Способ переработки фторкремнийсодержащих отходов производства алюминия

Изобретение относится к цветной металлургии, в частности к переработке отработанной футеровки электролизеров для получения алюминия с целью извлечения соединений фтора, возврата их в основное производство и иного использования. Способ включает измельчение, выщелачивание, разделение жидкой и твердой фазы пульпы, обработку раствора с выделением фторсодержащего продукта. В способе обрабатывают отходы капитального ремонта теплоизоляционной части алюминиевого электролизера, содержащие фтор, алюминий, натрий и кремний. Выщелачивание осуществляют солевым раствором, содержащим карбонат натрия в количестве не более 5,0 г/дм3, при молярном отношении фторида натрия к бикарбонату натрия на уровне 1,4-1,5÷1 с последующим разделением фаз и осаждением из раствора криолита с содержанием оксида кремния не более 0,9 мас.%. Обеспечивается получение криолита с пониженным содержанием кремния, отвечающего требованиям алюминиевой промышленности. 2 табл., 1 пр.

 

Изобретение относится к цветной металлургии, в частности к переработке отработанной футеровки электролизеров для получения алюминия с целью извлечения соединений фтора, возврата их в основное производство и иного использования. При использовании современных конструкций электролизеров для получения алюминия и «сухой» адсорбционной газоочистки основным видом отходов являются материалы капитального ремонта электролизеров, так называемая отработанная футеровка [ОФ]. При хранении на полигонах она может взаимодействовать с водой и воздухом с образованием токсичных соединений и щелочных фторсодержащих растворов. В то же время в связи с содержанием фторидов, соединений алюминия, натрия и углерода она может перерабатываться с полной утилизацией ценных компонентов и надежным обезвреживанием. За рубежом ОФ частично перерабатывается, в России частично утилизируется в черной металлургии, но, в основном, складируется на специально оборудованных полигонах.

Отработанную футеровку принято разделять на две части - углеродную и теплоизоляционную (огнеупорную). Способы переработки углеродной части, содержащей незначительное количество кремния, достаточно хорошо разработаны и используются в производстве. Теплоизоляционная чапсть содержит значительное количество кремния и ее переработка способами, аналогичными для углеродной части приведет к получению продуктов с высоким содержанием кремния, что неприемлемо для алюминиевой промышленности (согласно ГОСТ 10561-80 содержание SiO2 в криолите не должно превышать 0,9%). При демонтаже алюминиевого электролизера для капитального ремонта, наряду с углеродной частью, образуется смесь теплоизоляционных отходов следующего состава мас. %: С - 1-5; F - 8-12; Al - 12-16; Na - 7-10; Са - 0,5-1,0; Si - 16-20; Mg - 0,5-1,0; Fe - 1,0-2,0; прочие - 35-45. Прочие это в основном, кислород в виде Al2O3, SiO2. Способов переработки отходов такого состава с получением фторсодержащей продукции пригодной для использования при производстве алюминия до настоящего времени не разработано.

Важной задачей является переработка данного вида отходов для извлечения и использования содержащихся в них ценных компонентов. Такая переработка повышает технико-экономическую эффективность электролитического производства алюминия, снижает расходы на складирование и хранение отходов, снижает техногенную нагрузку на окружающую среду, улучшает экологическую обстановку.

Известен способ утилизации отработанной футеровки электролизеров (US №4889695, МПК C01F 7/50, С01В 7/19, 1985 г.) заключающийся в извлечении и возвращении в цикл ценных компонентов, таких как фториды металлов, щелочь и углерод. Процесс состоит из нескольких стадий. Отработанную футеровку измельчают до размера частиц 100 мкм, затем выщелачивают раствором гидроксида натрия (14 г/л) до образования обогащенного фторидом алюминия щелочного раствора и твердого остатка, содержащего углерод. С целью более полного удаления фторидов углесодержащий остаток обрабатывают нагретым до 105°С раствором Al(SO4)3 и H2SO4 (соотношение последних от 0,75 до 1,0). Полученный кислый фтористый раствор отделяют от частиц углерода фильтрованием. Затем раствор перерабатывают в несколько стадий с выделением AlF3 и NaOH. Недостатком способа является, то что процесс выщелачивания ведут в две стадии с использованием реагентов как щелочной, так и кислотной природы. Это усложняет аппаратурное оформление процесса, вызывает дополнительный расход реагентов, увеличивает объемы маточного раствора и промывных вод, подвергаемых затем утилизации и обезвреживанию. Кроме того, процесс не пригоден для переработки отходов с большим содержанием кремния, так как последний растворяется в кислых и щелочных растворах и затем переходит в продукт.

За прототип принят способ переработки фторуглеродсодержащих отходов электролитического производства алюминия (RU №2429198, МПК C01F 7/54 С22В 7, опубликовано 20.09.2011 г.) Твердые фторуглеродсодержащие отходы обрабатывают водным раствором каустической щелочи с концентрацией 25-35 г/дм3 при температуре 60-90°С, разделяют продукт на осадок и раствор с последующей подачей раствора в производство фтористых солей. Осадок после выщелачивания обрабатывают водным 1,0-1,5% раствором органической кислоты при температуре 60-80°С, разделяют продукт на осадок и раствор. Раствор подают в производство фтористых солей, а углеродистый осадок направляют на производство углеродсодержащей продукции. При обработке отходов раствором каустической щелочи, предпочтительно, поддерживают соотношение Ж:Т равным 10:1, а в качестве органической кислоты может быть использована щавелевая кислота. Данное изобретение позволяет извлечь из отходов ценные компоненты, максимальное количество фтора и алюминия, а также получить наиболее обесфторенный углеродный материал.

Основным недостатком способа является невозможность его применения для переработки отходов содержащих большое количество кремния. Кроме того, способ является сложным в аппаратурном оформлении, используются реагенты щелочной и кислой природы, способ характеризуется высокими энергетическими затратами.

Задачей предлагаемого технического решения является повышение технико-экономических показателей переработки отработанной футеровки, повышение потребительских свойств получаемого продукта, вовлечение в переработку отходов с высоким содержанием кремния.

Техническим результатом является получение криолита с пониженным содержанием кремния, отвечающего требованиям алюминиевой промышленности.

Технический результат достигаются тем, что способ переработки отработанной теплоизоляционной футеровки алюминиевого электролизера, включающий измельчение футеровки, выщелачивание, разделение жидкой и твердой фаз пульпы, обработку раствора с выделением фтористого продукта, согласно изобретению, обрабатываются отходы капитального ремонта теплоизоляционной части алюминиевого электролизера, содержащие фтор, алюминий, натрий и кремний, выщелачивание осуществляется солевым раствором, содержащим карбонат натрия в количестве не более 5,0 г/дм3, при молярном отношении фторида натрия к бикарбонату натрия на уровне 1,4-1,5÷1 с последующим разделением фаз и осаждением из раствора криолита с содержанием оксида кремния не более 0,9%.

Известное решение и предлагаемое характеризуется сходными общими признаками:

- способ переработки отработанной футеровки электролизера для получения алюминия с получением фторсодержащего продукта;

- выщелачивание отходов солевыми растворами;

- разделение продуктов на раствор и осадок;

фторсодержащие растворы используются для производства фтористых солей;

Предлагаемое решение так же характеризуется признаками, отличительными от признаков, характеризующих решение по ближайшему аналогу:

- обрабатываются фторсодержащие отходы алюминиевого производства, содержащие наряду с фтором, алюминием, натрием большое количество кремния;

- выщелачивание осуществляется растворами содержащими карбонат и бикарбонат натрия;

- выщелачивание осуществляется в одну стадию без применения кислых агентов;

Наличие в предлагаемом решении признаков, отличительных от признаков, характеризующих решение, принятое в качестве прототипа, позволяет сделать вывод о соответствии предлагаемого технического решения условию патентоспособности «новизна».

Сравнение предлагаемого технического решения с другими известными решениями в данной области, показывает следующее.

Не выявлено в результате поиска и сравнительного анализа технических решений, характеризующихся аналогичной с предлагаемым решением совокупностью признаков, обеспечивающих при использовании достижение аналогичных результатов, что позволяет сделать вывод о соответствии предлагаемого технического решения условию патентоспособности «изобретательский уровень».

Техническая сущность предлагаемого решения заключается в следующем:

Отработанная футеровка электролизеров для получения алюминия относится к опасным отходам, требующим обезвреживания перед хранением в отвалах. В то же время отработанная футеровка содержит основной полезный компонент - фтор, в связи с чем представляет интерес для переработки с целью извлечения ценных компонентов, сокращения мест хранения, улучшения экологической обстановки.

Технический результат достигается тем, что в способе переработки фторкремнийсодержащих отходов алюминиевого производства, включающий измельчение, выщелачивание, разделение жидкой и твердой фазы пульпы, обработку раствора с выделением фторсодержащего продукта, при том, что обрабатываются отходы капитального ремонта теплоизоляционной части алюминиевого электролизера, содержащие фтор, алюминий, натрий и кремний, выщелачивание осуществляется солевым раствором, содержащим карбонат натрия в количестве не более 5,0 г/дм3, при молярном отношении фторида натрия к бикарбонату натрия на уровне

1,4-1,5÷1 с последующим разделением фаз и осаждением из раствора криолита с содержанием оксида кремния не более 0,9 мас. %.

Отработанная футеровка состоит из двух частей: углеродной (так называемый первый срез) и теплоизоляционной (второй срез). Обе части футеровки в процессе эксплуатации пропитываются фтористыми солями. Углеродная часть содержит мало кремния и, в значительной степени, утилизируется в производство чугуна без предварительной обработки, либо перерабатывается другими, хорошо разработанными способами. Теплоизоляционная часть состоит из шамотного кирпича и диатомита и поэтому содержит много кремния. В процессе эксплуатации при высоких температурах в теплоизоляционную часть проникает электролит, содержащий 40-50% фтора и до 30% натрия, за счет чего происходит расплавление шамотного кирпича с образованием линз и разрушения части кирпичей фтористыми солями. Основными фазами теплоизоляционной футеровки являются: шамот, диатомит, фтористый натрий, криолит, примеси кальция, магния железа.

Переработка теплоизоляционной части футеровки способами, разработанными для углеродной части, нецелесообразна из-за высокого содержания кремния, который переходит при переработке во фтористые соли. Поэтому для переработки теплоизоляционной части должны применяться другие способы.

В представленном техническом решении способ основан на различной растворимости соединений кремния в растворе содержащем карбонат и бикарбонат натрия. Особенностью теплоизоляционной части отработанной футеровки является неоднородность ее состава. Отработанная теплоизоляционная футеровка каждого электролизера имеет индивидуальный состав. В таблице 1 представлен элементный состав теплоизоляционной части отработанной футеровки пяти электролизеров.

При работе электролизера в результате тепловых и электрохимических факторов с теплоизоляционной футеровкой взаимодействуют пары натрия и электролит. Основным механизмом попадания фтористых солей натрия к огнеупорному слою является капиллярное течение электролита по проницаемым порам подовых углеродных блоков, межблочных и периферийных швов, заполненных подовой массой. Это обусловлено тем, что при температурах электролиза вязкость электролита соизмерима с вязкостью воды. На практике к этому механизму добавляются протеки электролита в зазоры, трещины и другие дефекты подины, возникающие при ее обжиге. Считается, что реакция образования натрия в подовом блоке имеет вид:

При этом механизмами перемещения натрия через материал подового блока является диффузия и перенос натрия в виде пара. Чем больше проникает в теплоизоляционную футеровку электролита и паров натрия, тем больше образуется каустической щелочи, которая способствует растворению соединений кремния.

При выщелачивании водой отработанной теплоизоляционной части футеровки с небольшой и средней степенью разрушения образуются растворы с содержанием кремнезема не выше 0,18 г/дм3, что в дальнейшем позволяет получать криолит отвечающий требованиям алюминиевой промышленности. При выщелачивании теплоизоляционной футеровки с высокой степенью разрушения содержание кремнезема в растворе может

превышать уровень 0,4-0,6 г/дм3, что при переработке этих растворов не дает возможности получать качественный криолит. При использовании смеси футеровок содержание в растворе кремнезема не обеспечивает получение качественного криолита.

Нашими исследованиями установлено, что присутствие в растворе для выщелачивания бикарбоната натрия препятствует переходу кремния в раствор и обеспечивает, при дальнейшей переработке, получение качественного криолита. Другим компонентом раствора является карбонат натрия, который неизбежно присутствует в растворе за счет следующих факторов: образование в процессе выщелачивания футеровки; нейтрализация каустической щелочью бикарбоната натрия. Кроме того, карбонат натрия может поступать в процесс при использовании для выщелачивания растворов газоочистки и промывных вод, что производится для обеспечения замкнутого водооборота предприятий алюминиевой промышленности. Исследованиями установлено, что содержание в растворе для выщелачивания карбоната натрия не должно превышать 5,0 г/дм3, так как при более высоких концентрациях увеличивается переход кремния в раствор и соответственно в криолит (см. таблицу 2)

Необходимая концентрация бикарбоната натрия определяется двумя факторами: достаточностью для получения раствора с низким содержанием кремния и обеспечивающим эффективную переработку раствора на криолит. Переработка раствора осуществляется по содо-бикарбонатной схеме традиционно используемой на алюминиевых заводах для получения криолита из растворов газоочистки. Раствор после выщелачивания обрабатывается раствором алюмината натрия. Криолит образуется по реакции:

Полнота протекания реакции обеспечивается молярным отношением фтористого натрия к бикарбонату натрия 1,5÷1. При недостатке бикарбоната фтор осаждается неполностью, при избытке снижается содержание фтора в криолите за счет образования нежелательной примеси гидроалюмокарбоната

натрия . Бикарбонат натрия может вводится в виде сухих солей, либо с растворами газоочистки. Таким образом по предлагаемому способу теплоизоляционная отработанная футеровка выщелачивается раствором содержащим карбонат и бикарбонат натрия, концентрация Na2CO3 не должна превышать 5,0 г/дм3. Концентрация бикарбоната натрия определяется мольным соотношением фторида натрия к бкарбонату натрия равным 1,5÷1, концентрация фтористого натрия зависит от величины Ж÷Т и должна находится на уровне 14-25 г/дм3. Эта концентрация соответствует принятым условиям существующей технологии. Отношение Ж÷Т зависит от содержания фтора в исходной футеровке и по проведенным исследованиям может колебаться в пределах 8-15÷1. Температура и продолжительность выщелачивания не являются определяющими, приняты на традиционном уровне апробированы в лабораторных условиях и составляют 60°С и 60 минут.

Заявленный способ переработки фторкремнийсодержащих отходов производства алюминия испытан в лабораторных условиях.

Пример: Для испытаний использовали пробу теплоизоляционной части отработанной футеровки следующего состава мас. %: F - 9,2; Al - 15,0; Na - 9,2; Si - 20,0; Fe - 1,5; С - 2,1; прочие - 43. Прочие, в основном, кислород в виде Al2O3, SiO2. Измельченную пробу помещали в нагретый до 60°С раствор содержащий г/дм: 4,0 карбоната натрия (Na2CO3) и 21,5 бикарбоната натрия (NaHCO3), перемешивали в течение 60 минут. Количество пробы 50 грамм, количество раствора 500 мл. После отделения твердой фазы фильтрацией и промыванием 50 мл. дистиллированной воды получено 540 мл. раствора, содержащего г/дм3: NaF - 14,2; Na2CO3 - 4,2; NaHCO3 - 20,9. Из полученного раствора осадили криолит путем приливания раствора алюмината натрия, состава г/дм: Al2O3 - 250; Na2O - 260, в количестве 2,8 мл. После фильтрации и сушки получен криолит следующего состава мас. %: F - 49,2; Al - 13,1; Na - 31,8; SiO2 - 0,75; SO4 - 1,8; прочие - 3,35. Выход фтора в целевой продукт составил 55,6%, а за счет использования маточных

растворов после осаждения криолита в комплексной схеме переработки фторсодержащих отходов, выход фтора может повысится до 65-70%. Результаты экспериментальных данных по отработке технологии представлены в таблице 2.

Использование предлагаемого технического решения позволит осуществлять переработку отработанной теплоизоляционной футеровки алюминиевого электролизера с получением качественного продукта - криолита, который при технологии Содерберга востребован при производстве первичного алюминия, а при более современных технологиях с обожженными анодами и сухой газоочисткой может перерабатываться на более востребованные продукты - низкомодульный криолит и фтористый алюминий по известным технологиям. Данный способ может так же применятся для переработки фторкремнийсодержащих отходов непостоянного состава, таких как пыль с крыш цехов, россыпи и т.п.

Способ переработки фторкремнийсодержащих отходов алюминиевого производства, включающий измельчение, выщелачивание, разделение жидкой и твердой фазы пульпы, обработку раствора с выделением фторсодержащего продукта, отличающийся тем, что обрабатываются отходы капитального ремонта теплоизоляционной части алюминиевого электролизера, содержащие фтор, алюминий, натрий и кремний, выщелачивание осуществляется солевым раствором, содержащим карбонат натрия в количестве не более 5,0 г/дм3, при молярном отношении фторида натрия к бикарбонату натрия на уровне 1,4-1,5÷1 с последующим разделением фаз и осаждением из раствора криолита с содержанием оксида кремния не более 0,9 мас. %.



 

Похожие патенты:

Изобретение может быть использовано при подготовке сырья для черной металлургии. Для утилизации шлама хроматного производства проводят совместную переработку шламов хроматного производства с железорудным концентратом в процессе агломерации шихты.

Изобретение относится к области специальной металлургии получения сплавов на никелевой основе. Способ состоит в восстановлении и активации некондиционных отходов основного производства при подготовке шихтовых материалов для марочной выплавки металла.

Изобретение относится к способу селективного и экологически чистого совместного извлечения свинца и серебра в качестве концентрата из отходов гидрометаллургического производства.

Изобретение относится к переработке металлизированных упаковочных материалов, в частности - картонных коробок для напитков или блистерных упаковок. Металлизированный упаковочный материал подают в сепарационную систему, в которой удаляют растворимые в соляной кислоте и отличающиеся от алюминия металлы, представляющие собой железо или медь.
Изобретение относится к подготовке гальваношламов - гидроксидов тяжелых металлов, образующихся при очистке сточных вод гальванических участков, для последующей утилизации.

Изобретение относится к извлечению ртути из люминесцентных ламп. Установка содержит блок дробления люминесцентных ламп, состоящий из приемного бункера, щековой дробилки для первичного дробления ламп с получением стеклобоя, элеватора с винтовым конвейером для подачи в него стеклобоя, планетарной мельницы непрерывного действия для получения порошка из стеклобоя, соединенной трубопроводом с сепаратором, который выполнен с обеспечением разделения порошка по крупности за счет центробежной силы и направления грубодисперсного порошка в планетарную мельницу, а тонкодисперсного - в циклон для его сбора, связанный с циклоном посредством трубопровода с шлюзовым затвором блок обезвреживания тонкодисперсного порошка демеркуризационным раствором, емкость для сбора продукта переработки, приемный бак, соединенный посредством желоба с емкостью для сбора продукта переработки, фильтр с засыпкой из сульфоугля КУ-2, оснащенный насосом, выполненным с возможностью перекачки продукта переработки из приемного бака через фильтр.

Изобретение относится к способу регенерации сырьевых материалов, содержащих целлюлозу, пластмассы и металлы, из содержащих бумагу отходов, упаковочных материалов или композитных материалов, в котором целлюлозу сначала растворяют с использованием ионных жидкостей, а ионные жидкости восстанавливают посредством осаждения, причем способ содержит следующие технологические операции: измельчение сырьевого материала, очистка сырьевого материала, отделение фракции, содержащей целлюлозу, при помощи воды с получением в результате фракции целлюлозы и остальной части композитного материала, сушка фракции, содержащей целлюлозу, растворение целлюлозы в ионной жидкости, осаждение целлюлозы при помощи коагулянта, отделение целлюлозы в виде твердого вещества и сушка целлюлозы, отделение ионной жидкости от коагулянта для целлюлозы, очистка и отведение ионной жидкости, растворение пластмассы из остальной части композитного материала, отделение металла в виде твердого вещества и сушка металла, получение растворителя из раствора пластмассы, регенерирование остатка растворителя из пластмассы, и экструдирование пластмассы.
Изобретение относится к технологии переработки цинкосодержащего сырья. Способ извлечения цинка из оцинкованных стальных отходов включает кислотное удаление цинка с растворением цинка.

Изобретение относится к переработке германийсодержащих отходов оптического волокна. Отходы германийсодержащего оптического волокна подвергают совместному сжиганию с германийсодержащим углем.

Изобретение относится к отражательной печи для переплава алюминиевых ломов. Печь содержит корпус, образованный боковыми, передней и задней торцевыми стенками, ограниченную подом и стенками накопительную ванну, наклонную площадку, свод, две сливные летки, газоход.

Изобретение может быть использовано при получении фтористых солей, используемых в производстве алюминия электролитическим способом. Обработку регенерационного криолита проводят сульфатом алюминия или хлоридом алюминия при температуре 60-80°C в течение 20-120 минут при поддержании рН 2-4.

Изобретение относится к цветной металлургии. Осуществляют измельчение до 1 мм отходов теплоизоляционной части алюминиевого электролизера, содержащих фтор, алюминий, натрий и кремний.

Изобретение относится к получению алюминия и может быть использовано в цветной металлургии. Способ переработки отработанной углеродсодержащей футеровки алюминиевого электролизера включает измельчение футеровки, выщелачивание водным раствором каустической соды, разделение жидкой и твердой фаз пульпы, обработку раствора с выделением фтористого продукта.

Изобретение относится к цветной металлургии, в частности к переработке фторуглеродсодержащих отходов электролитического производства алюминия. .
Изобретение относится к области получения неорганических коагулянтов на основе соединений железа и алюминия. .

Изобретение относится к области цветной металлургии, в частности к способу очистки регенерационного криолита от соединений серы при электролитическом получении алюминия.
Изобретение относится к области неорганической химии и может быть использовано в производстве фтористых солей, в частности при получении криолита, используемого в процессе электролитического получения алюминия.

Изобретение относится к области химико-металлургической переработки рудного сырья, содержащего алюминий, с получением технических соединений алюминия, в частности криолита (Na 3AlF6).
Изобретение относится к способам очистки регенерационного криолита от сульфата натрия. .

Изобретение относится к цветной металлургии, в частности к переработке отработанной футеровки электролизеров для получения алюминия с целью извлечения соединений фтора, возврата их в основное производство и иного использования. Способ включает измельчение, выщелачивание, разделение жидкой и твердой фазы пульпы, обработку раствора с выделением фторсодержащего продукта. В способе обрабатывают отходы капитального ремонта теплоизоляционной части алюминиевого электролизера, содержащие фтор, алюминий, натрий и кремний. Выщелачивание осуществляют солевым раствором, содержащим карбонат натрия в количестве не более 5,0 гдм3, при молярном отношении фторида натрия к бикарбонату натрия на уровне 1,4-1,5÷1 с последующим разделением фаз и осаждением из раствора криолита с содержанием оксида кремния не более 0,9 мас.. Обеспечивается получение криолита с пониженным содержанием кремния, отвечающего требованиям алюминиевой промышленности. 2 табл., 1 пр.

Наверх