Нанокатализатор из монодисперсного переходного металла для синтеза фишера-тропша, способ его приготовления и его применение

Изобретение относится к области нанокатализатора для синтеза Фишера-Тропша. Описан нанокатализатор из монодисперсного переходного металла для синтеза Фишера-Тропша, включающий переходный металл и органический растворитель, где переходный металл устойчиво диспергирован в органическом растворителе в виде монодисперсных наночастиц; переходным металлом является марганец, железо, кобальт, рутений или смесь из них; переходный металл имеет размер зерна в пределах 1-100 нм; органическим растворителем является бензиловый эфир, ароматический спирт, пирролидон или жидкий парафин; и катализатор имеет удельную площадь поверхности в пределах 5-300 м2/г, причем указанный катализатор получен способом, включающим: (1) растворение органической соли указанного переходного металла в указанном органическом растворителе, содержащем многоатомный спирт, с получением смеси; и (2) нагревание и перемешивание смеси в присутствии воздуха или инертного газа, выдержку смеси при температуре в диапазоне 150-250°C в течение 30-240 мин с получением указанного нанокатализатора из монодисперсного переходного металла для синтеза Фишера-Тропша. Технический результат – высокая каталитическая активность катализатора, при этом размер зерна активного металла является управляемым. 3 н. и 5 з.п. ф-лы, 1 табл., 4 пр., 1 ил.

 

ОБЛАСТЬ ТЕХНИКИ ИЗОБРЕТЕНИЯ

[1] Изобретение относится к области катализатора для синтеза Фишера-Тропша, а более конкретно к нанокатализатору из монодисперсного переходного металла для синтеза Фишера-Тропша, способу его приготовления и его применению.

ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ

[2] Синтез Фишера-Тропша (синтез Ф-Т) является реакцией, в которой синтез-газ, приготовленный посредством газификации углеродных материалов, включающих уголь, природный газ и биомассу, переводят в целевой продукт, состоящий, главным образом, из алканов и олефинов. Целевой продукт содержит в небоьших количествах серу, азот и ароматические соединения, таким образом, целевой продукт перерабатывают для получения экологически чистого топлива. Синтез Ф-Т является идеальным способом полного использования углеродных материалов как замещение традиционного органического топлива. Поскольку импорт сырой нефти в Китае увеличивается, а требования по охране окружающей среды повышаются, синтез Ф-Т становится чрезвычайно важным для энергетической безопасности и защиты окружающей среды и привлекает внимание исследователей.

[3] Работа катализатора в синтезе Ф-Т тесно связана с химическим элементным составом. Элементы VIII группы, к примеру, железо, никель и рутений, имеют сильное каталитическое воздействие на синтез Ф-Т и используются как главные металлические компоненты катализатора. В катализаторах для промышленного синтеза Ф-Т используют, главным образом, железо или кобальт в качестве главных металлических компонентов и другие металлические элементы в качестве промоторов, с тем чтобы регулировать и улучшать рабочие характеристики катализатора.

[4] Традиционные способы приготовления катализатора для синтеза Ф-Т известны квалифицированному специалисту в области техники: катализатор на основе кобальта для синтеза Ф-Т обычно готовят способом пропитки, в котором активные компоненты металла загружают на поверхность оксидного носителя, а катализатор для синтеза Ф-Т на основе железа готовят способом соосаждения или способом плавления. Катализаторы, приготовленные с использованием разных способов, имеют, очевидно, разные рабочие характеристики для синтеза Ф-Т из-за разной микроструктуры катализаторов. Критичными для каталитических рабочих характеристик катализатора являются как пористая структура внутри частиц катализатора, так и распределение металлических частиц по размерам. Катализатор, приготовленный с использованием способа пропитки и процесса соосаждения, насыщен пористой структурой, следовательно, на каталитическое действие активного металла в порах влияет концентрация сырьевых материалов и внутренняя диффузия. Кроме того, когда активные компоненты металлических частиц заполняют поверхность носителя, удельная площадь поверхности доступного для воздействия активного компонента остается относительно маленькой, что ограничивает каталитическую производительность катализатора. В то же время исследователи указывают, что если размер металлических частиц регулируется в определенных пределах, то каталитическая активность катализатора и его селективность по продуктам при использовании в синтезе Ф-Т является наивысшей, однако из-за ограничений традиционных способов приготовления, размер металлических частиц на каталитической поверхности сложно регулировать.

[5] Ввиду приведенных выше проблем для улучшения каталитического действия исследователи обращаются к незагруженному (неимпрегнированному) катализатору из наночастиц, однако катализатор из наночастиц имеет такие недостатки, как низкая используемая температура, низкий выход продукта за один проход в единицу времени и активные компоненты с завышенными размерами. Например, в китайском патенте CN 200710099011 раскрывается способ проведения синтеза Ф-Т и специальный катализатор для синтезирования Ф-Т. В патенте смешивали соль переходного металла (железа, кобальта, никеля, рутения, родия или смеси из них) с высокомолекулярным стабилизатором (поливинилпирролидоном или (BVIMPVP)Cl) с образованием реакционной смеси и диспергировали реакционную смесь в жидкой среде. Реакционную смесь восстанавливали с использованием водорода при температуре в диапазоне 100-200°C для образования катализатора из переходного металла с наночастицами в пределах от 1 до 10 нм. Катализатор из переходного металла используется для синтеза Ф-Т при температуре в диапазоне 100-200°C. Однако концентрация наночастиц катализатора, приготовленного таким способом, относительно низкая, и наивысшая концентрация соли переходного металла в жидкой среде составляет лишь 0,014 моль/л. Кроме того, в патенте используется высокомолекулярное соединение в качестве стабилизатора, и катализатор можно использовать для синтеза Ф-Т, проводимого при температуре ниже чем 200°C; более того, выход продукта за один проход в единицу времени является относительно низким, и все это ограничивает промышленное использование катализатора. В китайском патенте CN200810055122 описан катализатор, используемый в реакторе с трехфазным пседоожиженным слоем (“slurry bed reactor”), способ приготовления катализатора и применение катализатора. В патенте нитрат переходного металла (железа, кобальта или никеля) растворяли в растворе спиртов С68 с прямой цепью и нагревали раствор при дефлегмировании, чтобы получить катализатор из переходного металла с наночастицами в пределах от 5 до 200 нм. Катализатор из переходного металла используется для синтеза Ф-Т в реакторе с трехфазным пседоожиженным слоем после его восстановления и активирования. Однако, благодаря кристаллизационной воде в нитрате, с одной стороны водородная связь на поверхности металлических частиц усиливается, и укрупнение кристаллических частиц улучшается (T. He, D. Chen, X. Jiao, Controlled Synthesis of Co3O4 Nanoparticles through Oriented Aggregation, Chem. Mater., 16 (2004) 737-743), а с другой стороны повышается температура разложения нитрата кобальта, что приводит в быстрому образованию и росту зародышей кристаллизации металла, что вместе приводит к конечным крупным агрегированным частицам (Li Zezhuang, Chen Jiangang, Wang Yuelun, Sun Yuhan, Preparation of Monodispersed Co/SiO2 Catalyst and Their Performance for Fischer-Tropsch Synthesis (J), Industrial Catalysis 2009, Vol. 17(9), 43-47).

КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

[6] Принимая во внимание описанные выше проблемы, одной из целей изобретения является предложение нанокатализатора из монодисперсного переходного металла для синтеза Фишера-Тропша, способа его приготовления и его применения. Катализатор имеет высокую каталитическую активность, а размер зерна активного металла катализатора является управляемым.

[7] Для достижения приведенной выше цели согласно варианту осуществления изобретения, предлагается нанокатализатор на основе монодисперсного переходного металла для синтеза Фишера-Тропша, включающий переходный металл и органический растворитель. Переходный металл стабильно диспергирован в органическом растворителе в виде монодисперсных наночастиц; переходный металл имеет размер зерна в пределах 1-100 нм; и катализатор имеет удельную площадь поверхности в пределах 5-300 м2/г.

[8] В разновидности этого варианта осуществления переходным металлом является марганец, железо, кобальт, рутений или смесь из них.

[9] В разновидности этого варианта осуществления органическим растворителем является бензиловый эфир, ароматический спирт, пирролидон или жидкий парафин.

[10] В разновидности этого варианта осуществления размер зерна переходного металл находится в пределах от 5 до 10 нм.

[11] В другом аспекте настоящее раскрытие также предусматривает способ приготовления нанокатализатора на основе монодисперсного переходного металла для синтеза Фишера-Тропша, способ, включающий:

[12] 1) растворение органической соли переходного металла в органическом растворителе, содержащем многоатомный спирт, для получения смеси;

[13] 2) нагревание и перемешивание смеси при наличии воздуха или инертного газа, выдержку смеси при температуре в диапазоне 150-250°C в течение 30-240 мин для получения нанокатализатора монодисперсного переходного металла для синтеза Фишера-Тропша.

[14] В разновидности этого варианта осуществления в 1) переходным металлом является марганец, железо, кобальт, рутений или смесь из них, а органической солью является оксалатная, ацетилацетонатная или карбонильная соль металла.

[15] В разновидности этого варианта осуществления в 1) многоатомным спиртом является С318 двухатомный или трехатомный спирт, и органическим растворителем является бензиловый эфир, ароматический спирт, пирролидон или жидкий парафин.

[16] В разновидности этого варианта осуществления в 1) молярное соотношение многоатомного спирта и органической соли переходного металла находится в пределах 1-5:1, а молярное соотношение органического растворителя и органической соли переходного металла находится в пределах 30-500:1.

[17] В классе этого варианта осуществления в 2) скорость нагрева смеси находится в пределах 1-10°C/мин, а время поддержания температуры находится в диапазоне 60-120 мин.

[18] Настоящее раскрытие дополнительно предусматривает способ синтеза Фишера-Тропа, включающий применение нанокатализатора из монодисперсного переходного металла по п.1, способ, включающий непосредственное использование катализатора для синтеза Фишера-Тропша без фильтрации, отделения, очистки, высокотемпературного обжига и активационного восстановления, и регулирование температуры реакции в диапазоне 180-300°C, давления реакции в пределах от 1 до 3 мегапаскалей, загрузочного объемного отношения подачи водорода к монооксиду углерода в пределах от 1 до 2,5 и общей объемной скорости в пределах от 0,5-15 л/час/г катализатора.

[19] Преимущества нанокатализатора из монодисперсного переходного металла для синтеза Фишера-Тропа согласно вариантам осуществления изобретения обобщают как следующие:

[20] Во первых, катализатор изобретения является непропитанным (неимпрегнированным) катализатором из металлических наночастиц, металлические наночастицы могут свободно перемещаться в процессе реакции, не требуется прикрепление к поверхности носителя, тем самым увеличивая удельную площадь поверхности и улучшая каталитические свойства катализатора. Кроме того, металлические наночастицы имеют высокую концентрацию.

[21] Во вторых, размер зерна частиц активного компонента является регулируемым, таким образом размером металлических наночастиц управляют.

[22] В третьих, способ приготовления по изобретению является простым и легким в эксплуатации, экологически чистым, можно регулировать размер зерна металлических наночастиц, а активный компонент устойчиво диспергирован (распределен) в органическом растворителе в виде монодисперсных наночастиц, дисперсный растворитель используется повторно.

[23] В четвертых, металлические наночастицы катализатора имеют высокую дисперсность в реакторе с трехфазным пседоожиженным слоем, без привлечения фильтрации, отделения, очистки, высокотемпературного обжига и активационного восстановления, катализатор можно непосредственно использовать для синтеза Фишера-Тропша, и он демонстрирует превосходные каталитические свойства и селективность продукта.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

[24] На Фиг. 1 представлен полученный с помощью трансмиссионного электронного микроскопа снимок нанокатализатора из монодисперсного переходного металла для синтеза Фишера-Тропша примера 1 по изобретению.

ПОДРОБНОЕ ОПИСАНИЕ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ

[25] Для дополнительной иллюстрации изобретение, эксперименты, подробно описывающие нанокатализатор из монодисперсного переходного металла для синтеза Фишера-Тропша, способ его приготовления и его применение описаны далее совместно с чертежами. Следует отметить, что следующие примеры предназначаются для описания, а не для ограничения изобретения.

Пример 1

[26] 6 г ацетилацетоната железа(III) растворяли в 550 мл раствора 2-пирролидона (с плотностью 1,116 г/мл) с последующим добавлением 3,5 г 1,2-дигидроксидодекана, чтобы получить смесь. После этого раствор нагревали при наличии механического перемешивания и воздуха до температуры 160°C со скоростью нагрева 1°C/мин. Раствор выдерживали в течение 120 мин при температуре 160°C и затем охлаждали до комнатной температуры, чтобы получить серо-черный коллоидный раствор наножелеза, который герметично закрывали, используя 250 мл жидкого парафина для использования.

[27] Приготовленный серо-черный коллоидный раствор наножелеза вместе с жидким парафином немедленно перемещали в реактор с трехфазным псевдоожиженным слоем (ʺсларриʺ реактор) для синтеза Фишера-Тропша. Температура реакции составляла 260°C, загрузочное объемное отношение водорода и монооксида углерода составляло 1,2, объемная скорость газа составляла 13,7 л/ч/г катализатора (скорость течения газа составляла 13 л/ч) и давление реакции составляло 2 МПа. При таких условиях оценка работы катализатора приведена в Таблице 1, при этом микроструктура катализатора показана на Фиг.1.

Пример 2

[28] 2,6 г оксалата кобальта(II) и 0,01 г нитрозилнитрата рутения(III) растворяли в 250 мл раствора дибензилового эфира, (с плотностью 1,04 г/мл) с последующим добавлением 10 г 1,2-гексадекандиола, чтобы получить смесь. После этого раствор нагревали при наличии механического перемешивания и газа аргона до температуры 250°C со скоростью нагрева 10°C/мин. Раствор выдерживали в течение 80 мин при температуре 250°C и затем охлаждали до комнатной температуры, чтобы получить темно-фиолетовый коллоидный раствор нанокобальта, который герметично закрывали, используя 250 мл жидкого парафина для использования.

[29] Приготовленный темно-фиолетовый коллоидный раствор нанокобальта вместе с жидким парафином немедленно перемещали в реактор с трехфазным псевдоожиженным слоем (ʺсларриʺ реактор) для синтеза Фишера-Тропша. Температура реакции составляла 180°C, загрузочное отношение водорода и монооксида углерода составляло 2,4, объемная скорость газа составляла 4,8 л/ч/г катализатора (скорость течения газа составляла 5 л/ч) и давление реакции составляло 3 МПа. При таких условиях оценка работы катализатора приведена в Таблице 1.

Пример 3

[30] 4 г ацетилацетоната железа(III) и 2 г ацетилацетоната кобальта(II) растворяли в 450 мл раствора бензилового спирта, (с плотностью 1,04 г/мл) с последующим добавлением 9 г 1,2,4-бутантриола, чтобы получить смесь. После этого раствор нагревали при наличии механического перемешивания и воздуха до температуры 200°C со скоростью нагрева 5°C/мин. Раствор выдерживали в течение 60 мин при температуре 200°C и затем охлаждали до комнатной температуры, чтобы получить темно-серый коллоидный раствор наноферокобальта, который герметично закрывали, используя 250 мл жидкого парафина для использования.

[31] Приготовленный темно-серый коллоидный раствор наноферокобальта вместе с жидким парафином немедленно перемещали в реактор с трехфазным псевдоожиженным слоем (ʺсларриʺ реактор) для синтеза Фишера-Тропша. Температура реакции составляла 200°C, загрузочное отношение водорода и монооксида углерода составляло 2, объемная скорость газа составляла 7,3 л/ч/г катализатора (скорость течения газа составляла 8 л/ч) и давление реакции составляло 1 МПа. При таких условиях оценка работы катализатора приведена в Таблице 1.

Пример 4

[32] 3,1 г пентакарбонила железа и 2,6 г декакарбонилдимарганца растворяли в 250 мл жидкого парафина, (с плотностью 0,87 г/мл) с последующим добавлением 5 г 1,2,8-октантриола чтобы получить смесь. После этого раствор нагревали при наличии механического перемешивания и азота до температуры 235°C со скоростью нагрева 8°C/мин. Раствор выдерживали в течение 100 мин при температуре 235 °C и затем охлаждали до комнатной температуры, чтобы получить темно-серый коллоидный наножелезомарганцевый раствор, который герметично закрывали для использования.

[33] Приготовленный темно-серый коллоидный наножелезомарганцевый раствор немедленно перемещали в реактор с трехфазным псевдоожиженным слоем (ʺсларриʺ реактор) для синтеза Фишера-Тропша. Температура реакции составляла 240°C, загрузочное объемное отношение водорода и монооксида углерода было 1,8, объемная скорость газа составляла 0,8 л/ч/г катализатора (скорость течения газа составляла 1 л/ч) и давление реакции составляло 2 МПа. При таких условиях оценка работы катализатора приведена в Таблице 1.

Таблица 1

Параметры Катализаторы по изобретению
Пример 1 Пример 2 Пример 3 Пример 4
Физико-химические свойства Средний размер зерна металлического кристалла (нм) 5,3 47,0 18,7 83,3
Удельная площадь поверхности катализаторов (м2/г) 288,3 17,4 54,1 8,6
Индекс оценки Температура реакции (°C) 260 180 200 240
Давление реакции (МПа) 2 3 1 2
Загрузочное объемное отношение водорода и монооксида углерода 1,2 2,4 2 1,8
Объемная скорость (л/ч/г катализатора) 13,7 4,8 7,3 0,8
Каталитические свойства Конверсия CO (%) 73,2 26,7 33,1 32,8
Селективность по метану (моль.%) 3,2 7,7 6,1 2,8
Селективность по диоксиду углерода (моль.%) 21,4 0,5 4,2 26,4
Селективность по C2-C4 углеводородам (моль./%) 23,6 16,3 19 22,9
Селективность по C5+ углеводородам (моль./%) 51,8 75,5 70,7 47,9
Данные в таблице были получены с помощью статистического анализа изображений, полученных с помощью трансмиссионного электронного микроскопа

[34] На основании физико-химических свойств и каталитических свойств катализатора, показанных в Таблице 1, с помощью способа получения, раскрытого в настоящем описании, можно быстро изготовить высокоактивный катализатор с металлическими частицами наноразмеров с разными размерами зерна. Как правило, чем меньше размер зерна катализатора, тем больше активная удельная площадь поверхности и выше каталитическая активность. Однако стабильность катализатора будет снижаться. Нанометаллический катализатор с размером зерна 5-20 нм демонстрирует более универсальные свойства. По сравнению с традиционными промышленными катализаторами, катализатор по изобретению демонстрирует лучшую каталитическую активность, более низкую селективность по метану, более высокую селективность для C2-C4 углеводородов, таким образом, катализатор по изобретению имеет лучшие перспективы использования.

1. Нанокатализатор из монодисперсного переходного металла для синтеза Фишера-Тропша, включающий

переходный металл; и

органический растворитель,

где

переходный металл устойчиво диспергирован в органическом растворителе в виде монодисперсных наночастиц;

переходным металлом является марганец, железо, кобальт, рутений или смесь из них;

переходный металл имеет размер зерна в пределах 1-100 нм;

органическим растворителем является бензиловый эфир, ароматический спирт, пирролидон или жидкий парафин; и

катализатор имеет удельную площадь поверхности в пределах 5-300 м2/г,

причем указанный катализатор получен способом, включающим:

1) растворение органической соли указанного переходного металла в указанном органическом растворителе, содержащем многоатомный спирт, с получением смеси; и

2) нагревание и перемешивание смеси в присутствии воздуха или инертного газа, выдержку смеси при температуре в диапазоне 150-250°C в течение 30-240 мин с получением указанного нанокатализатора из монодисперсного переходного металла для синтеза Фишера-Тропша.

2. Катализатор по п. 1, в котором размер зерна переходного металла находится в пределах 5-20 нм.

3. Способ приготовления нанокатализатора из монодисперсного переходного металла для синтеза Фишера-Тропша по п. 1, включающий:

1) растворение органической соли переходного металла в органическом растворителе, содержащем многоатомный спирт, с получением смеси; и

2) нагревание и перемешивание смеси в присутствии воздуха или инертного газа, выдержку смеси при температуре в диапазоне 150-250°C в течение 30-240 мин с получением нанокатализатора из монодисперсного переходного металла для синтеза Фишера-Тропша.

4. Способ по п. 3, где на стадии 1) переходным металлом является марганец, железо, кобальт, рутений или смесь из них, а органической солью является оксалатная, ацетилацетонатная или карбонильная соль металла.

5. Способ по п. 3 или 4, где на стадии 1) многоатомным спиртом является С318 двухатомный спирт или трехатомный спирт, а органическим растворителем является бензиловый эфир, ароматический спирт, пирролидон или жидкий парафин.

6. Способ по п. 3 или 4, где на стадии 1) молярное отношение многоатомного спирта и органической соли переходного металла находится в пределах 1-5:1, а молярное отношение органического растворителя и органической соли переходного металла находится в пределах 30-500:1.

7. Способ по п. 3 или 4, где на стадии 2) скорость нагрева смеси находится в пределах 1-10°C/мин, а время выдержки при температуре находится в пределах 60-120 мин.

8. Способ для синтеза Фишера-Тропа, включающий использование нанокатализатора из монодисперсного переходного металла по п. 1, причем способ включает непосредственное применение катализатора для синтеза Фишера-Тропша без фильтрации, отделения, очистки, высокотемпературного обжига и активационного восстановления, и регулирование температуры реакции в диапазоне 180-300°C, давления реакции в пределах от 1 до 3 МПа, загрузочного объемного отношения водорода и монооксида углерода в пределах 1-2,5 и общей объемной скорости в пределах от 0,5 до 15 л/ч/г катализатора.



 

Похожие патенты:

Изобретение относится к установке конверсии биомассы в жидкие углеводороды, используемые как компонент авиабензина. Установка для получения жидких углеводородов из биомассы включает в себя последовательно соединенные блоки: блок получения синтез-газа, блок очистки и осушки СГ(синтез-газа) и блок синтеза углеводородов, отличается тем, что в блоке получения СГ реализуется процесс двухстадийной термической конверсии биомассы в синтез-газ, сочетающий пиролиз с высокотемпературным крекингом летучих продуктов на коксовом остатке перерабатываемого сырья, а блок синтеза углеводородов включает в себя два последовательно соединенных реактора - реактор синтеза оксигенатов (метанола, ДМЭ) и легких углеводородов бензинового ряда (Р1) и реактор синтеза ароматических углеводородов (Р2) из оксигенатов, образующихся в первом реакторе, после их отделения от углеводородной части продукта, при этом ароматические углеводороды, образующиеся в Р2, в различных пропорциях смешивают с углеводородами бензинового ряда, образующимися в первом реакторе, с образованием углеводородной (у/в) смеси, используемой в дальнейшем как исходный компонент авиабензина.

Изобретение относится к способу синтеза углеводородов. Способ синтеза углеводорода осуществляют путем восстановления диоксида углерода в воде, в котором нанопузырьки кислорода образуются путем подачи кислорода в воду, содержащую диоксид углерода; вода, содержащая нанопузырьки кислорода, облучается ультрафиолетовым светом в присутствии фотокатализатора для производства активного кислорода; и диоксид углерода восстанавливается в присутствии активного кислорода.
Изобретение относится к способу производства жидкого топлива. Способ включает: а) конверсию твердого углеродсодержащего материала в блоке газификации с образованием сингаза газификатора; b) проведение сингаза газификатора в блок обработки газа и обработку в нем сингаза газификатора, при этом указанный блок обработки газа включает в себя блок удаления кислого газа, предназначенный для удаления менее 50% CО2, присутствующего в сингазе газификатора; c) образование по меньшей мере потока обработанного сингаза газификатора, содержащего по меньшей мере 50% CО2 сингаза газификатора, газового потока, обогащенного CО2, и потока, обогащенного серой; d) использование по меньшей мере 90% обогащенного CО2 газового потока при образовании сингаза газификатора; e) конверсию легкого ископаемого топлива в блоке конверсии легкого ископаемого топлива с образованием обогащенного H2 сингаза, содержащего H2 и CO в молярном отношении H2/CO по меньшей мере 2:1; f) объединение обработанного сингаза газификатора и обогащенного H2 сингаза с образованием смешанного сингаза, имеющего более высокое отношение Н2/СО, чем в потоке обработанного сингаза газификатора; g) конверсию смешанного сингаза с образованием жидкого топливного продукта и потока побочного продукта, содержащего одно или более веществ из водорода, CO, водяного пара, метана и углеводородов, содержащих 2-8 атомов углерода и 0-2 атомов кислорода; и h) реакцию до 100% потока побочного продукта в блоке конверсии легкого ископаемого топлива, чтобы способствовать образованию обогащенного H2 сингаза.

Изобретение относится к синтезу Фишера-Тропша. Способ синтеза Фишера-Тропша предусматривает подачу газообразных реагентов, содержащих по меньшей мере СО, Н2 и СО2, в реактор, содержащий катализатор на основе железа, причем Н2 и СО подают в мольном отношении H2 : СО по меньшей мере 2:1, а СО2 и СО подают в мольном отношении СО2 : СО по меньшей мере 0,5:1; регулирование рабочей температуры реактора в диапазоне от 260°С до 300°С, отвод жидкого продукта и газообразного продукта, содержащих углеводороды, СО, Н2, воду и СО2, из реактора; причем приближение к равновесию конверсии водяным паром в газообразном продукте, отводимом из реактора, согласно уравнению 5 составляет менее 0,9, где Т является рабочей температурой реактора в градусах Кельвина, а Р является парциальным давлением газов СО, СО2, H2 и водяного пара в газообразном продукте.

Изобретение относится к усовершенствованному способу обработки природного газа с применением способа Фишера-Тропша (FT) для синтеза не содержащих серы полностью сгорающих углеводородных топлив, примерами которых являются, в частности, дизельное топливо и авиационное топливо.

Изобретение относится к области синтеза Фишера-Тропша в промышленном катализе. Описан катализатор на основе кобальта для синтеза Фишера-Тропша, способ его приготовления и его применение.
Изобретение относится к технической области каталитического синтеза жидких топливных фракций. Описан носитель для селективного синтеза керосиновой фракции из синтез-газа, данный носитель содержит следующие компоненты в частях по массе: 5-50 частей мезопористого диоксида циркония (ZrO2), 10-55 частей силикоалюмофосфатного (SAPO) молекулярного сита, 5-50 частей модифицированного мезопористого молекулярного сита Al-SBA-16, 1-3 части порошка смолы сесбании и 10-70 частей глинозема.

Изобретение используется в способе синтеза углеводородов С5 и выше из природного газа через промежуточное превращение природного газа в синтез-газ и последующую конверсию СО и Н2 по реакции Фишера-Тропша.

Изобретение относится к способу синтеза углеводородов из сырья, содержащего синтез-газ, в котором применяют твердый катализатор Фишера-Тропша в трехфазной реакционной секции, выполненной таким образом, что упомянутый катализатор поддерживается в суспензии в жидкой фазе за счет циркуляции газовой фазы снизу вверх в упомянутой реакционной секции.

Описан катализатор синтеза Фишера-Тропша на основе кобальта, покрытый мезопористым материалом, и способ его получения. Катализатор содержит кремнеземный носитель, насыщенный на поверхности активным компонентом кобальта и селективным промотором циркония; снаружи активный компонент кобальта и селективный промотор циркония покрыт слоем оболочки мезопористого материала.

Настоящее изобретение относится к каталитической композиции для алкилирования ароматических углеводородов, таких как бензол или толуол, алифатическими спиртами, содержащими от 1 до 8 атомов углерода, содержащая: цеолит типа MTW, щелочные металлы, которые являются смесью ионов натрия и ионов калия, причем количество натрия составляет от 5 до 40 частей на млн., количество калия составляет от 5 до 80 частей на млн., общее количество щелочных металлов в каталитической композиции составляет менее 200 частей на млн.

Изобретение относится к композиции катализатора для обработки выхлопных газов, содержащей алюмосиликатное молекулярное сито, имеющее структуру AEI и молярное отношение кремнезема к глинозему от 20 до 30, и от 1 до 5 мас.% промотирующего металла, в расчете на общую массу материала молекулярного сита.

Изобретение относится к катализатору очистки выхлопного газа, содержащему два или больше каталитических слоев покрытия на субстрате, в котором каждый каталитический слой покрытия содержит частицы катализатора, имеющие состав, отличающийся от прилежащего каталитического слоя покрытия.

Изобретение описывает каталитическую композицию для очистки выхлопного газа из двигателя внутреннего сгорания, которая содержит покрытие из пористого оксида, содержащее цеолит, частицы подложки из оксида тугоплавкого металла и металл платиновой группы на подложке из частиц оксида тугоплавкого металла, при этом более 90% частиц оксида тугоплавкого металла, поддерживающих PGM, имеют размер частиц более 1 мкм и d50 менее 40 микрон.

Изобретение относится к катализатору реакции восстановления кислорода (ORR) и способу изготовления такого катализатора. Катализатор реакции восстановления кислорода (ORR) содержит углеродную подложку; первый слой аморфного оксида металла, лежащий поверх поверхности подложки; первый слой платины, лежащий поверх первого слоя аморфного оксида металла; второй слой аморфного оксида металла, лежащий поверх первого слоя платины; и второй слой платины, лежащий поверх второго слоя аморфного оксида металла.

Изобретение относится к каталитической композиции гидроочистки углеводородного сырья, способу изготовления такой каталитической композиции и ее использованию в способе каталитической гидроочистки углеводородного сырья.

В изобретении раскрывается способ получения порошкообразного материала из оксида церия на подложке из оксида алюминия. Органометаллический прекурсор церия должным образом расщепляется на наночастицы CeO2 при температуре 500-700°C в условиях кислородной среды методом химического осаждения в паровой фазе, и наночастицы CeO2 равномерно наносятся на подложку из Al2O3.

Изобретение описывает способ регенерации катализатора, содержащего титансодержащий цеолит в качестве каталитически активного материала, причем указанный катализатор использовался в способе получения оксида олефина, который включает: (i) обеспечение смеси, содержащей органический растворитель, олефин, эпоксидирующий агент и, по меньшей мере, частично растворенную калийсодержащую соль; (ii) воздействие на смесь, обеспеченную на стадии (i), в реакторе посредством условий эпоксидирования в присутствии катализатора с получением смеси, содержащей органический растворитель и оксид олефина, и с получением катализатора, содержащего осажденную на нем калиевую соль; причем указанный способ регенерации включает: (a) отделение смеси, полученной на стадии (ii), от катализатора; (b) промывку катализатора, полученного на стадии (а), с помощью жидкой водной системы, которая содержит менее чем 0,1 вес.

Изобретение относится к непрерывному способу получения пропиленоксида, который включает в себя (i) обеспечение жидкого потока поступающего материала, содержащего пропен, перекись водорода, ацетонитрил, воду, растворенный дигидрофосфат калия и необязательно пропан; (ii) подачу жидкого потока поступающего материала, обеспеченного на стадии (i), в реактор эпоксидирования, содержащий катализатор, содержащий титановый цеолит структурного типа MWW, и воздействие на жидкий поток поступающего материала условий реакции эпоксидирования; (iii) удаление отходящего потока из реактора эпоксидирования.

Изобретение относится к катализатору для очистки выхлопного газа от дизельного двигателя, содержащему: (а) 0,1-10% мас. переходного металла групп 8-11; и (b) 90-99,9% мас.

Настоящее изобретение относится к каталитической композиции для оксихлорирования этилена до 1,2-дихлорэтана, содержащей: подложку, имеющую осажденные на ней каталитически активные металлы, содержащие от 2 до 8 % по массе меди, от 0,1 до 0,6 моль/кг одного или более щелочных металлов, от 0,08 до 0,85 моль/кг одного или более щелочноземельных металлов, и от 0,09 до 0,9 моль/кг Mn, причем количество каждого из каталитически активных металлов приведено в расчете на общую массу композиции катализатора, все каталитически активные металлы нанесены на подложку в виде их хлоридов или других водорастворимых солей, подложка представляет собой псевдоожижаемую подложку, имеющую площадь поверхности по БЭТ от 80 до 220 м2/г, и причем каталитическая композиция не содержит редкоземельных металлов.
Наверх