Устройство аппаратурного шифрования и передачи данных в локальных сетях

Авторы патента:


Устройство аппаратурного шифрования и передачи данных в локальных сетях
Устройство аппаратурного шифрования и передачи данных в локальных сетях
Устройство аппаратурного шифрования и передачи данных в локальных сетях
H03K3/84 - Импульсная техника (измерение импульсных характеристик G01R; механические счетчики с электрическим входом G06M; устройства для накопления /хранения/ информации вообще G11; устройства хранения и выборки информации в электрических аналоговых запоминающих устройствах G11C 27/02; конструкция переключателей для генерации импульсов путем замыкания и размыкания контактов, например с использованием подвижных магнитов, H01H; статическое преобразование электрической энергии H02M;генерирование колебаний с помощью схем, содержащих активные элементы, работающие в некоммутационном режиме, H03B; импульсная модуляция колебаний синусоидальной формы H03C;H04L ; схемы дискриминаторов с подсчетом импульсов H03D;

Изобретение относится к шифровальным устройствам на основе стандарта шифрования данных, более конкретно к шифрованию данных по стандарту ГОСТ 28147-89 и AES. Технический результат - повышение уровня защищенности каналов беспроводной связи за счет системы аппаратного шифрования с использованием алгоритма ГОСТ 28147-89 на базе криптографического блока, аппаратная реализация которого выполнена с использованием программируемой логической интегральной схемы Xilinx Spartan-6 XC6SLX25. Предлагаемое устройство позволяет организовывать аппаратное шифрование и передачу данных по локальным сетям беспроводной связи с использованием стандарта шифрования данных ГОСТ 28147-89 при работе с устройствами, в том числе и с мобильными устройствами, поддерживающими интерфейсы USB и IEEE 802.11. 2 ил.

 

Изобретение относится к шифровальным устройствам на основе стандарта шифрования данных, более конкретно к шифрованию данных по стандарту ГОСТ 28147-89 и AES.

Стандартным алгоритмом шифрования данных в РФ является ГОСТ 28147-89. В то же время в современной аппаратуре часто необходимо использовать алгоритм шифрования AES, принятый на Западе.

Оба алгоритма имеют схожую структуру. ГОСТ 28147-89 строится на основе сети Фейстеля, AES - на основе SP-сети. Обе структуры являются итеративными и с точки зрения аппаратной реализации сводятся к тому, что входной блок данных, который нужно зашифровать/расшифровать, загружается в накопитель и далее подвергается последовательности преобразований (раундов).

В качестве алгоритмов шифрования данных в сетях беспроводной связи наиболее широко применение находят алгоритмы шифрования данных DES и AES, имеющие определенные недостатки, связанные с существованием слабых ключей и с низкой устойчивостью при атаке с использованием дифференциального криптографического анализа [Синьковский А.В. Разработка эффективных решений по защите информации с использованием фрактального моделирования в условиях автоматизированного проектирования и производства: автореферат диссертации канд. тех. наук: 11.09.07. М., 2007], что позволяет сделать вывод о недостаточном уровне защищенности каналов беспроводной связи для их массового применения в автоматизированной системе управления (АСУ).

Одной из альтернатив алгоритмам шифрования данных DES и AES является алгоритм шифрования ГОСТ 28147-89. Системы обработки информации. Защита криптографическая. Вед. 01.07.90. М.: Изд. стандартов. 1996, также не лишенный недостатков, связанных, в частности, с неполнотой стандарта области таблиц замены [Ростовцев А.Г., Маховенко Е.Б., Филиппов А.С., Чечулин А.А. О стойкости ГОСТ 28147-89 // Проблемы информационной безопасности. Компьютерные системы. 2003. №1. С. 75-83].

Известные устройства шифрования и передачи данных, как правило, содержат проводные интерфейсы, преобразователи интерфейсов, криптографический блок, приемопередатчик с встроенной антенной, модуль преобразования электрической энергии, аккумуляторную батарею, переключатель режимов работы криптографического блока и генератор тактовых импульсов.

Известны способы шифрования информации, например Способ блочного шифрования информации // 2266622, Способ шифрования, устройство шифрования, способ дешифрирования и устройство дешифрирования 225767, https://findpatent.ru/patent/249/2494471.html © FindPatent.ru - патентный поиск, 2012-2016.

Следует также отметить наличие различных подходов к реализации данного алгоритма на базе различных аппаратных средств [Коробицын В.В., Ильин С.С. Реализация симметричного шифрования по алгоритму ГОСТ 28147-89 на графическом процессоре // Информационные технологии. 2008. №10. С. 46-51; Коробицын В.В., Ильин С.С. Реализация симметричного шифрования по алгоритму ГОСТ 28147-89 на графическом процессоре с использованием технологии CUDA // Информационные технологии. 2011. №4. С. 41-46; Mahmoud R.A., Saeb М.А Metamorphic-Key-Hopping GOST Cipher and its FPGA Implcmentation // The International Journal of Computer Science and Communication Security. 2013. V3. P. 51-60].

Проведенный анализ уровня техники позволил установить, что аналоги, характеризующиеся совокупностью признаков, тождественных всем признакам заявленного технического решения, отсутствуют в известных источниках информации, что указывает на соответствие заявленного устройства условию патентоспособности «новизна».

Результаты поиска известных решений в данной и смежных областях техники с целью выявления признаков, совпадающих с отличительными от прототипа признаками заявленного объекта, показали, что они не следуют явным образом из уровня техники. Из уровня техники также не выявлена известность защищенности каналов связи с использованием интегральной схемы типа Xilinx Spartan-6 XC6SLX25, предусматриваемых существенными признаками заявленного изобретения, на достижение указанного технического результата. Следовательно, заявленное изобретение соответствует условию патентоспособности «изобретательский уровень».

Целью настоящего изобретения является повышение уровня защищенности каналов беспроводной связи за счет системы аппаратного шифрования с использованием алгоритма ГОСТ 28147-89 на базе криптографического блока, аппаратная реализация которого выполнена с использованием программируемой логической интегральной схемы (ПЛИС) Xilinx Spartan-6 XC6SLX25.

Поставленная цель достигается тем, что в устройстве аппаратурного шифрования и передачи данных в локальных сетях, содержащем проводные интерфейсы, преобразователь интерфейсов, криптографический блок, приемопередатчик с встроенной антенной, модуль преобразования электрической энергии, аккумуляторную батарею, переключатель режимов работы криптографического блока и генератор тактовых импульсов, криптографический блок выполнен с использованием программируемой логической интегральной схемы типа Xilinx Spartan-6 XC6SLX25 и соединен с переключателем режимов работы, приемопередатчиком, к которому подключены антенны, через преобразователь и интерфейс USB с внешней антенной, а также с ключевым запоминающим устройством, которое соединено с устройством хранения таблиц и через программатор памяти и интерфейс USB с автоматизированным рабочим местом, причем модуль преобразователя соединен с аккумуляторной батареей и генератором тактовых импульсов, а также с ключевым запоминающим устройством и устройством хранения таблиц, при этом криптографический блок ПЛИС содержит два ядра шифрования данных, которые соединены между собой и с процессором, а он в свою очередь соединен с двумя приемопередатчиками, один из которых соединен с преобразователем интерфейсов, а также соединен с сопроцессором, который соединен с ключевым запоминающим устройством и устройством хранения таблиц, а генератор тактовых импульсов соединен с приемопередатчиками и с процессором и двумя ядрами шифрования данных.

Для защиты передачи данных по одному каналу необходимо как минимум два подобных устройства, образующих систему аппаратного шифрования и передачу данных.

На фиг. 1 представлена функциональная схема устройства. В состав устройства 1 входят следующие компоненты:

проводные интерфейсы USB 2, 11; преобразователь интерфейсов USB/SPI 3; криптографический блок на базе ПЛИС 4; приемопередатчик IEE 802/11 5 с встроенной радиоантенной 7; внешняя радиоантенна 6; ключевое запоминающее устройство 8; устройство хранения таблиц замены 19; программатор энергонезависимой памяти 10; модуль преобразователя электроэнергии 12; аккумуляторная батарея 13; переключатель режимов работы криптографического блока 14; генератор тактовых импульсов 15. В качестве преобразователя интерфейсов USB/SPI используется микросхема FT221X. Взаимодействие с внешними устройствами 16 осуществляется посредством проводного интерфейса USB. Для обеспечения взаимодействия с устройствами по беспроводным каналам связи используется модуль WizFi220 со встроенной антенной. Для ключевого запоминающего устройства используется микросхема электрически стираемого перепрограммируемого постоянного запоминающего устройства 24LC02B емкостью 2048 бит, что позволяет хранить восемь секретных ключей по 256 бит каждый. Взаимодействие между ключевым запоминающим устройством и внешними устройствами осуществляется посредством интерфейса I2C. Взаимодействие программатора энергонезависимой памяти с автоматизированным рабочим местом специалиста по информационной безопасности 17 осуществляется посредством проводного интерфейса USB 11. В качестве генератора тактовых импульсов используется широкополосный автогенератор тип DS1089L.

В состав источника электропитания 12 входят пять понижающих преобразователей напряжения LM3674 и один повышающий преобразователь напряжения МАХ 1676. Понижающее преобразователи напряжения используется для обеспечения ПЛИС питающим напряжением 1,2В, 2,5В и 3,3В; для обеспечения питания конфигурационного постоянного запоминающего устройства, необходимого для функционирования ПЛИС, для обеспечения питания радиоинтерфейса и генератора тактовых импульсов. Повышающий преобразователь напряжения используется для обеспечения питания энергонезависимой памяти. Питание преобразователя интерфейсов осуществляется через цепи питания и общего провода разъема USB.

В качестве аккумуляторной батареи 13 используются два литий-ионных аккумулятора форм-фактора 18650 емкостью по 3200 мА⋅ч, для управления процессом заряжания аккумуляторных батарей используется контроллер заряда bq24002. Процесс зарядки аккумуляторных батарей производится через цепи питания и общего провода разъема USB, таким образом, заряжать аккумуляторные батареи можно от персонального компьютера.

На фиг. 2 представлена схема криптографического блока ПЛИС 4.

Криптографический блок 4 реализован на базе ПЛИС Xilinx Spartan-6 XC6SLX25 с использованием серийного комплекса разработчика SK-iMX53-XC6SLX с использованием языка описания аппаратуры Verilog. Он состоит из процессора 18, криптографического сопроцессора 19, первого приемопередатчика SPI 20 и второго приемопередатчика SPI 21. В состав криптографического сопроцессора 19 входит ядро шифрования данных 22 и ядро дешифрования данных 23. Ядра шифрования и дешифрования данных аналогичны по своей структуре и включают в себя блоки выполнения криптографических преобразований в режиме простой замены, режиме гаммирования и режиме гаммирования с обратной связью. В состав ядер шифрования и дешифрования информации также входят мультиплексоры и демультиплексоры, предназначенные для коммутации внутренних каналов передачи данных в зависимости от выбранного режима работы криптографического сопроцессора. Выбор режима шифрования-дешифрования информации осуществляется с помощью переключателя режимов работы, входящего в состав модуля ключевого запоминающего устройства.

Предлагаемое устройство позволяет организовывать аппаратное шифрование и передачу данных по локальным сетям беспроводной связи с использованием стандарта шифрования данных ГОСТ 28147-89 при работе с устройствами, в том числе и с мобильными устройствами, поддерживающими интерфейсы USB и IEEE 802.11.

Устройство аппаратурного шифрования и передачи данных в локальных сетях, содержащее проводные интерфейсы, преобразователь интерфейсов, криптографический блок, приемопередатчик с встроенной антенной, модуль преобразования электрической энергии, аккумуляторную батарею, переключатель режимов работы криптографического блока и генератор тактовых импульсов, отличающееся тем, что криптографический блок выполнен с использованием программируемой логической интегральной схемы типа Xilinx Spartan-6 XC6SLX25 и соединен с переключателем режимов работы, приемопередатчиком, к которому подключены антенны, через преобразователь и интерфейс USB с внешней антенной, а также с ключевым запоминающим устройством, которое соединено с устройством хранения таблиц и через программатор памяти и интерфейс USB с автоматизированным рабочим местом, причем модуль преобразователя соединен с аккумуляторной батареей и генератором тактовых импульсов, а также с ключевым запоминающим устройством и устройством хранения таблиц, при этом криптографический блок содержит два ядра шифрования данных, которые соединены между собой и с процессором, а он в свою очередь соединен с двумя приемопередатчиками, один из которых соединен с преобразователем интерфейсов, а также соединен с сопроцессором, который соединен с ключевым запоминающим устройством и устройством хранения таблиц, а генератор тактовых импульсов соединен с приемопередатчиками и с процессором и двумя ядрами шифрования данных.



 

Похожие патенты:

Изобретение относится к заменяемому элементу для хост-устройства. Технический результат заключается в уменьшении вероятности использования не одобренных изготовителем заменяемых элементов.

Изобретение относится к способу и устройству для доступа к смарт-камере. Технический результат – улучшение безопасности и надежности доступа пользовательского терминала к смарт-камере, для случаев, когда пользовательский терминал не может получить доступ к сети Интернет, а значит, не может получить доступ к смарт-камере через сеть Интернет.

Группа изобретений относится к вычислительной технике и может быть использована для обработки сигналов. Техническим результатом является повышение скорости обработки, улучшение обнаружения сигнала.

Изобретение относится к области кибербезопасности. Технический результат заключается в обеспечении защищенности книги учета транзакций.

Изобретение относится к квантовой криптографии, лежащей в области защиты информации. Техническим результатом является повышение предельной частоты следования лазерных импульсов при фиксированном значении их ширины, что позволяет использовать автокомпенсационную схему на частоте, период которой равен ширине лазерного импульса, что является предельно возможным результатом.

Изобретение относится к области аутентификации пользователей. Технический результат – повышение эффективности аутентификации.
Изобретение относится к области печати данных. Технический результат заключается в обеспечении аутентификации заменяемого элемента.
Изобретение относится к области аутентификации пользователей. Технический результат – повышение эффективности аутентификации.

Изобретение относится к выполнению аутентификации с использованием персонального электронного устройства. Технический результат – повышение надежности аутентификации.

Изобретение относится к области вычислительной техники. Техническим результатом является уменьшение затрат времени на передачу управляющей команды при определении полномочий управления пользовательским устройством.

Группа изобретений относится к области радиосвязи и может быть использована в системах связи со сложными сигналами. Техническим результатом является повышение структурной скрытности шумоподобных сигналов на базе нелинейных рекуррентных последовательностей в виде кодов квадратичных вычетов, существующих в простых полях Галуа GF(p).

Изобретение относится к области криптографической защиты информации. Техническим результатом является повышение устойчивости передачи шифрованной информации к преднамеренным имитирующим воздействиям злоумышленника.

Изобретение относится к области криптографической защиты информации. Техническим результатом является повышение устойчивости передачи шифрованной информации к преднамеренным имитирующим воздействиям злоумышленника.

Изобретение относится к способу сжатия и шифрования файлов. Технический результат заключается в получении более эффективного способа сжатия данных без потерь.

Группа изобретений относится к вычислительной технике и может быть использована для вычисления хэш-функции. Техническим результатом является повышение быстродействия вычислений, расширение возможности выбора конфигурации устройства.

Группа изобретений относится к вычислительной технике и может быть использована для вычисления хэш-функции. Техническим результатом является повышение быстродействия вычислений, расширение возможности выбора конфигурации устройства.

Изобретение относится к шифрованию цифровых данных. Технический результат заключается в повышении защищенности данных.

Изобретение относится к шифрованию цифровых данных. Технический результат заключается в повышении защищенности данных.

Изобретение относится к области телекоммуникаций. Техническим результатом является обеспечение скрытности и повышение помехоустойчивости передаваемой информации.

Группа изобретений относится к области шифрования и может быть использована для генерирования последовательности случайных чисел. Техническим результатом является повышение защищенности от криптографической атаки.

Изобретение относится к области импульсной техники, а именно к многоступенчатым генераторам высоковольтных импульсов, выполненных по каскадной схеме умножения напряжения Аркадьева-Маркса.
Наверх