Способ получения нанокапсул танина

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул танина в оболочке из гуаровой камеди. Способ характеризуется тем, что в суспензию гуаровой камеди в бутаноле в присутствии 0,01 г Е472с при перемешивании 1000 об./мин, далее приливают диэтиловый эфир, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро : оболочка составляет 1:1, или 1:2, или 1:3. Способ обеспечивает упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул и может быть использовано в фармацевтической и пищевой промышленности. 3 пр.

 

Изобретение относится к области инкапсуляции, в частности получения микрокапсул, содержащих танин.

Ранее были известны способы получения микрокапсул лекарственных препаратов. Так, в Пат. 2092155 МПК A61K 047/02, A61K 009/16 опубликован 10.10.1997 Российская Федерация предложен метод микрокапсулирования лекарственных средств, основанный на использовании облучения ультрафиолетовыми лучами.

Недостатками данного способа являются длительность процесса и применение ультрафиолетового излучения, что может оказывать влияние на процесс образования микрокапсул.

В пат. 2091071 МПК A61K 35/10 Российская Федерация опубликован 27.09.1997 предложен способ получения препарата путем диспергирования в шаровой мельнице с получением микрокапсул.

Недостатком способа является применение шаровой мельницы и длительность процесса.

В пат. 2101010 МПК A61K 9/52, A61K 9/50, A61K 9/22, A61K 9/20, A61K 31/19 Российская Федерация опубликован 10.01.1998 предложена жевательная форма лекарственного препарата со вкусовой маскировкой, обладающая свойствами контролируемого высвобождения лекарственного препарата, содержит микрокапсулы размером 100-800 мкм в диаметре и состоит из фармацевтического ядра с кристаллическим ибупрофеном и полимерного покрытия, включающего пластификатор, достаточно эластичного, чтобы противостоять жеванию. Полимерное покрытие представляет собой сополимер на основе метакриловой кислоты.

Недостатки изобретения: использование сополимера на основе метакриловой кислоты, так как данные полимерные покрытия способны вызывать раковые опухоли; сложность исполнения; длительность процесса.

В пат. 2173140 МПК A61K 009/50, A61K 009/127 Российская Федерация опубликован 10.09.2001 способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.

Недостатком данного способа является применение специального оборудования - роторно-кавитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения.

В пат. 2359662 МПК A61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00 опубликован 27.06.2009 Российская Федерация предложен способ получения микрокапсул с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.

Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин).

Наиболее близким методом является способ, предложенный в пат. 2134967 МПК A01N 53/00, A01N 25/28 опубликован 27.08.1999 г. Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.

Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.

Техническая задача - упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).

Решение технической задачи достигается способом получения нанокапсул танина, отличающимся тем, что в качестве оболочки нанокапсул используется гуаровая камедь при их получении физико-химическим методом осаждения нерастворителем с использованием диэтилового эфира в качестве осадителя.

Отличительной особенностью предлагаемого метода является использование гуаровой камеди в качестве оболочки нанокапсул и танина - в качестве их ядра, а также использование лиэтилового эфира в качестве осадителя.

Результатом предлагаемого метода являются получение нанокапсул танина в гуаровой камеди при 25°С в течение 20 минут. Выход нанокапсул составляет 100%.

ПРИМЕР 1 Получение нанокапсул танина в соотношении ядро/оболочка 1:3

1 г танина добавляют в суспензию 3 г гуаровой камеди в бутаноле в присутствии 0,01 г препарата Е472с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота, как трехосновная, может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием) при перемешивании 1000 об/сек. Далее приливают 6 мл диэтилового эфира. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 4 г порошка. Выход составил 100%.

ПРИМЕР 2 Получение нанокапсул танина в соотношении ядро/оболочка 1:1

1 г танина добавляют в суспензию 1 г гуаровой камеди в бутаноле в присутствии 0,01 г препарата Е472с при перемешивании 1000 об/сек. Далее приливают 6 мл диэтилового эфира. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 2 г порошка. Выход составил 100%.

ПРИМЕР 3 Получение нанокапсул танина в соотношении ядро/оболочка 1:2

1 г танина добавляют в суспензию 2 г гуаровой камеди в бутаноле в присутствии 0,01 г препарата Е472с при перемешивании 1000 об/сек. Далее приливают 6 мл диэтилового эфира. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 3 г порошка. Выход составил 100%.

Способ получения нанокапсул танина, характеризующийся тем, что танин добавляют в суспензию гуаровой камеди в бутаноле в присутствии 0,01 г Е472с при перемешивании 1000 об./мин, далее приливают диэтиловый эфир, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро : оболочка составляет 1:1, или 1:2, или 1:3.



 

Похожие патенты:

Изобретение относится к нанотехнологии. В герметичную взрывную камеру помещают заряд взрывчатого вещества, содержащего исходный материал синтеза, например смесь тротила и гексогена, в форме диска с толщиной, близкой к критическому диаметру заряда, в ледяной оболочке.

Изобретение может быть использовано в целлюлозно-бумажной промышленности. Композиция агрегированного наполнителя содержит частицы наполнителя из измельченного карбоната кальция, средство для предварительной обработки, выбранное из поливиниламина и катионного полиакриламида или их смеси и нанофибриллярную целлюлозу.

Изобретение относится к области получения противоаэрозольных фильтров из волокнистых фильтрующих материалов. Фильтрующий слой изготовлен из полиакрилонитрильных нановолокон.

Изобретение относится к области нанотехнологий и может быть использовано в химии, биологии и медицине для визуализации и диагностики. Осуществляют межфазный перенос нанокристаллов из органической фазы в водную, используя в качестве катализатора межфазного переноса энантиомеры хиральных молекул с добавлением в органическую фазу 1-(2-пиридилазо)-2-нафтола (ПАН).
Изобретение относится к водородным технологиям и водородной энергетике. Водород-аккумулирующие материалы содержат следующие компоненты, мас.%: 97-75 MgH2 и 3-25 никель-графенового катализатора гидрирования, представляющего собой 10 или 25 мас.% наночастиц Ni размером 1-10 нм, равномерно закрепленных на графеновой поверхности.

Группа изобретений относится к спеченным твердым сплавам на основе карбида вольфрама, которые могут быть использованы для изготовления режущего инструмента для работы по труднообрабатываемым сталям и сплавам.

Изобретение относится к нанотехнологии. Углеродосодержащий материал обрабатывают в электрическом поле между электродом в виде иглы 1, подключенным к источнику высокого напряжения 2, и жидкостным проточным осадительным электродом 3.

Группа изобретений относится к фармацевтике и медицине и раскрывает полимерный комплекс для молекулярно-прицельной терапии и способ получения указанного комплекса.
Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул сухого экстракта дикого ямса в оболочке из гуаровой камеди.
Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул сухого экстракта копеечника в оболочке из альгината натрия.

Группа изобретений относится к фармацевтике и медицине и раскрывает полимерный комплекс для молекулярно-прицельной терапии и способ получения указанного комплекса.
Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул сухого экстракта дикого ямса в оболочке из гуаровой камеди.
Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул сухого экстракта копеечника в оболочке из альгината натрия.
Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул сухого экстракта крапивы в оболочке из альгината натрия.
Изобретение относится к области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул сухого экстракта хвоща характеризуется тем, что сухой экстракт хвоща добавляют в суспензию альгината натрия в бензоле в присутствии 0,01 г сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты в качестве поверхностно-активного вещества при перемешивании 1000 об/мин, далее приливают 1,2-дихлорэтан, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро:оболочка составляет 1:1, 1:2 или 1:3.
Изобретение относится к области нанотехнологии и пищевой промышленности. Способ получения нанокапсул спирулина в каппа-каррагинане характеризуется тем, что в качестве оболочки нанокапсул используют каппа-каррагинан, а в качестве ядра - спирулину, при этом порошок спирулины медленно добавляют в суспензию каппа-каррагинана в изопропаноле в присутствии 0,01 г Е472 с в качестве поверхностно-активного вещества, затем перемешивают при 1000 об/мин, после приливают диэтиловый эфир, после чего полученную суспензию отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро:оболочка составляет 1:1, или 1:3, или 1:2.
Изобретение относится к области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул сухого экстракта эхинацеи характеризуется тем, что сухой экстракт эхинацеи добавляют в суспензию альгината натрия в сухом этаноле в присутствии 0,01 г сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты в качестве поверхностно-активного вещества при перемешивании 1000 об/мин, далее приливают бензол, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро : оболочка составляет 1:1, 1:2 или 1:3.
Изобретение относится к области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул сухого экстракта лопуха характеризуется тем, что сухой экстракт лопуха добавляют в суспензию гуаровой камеди в метаноле в присутствии 0,01 г сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты в качестве поверхностно-активного вещества при перемешивании 1000 об/мин, далее приливают бутилхлорид, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро : оболочка составляет 1:1, 1:2 или 1:3.
Изобретение относится к области нанотехнологии, медицины, фармакологии и ветеринарной медицины. Способ получения нанокапсул флорфеникола в альгинате натрия характеризуется тем, что в суспензию альгината натрия в петролейном эфире и 0,01 г препарата Е472с, используемого в качестве поверхностно-активного вещества, добавляют порошок флорфеникола, затем добавляют хладон-112, полученную суспензию нанокапсул отфильтровывают и сушат, при этом массовое соотношение ядро:оболочка в нанокапсулах составляет 1:3, или 1:1, или 1:2.
Изобретение относится к области нанотехнологии и пищевой промышленности. Способ получения нанокапсул сухого экстракта розмарина характеризуется тем, что сухой экстракт розмарина добавляют в суспензию гуаровой камеди в изопропаноле в присутствии 0,01 г сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты в качестве поверхностно-активного вещества при перемешивании 1000 об/мин, далее приливают гексан, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро : оболочка составляет 1:1, 1:2 или 1:3.

Изобретение относится к фармацевтической дозированной лекарственной форме в виде мягкой желатиновой капсулы, содержащей: оболочку, содержащую желатин и пластификатор; и наполнитель, инкапсулированный в оболочку.

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул танина в оболочке из гуаровой камеди. Способ характеризуется тем, что в суспензию гуаровой камеди в бутаноле в присутствии 0,01 г Е472с при перемешивании 1000 об.мин, далее приливают диэтиловый эфир, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро : оболочка составляет 1:1, или 1:2, или 1:3. Способ обеспечивает упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул и может быть использовано в фармацевтической и пищевой промышленности. 3 пр.

Наверх