному материалу, а именно к способу его получения. .

Изобретение относится к устройствам фотоэлектрического преобразования и системе формирования изображения. .

Изобретение относится к области микроэлектроники, в частности к полупроводниковым приемникам, предназначенным для регистрации излучений и заряженных частиц. .

Фотодиод // 1512430

Изобретение относится к области радиотехники, в частности к радиофотонике, и может быть использовано при конструировании систем возбуждения антенн и антенных решеток для связи, радиолокации и радиоэлектронной борьбы.
Группа изобретений относится к интерфейсу для осуществления оптической связи с использованием массива оптических волокон. Оптический соединитель, кабель и устройство оптической связи содержат: линзу, выполненную с возможностью собирать входящий световой сигнал на пути передачи света или блоке детектирования света; корпус, который удерживает несколько линз и путь передачи света или блок детектирования света и который соединен с оптическим соединителем передающей световой сигнал стороны.
Группа изобретений относится к интерфейсу для осуществления оптической связи с использованием массива оптических волокон. Оптический соединитель, кабель и устройство оптической связи содержат: линзу, выполненную с возможностью собирать входящий световой сигнал на пути передачи света или блоке детектирования света; корпус, который удерживает несколько линз и путь передачи света или блок детектирования света и который соединен с оптическим соединителем передающей световой сигнал стороны.

Изобретение относится к волоконно-оптической технике и предназначено для использования в различных волоконно-оптических системах, использующих некогерентные источники излучения, в том числе в интроскопах, источниках дистанционного электропитания на базе световодов.

Изобретение относится к области оптической техники и касается способа позиционирования кора оптического волокна над светочувствительной областью фотодетектора. Способ включает в себя подведение кора оптического волокна к поверхности на расстояние , после чего кор оптического волокна перемещают параллельно поверхности фотодетектора до достижения минимума интенсивности, соответствующего первой дорожке электрического контакта.

Изобретение относится к области оптической техники и касается способа позиционирования кора оптического волокна над светочувствительной областью фотодетектора. Способ включает в себя подведение кора оптического волокна к поверхности на расстояние , после чего кор оптического волокна перемещают параллельно поверхности фотодетектора до достижения минимума интенсивности, соответствующего первой дорожке электрического контакта.

Группа изобретений относится к волоконно-оптической технике и предназначено для использования в различных волоконно-оптических системах, использующих некогерентные источники излучения, в том числе в интроскопах, источниках дистанционного электропитания на базе световодов.

Изобретение относится к передаче сигналов по оптоволоконным кабелям, в частности к устройству для физического и оптического соединения оптического волокна для маршрутизации оптических сигналов.

Изобретение относится к технике связи и может использоваться для одновременной полнодуплексной передачи данных и мощности по одиночному оптическому волноводу. Технический результат состоит в повышении пропускной способности передачи сигналов.

Заявленное изобретение относится к элементам коннекторов для оптического волокна, в частности к устройству муфт в оптоволоконных коннекторах. Представленная муфта содержит корпус, поддерживающий концевой участок оптических волокон и имеющий внешнюю поверхность для выравнивания с комплементарной поверхностью выравнивающей втулки, где внешняя поверхность корпуса является в целом цилиндрической, имеющей профиль сечения поверхности контакта, которая в целом имеет овальную форму, причем корпус содержит две полумуфты, где множество продольных открытых канавок предусмотрены, по крайней мере, на поверхности одной из полумуфт, где полумуфта, имеющая множество канавок, сформирована из заготовки штамповкой, таким образом, определяя канавки по отношению к внешней поверхности полумуфты.

Изобретение относится к индикаторному устройству (5), содержащему по меньшей мере один индикатор (3), монтажную плату (6) с по меньшей мере одним электрическим светящим элементом (7), к которому с целью производства света из электрической энергии подведены контакты на монтажной плате (6), по меньшей мере один световод (8), содержащий поверхность (9) ввода, поверхность (10) вывода и светопроводящий участок (11), выполненный с возможностью пропускания света светящего элемента (7), поступившего через поверхность (9) ввода, к поверхности (10) вывода, оптически связанной с индикатором (3), и держатель (12), закрепленный на монтажной плате (6) и содержащий по меньшей мере один световод (8). Кроме того, изобретение относится к бытовому прибору (1), содержащему такое индикаторное устройство (5). 2 н. и 6 з.п. ф-лы, 3 ил.
Наверх