Катализатор изомеризации ароматических углеводородов с-8



Владельцы патента RU 2676706:

федеральное государственное автономное образовательное учреждение высшего образования "Российский государственный университет нефти и газа (национальный исследовательский университет) имени И.М. Губкина" (RU)

Изобретение относится к нефтеперерабатывающей и нефтехимической отрасли промышленности. Заявлен катализатор изомеризации ароматических углеводородов С-8, который состоит из носителя, содержащего, % масс.: цеолит типа ZSM-5 10,0-75,0; алюмосиликатные нанотрубки 5,0-70,0; гамма-оксид алюминия - остальное до 100, и металла платиновой группы, нанесенного на носитель в количестве 0,1-5,0% от массы катализатора. При этом активная фаза носителя, состоящая из цеолита типа ZSM-5 и алюмосиликатных нанотрубок, представляет собой иерархический алюмосиликатный материал, имеющий систему микро-мезопор, сформированную мезопорами алюмосиликатных нанотрубок и микропорами цеолита типа ZSM-5, закристаллизованного на поверхности алюмосиликатных нанотрубок. Технический результат заключается в использовании в составе описываемого катализатора иерархического алюмосиликатного материала, имеющего систему микро-мезопор, сформированную мезопорами алюмосиликатных нанотрубок и микропорами цеолита типа ZSM-5, закристаллизованного на поверхности алюмосиликатных нанотрубок, способствующую снижению диффузных затруднений, препятствующих достижению необходимой степени активности катализатора изомеризации. 3 пр., 1 табл.

 

Изобретение относится к гетерогенным катализаторам процессов изомеризации ароматических углеводородов С-8 и может быть использовано для производства важных продуктов нефтехимии и нефтепереработки.

Процесс изомеризации ароматических углеводородов С-8, в основном, направлен на получение пара-ксилола - предшественника тере-фталевой кислоты, которая является мономером для полиэтилентерефталата. В процессе изомеризации находящиеся в сырьевой смеси орто- и мета-ксилолы превращаются в пара-ксилол. Этилбензол, в свою очередь, подвергается гидроизомеризации в ксилолы или побочному процессу деалкилирования с образованием бензола и этилена.

Наиболее эффективными и удобными в использовании катализаторами изомеризации ароматического сырья, в частности ксилолов, являются гетерогенные кислотные катализаторы, содержащие один или несколько активных металлов (промоторов изомеризации), например, платину, палладий, рутений, никель, кобальт, железо и другие. Добавление промоторов существенно увеличивает выход целевого пара-ксилола в смеси продуктов. Состав промоторов может сильно отличаться, так в документе CN 102909057 (А), 2013 описывается катализатор содержащий промоторы изомеризации: щелочноземельного металла оксид (0,01-30%), железа оксид 0,1~10% масс., элементы IV А (0,1-10% масс.), металл VIII группы (0,1-10% масс). В патенте US 7446237 (В2), 2008 в качестве промоторов реакции изомеризации используются молибден (до 0,5-3% масс.) и платиновый металл (25-400 ч.н.м.).

Активной фазой носителей для катализаторов изомеризации ароматических углеводородов С-8 чаще всего являются цеолиты разного состава, такие как цеолиты типа MTW (US 7745677, 2010), MFI (US 7446237, 2008), UZM-54 (US 9890094, 2016), EUO (CN 102909057, 2014) и смеси кристаллических и аморфных алюмосиликатов (US 5705726, 1998, WO 2016140900, 2016, US 9890094, 2018, US 8692044, 2014).

Одним из традиционных носителей для катализаторов изомеризации ароматических углеводородов С-8 является цеолит ZSM-5 (US 5981817, 1999, US 8697929, 2014, CN 105582978, 2016, RU 2360736, 2009). ZSM-5 - цеолит типа пентасил, характеризующийся высоким отношением SiO2/Al2O3, разветвленной поверхностью, размером микро-пор 5-7А. За счет регулярной 3D структуры и повышенной кислотности целит ZSM-5 катализирует реакции изомеризации ароматических углеводородов, а также реакцию деалкилирования этилбензола, в результате которой образуются побочные продукты - бензол и этилен, что способствует разделению смеси ксилолы-этилбензол. Недостатком этих катализаторов является низкая эффективность, связанная с диффузионными затруднениями, обусловленными малым объемом мезо и макропор в цеолите.

Для увеличения эффективности катализаторов изомеризации на основе указанного цеолита, применяют различные методы модифицирования ZSM-5, например, высокотемпературную прокалку при температуры выше 700°С для активации носителя и его частичного удаления (US 7238636 В2, 2003), травление азотной или соляной кислотами (CN 105582978 А, 2014), десилилирование (US 201562206511 P, 2015). Данные методы позволяют снизить диффузионные затруднения при прохождении субстратов через катализатор. Общей проблемой описанных катализаторов является также высокие капитальные затраты на их получение, ведущие к существенному увеличению себестоимости катализаторов.

Наиболее близким по существу и назначению к предлагаемому катализатору является катализатор изомеризации ксилолов, описанный в патенте RU 2360736, 2009. Указанный катализатор состоит из цеолита типа ZSM-5, металла II группы и связующего - оксида алюминия. При этом катализатор содержит следующие компоненты, % мас.: цеолит ZSM-5 10-35, кальций 0,05-1,0 (в расчете на цеолит), натрий 0,05-0,12 (в расчете на цеолит), оксид алюминия - остальное. Испытания известного катализатора проводят на сырье, содержащем смесь пара-, орто-, мета-ксилолы, этилбензол, а также ароматические и насыщенные углеводороды С8 при атмосферном давлении, температуре 425°С и объемной скорости подачи сырья 4 ч-1 в течение 4 ч. В указанных условиях достигается выход ксилолов, составляющий от их содержания в сырье, от 95,2 до 100% масс. Содержание в полученной смеси ксилолов пара- и орто-ксилолов составляет 21,0-22,7% масс. и 21,1-23,5% масс. соответственно. Конверсия этилбензола составляет от 28,3 до 62% отн.

Таким образом, известный катализатор недостаточно эффективен, что связано с диффузными затруднениями, возникающими из-за малого объема мезо- и макропор в указанном катализаторе.

Проблема, на решение которой направлено настоящее изобретение, заключается в создании катализатора изомеризации ароматических углеводородов С-8, обладающего повышенной эффективностью, в частности, более высокой активностью, приводящей к увеличению конверсии сырья и выхода целевого пара-ксилола.

Указанная проблема решается описываемым катализатором изомеризации ароматических углеводородов С-8, состоящим из носителя, содержащего, % масс.

- цеолит типа ZSM-5 10,0-75,0
- алюмосиликатные нанотрубки 5,0-70,0
- гамма-оксид алюминия остальное, до 100

и металла платиновой группы, нанесенного на носитель в количестве 0,1-5,0% от массы катализатора, причем активная фаза носителя, состоящая из цеолита типа ZSM-5 и алюмосиликатных нанотрубок, представляет собой иерархический алюмосиликатный материал, имеющий систему микро-мезопор, сформированную мезопорами алюмосиликатных нанотрубок и микропорами цеолита типа ZSM-5, закристаллизованного на поверхности алюмосиликатных нанотрубок.

Достигаемый технический результат заключается в использовании в составе описываемого катализатора иерархического алюмосиликатного материала, состоящего из алюмосиликатных нанотрубок и закристаллизованного на поверхности нанотрубок цеолита типа ZSM-5, имеющего систему микро-мезо пор, способствующую снижению диффузных затруднений, препятствующих достижению необходимой степени активности катализатора изомеризации.

Сущность изобретения заключается в следующем.

Описываемый катализатор изомеризации ароматических углеводородов С-8 состоит из носителя, содержащего, % масс.

- цеолит типа ZSM-5 10,0-75,0
- алюмосиликатные нанотрубки 5,0-70,0
- гамма-оксид алюминия остальное, до 100

и металла платиновой группы, нанесенного на носитель в количестве 0,1-5,0% от массы катализатора.

Причем активная фаза носителя, состоящая из цеолита типа ZSM-5 и алюмосиликатных нанотрубок, представляет собой иерархический алюмосиликатный материал, имеющий систему микро-мезопор, сформированную мезопорами алюмосиликатных нанотрубок и микропорами цеолита типа ZSM-5, закристаллизованного на поверхности алюмосиликатных нанотрубок.

Внедрение дополнительных мезопор в структуру цеолита приводит к снижению диффузионных ограничений и обеспечивает высокую доступность активных центров катализатора для молекул сырья. За счет такой структуры активной фазы носителя увеличивается конверсия сырья и выход целевого пара-ксилола.

Описываемый катализатор получают следующим образом.

Для приготовления активной фазы носителя алюмосиликатные нанотрубки диспергируют в воде до образования гомогенной смеси.

Используемые в активной фазе носителя алюмосиликатные нанотрубки представляют собой природные или синтетические алюмосиликаты, имеющие строение многослойных или однонослойных нанотрубок, сформированных за счет скручивания слоистых структур глин типа каолина, монтмориллонита. Предпочтительно использование таких природных алюмосиликатных нанотрубок, как, например, галлуазит, иммоголит. При использовании галлуазитных нанотрубок предпочтительно использовать галлуазитные нанотрубки с внешним диаметром 30-50 нм, внутренним диаметром 10-25 нм и длиной 500 нм - 2 мкм.

К дисперсии нанотрубок в воде добавляют тетрапропиламмоний гидроксид (тетрапропиламмоний бромид) и алюминиевый прекурсор, например, третбутоксид алюминия, вторбутоксид алюминия. Далее к полученной смеси по каплям добавляют кремниевый прекурсор, например, тетраэтилортосиликат и перемешивают в течение нескольких часов для полного гидролиза. В образованную дисперсию добавляют затравку ZSM-5 в расчетном количестве и перемешивают до образования гомогенной смеси. Полученную смесь выдерживают при 80-180°С в течение 12-102 часов в закрытой емкости, после чего образовавшийся осадок отфильтровывают, промывают, сушат при 60-120°С в течение 8-48 часов и прокаливают на воздухе при температуре 500-650°С.

В результате получают активную фазу носителя, состоящую из цеолита типа ZSM-5 и алюмосиликатных нанотрубок, представляющую собой иерархический алюмосиликатный материал, имеющий систему микро-мезопор, сформированную мезопорами алюмосиликатных нанотрубок и микропорами цеолита типа ZSM-5, закристаллизованного на поверхности алюмосиликатных нанотрубок.

Полученную активную фазу носителя обрабатывают раствором азотной кислоты с концентрацией 0,05-2,0 М и смешивают с бемитом. Пластичную массу формуют в виде экструдатов толщиной 1-4 мм и длиной 10-40 мм. Полученные экструдаты сушат при 60-120°С в течение 8-48 часов и прокаливают на воздухе при температуре 500-650°C с получением носителя.

Получают носитель, содержащий, % масс.: цеолит типа ZSM-5 10,0-75,0, алюмосиликатные нанотрубки 5,0-70,0 и гамма-оксид алюминия остальное до 100.

На полученный носитель, наносят металл платиновой группы в количестве 0,1-5,0% от массы катализатора.

Процесс изомеризации ксилолов проводят, предпочтительно, в диапазоне температур 380-460°С, диапазоне давлений водорода 0,5-3,0 МПа, при объемном соотношении Н2/сырье, равном 2-10:1 и объемной скорости подачи сырья 0,5-3 ч-1.

Ниже представлены примеры, иллюстрирующие изобретение, но не ограничивающие его.

Пример 1

Используют катализатор, состоящий из носителя, содержащего, % масс.: цеолит типа ZSM-5 - 20,0, алюмосиликатные нанотрубки - нанотрубки галлуазита - 35,0, гамма-оксид алюминия 45,0 и нанесенной на носитель платины в количестве 1,0% от массы катализатора. При этом активная фаза носителя, состоящая из цеолита типа ZSM-5 и алюмосиликатных нанотрубок, представляет собой иерархический алюмосиликатный материал, имеющий систему микро-мезопор, сформированную мезопорами алюмосиликатных нанотрубок и микропорами цеолита типа ZSM-5, закристаллизованного на поверхности алюмосиликатных нанотрубок.

Проводят изомеризацию сырья, содержащего, % масс.: этилбензол - 10, пара-, орто- и мета-ксилол 10, 20, 60, соответственно. Процесс проводят в проточной установке с закрепленным слоем катализатора при 420°С, давлении водорода 2 МПа, объемном соотношении Н2/сырье, равном 5:1 и объемной скорости подачи сырья 2 ч-1. При этом получают следующие результаты: конверсия этилбензола составляет 67,0% отн., потеря целевых орто- и пара-ксилолов 3,1% масс. содержание в продукте изомеризации орто- и пара-ксилолов 23,6% масс и 24,1% масс, соответственно. Результаты приведенного опыта и опытов, описанных в последующих примерах, приведены в таблице.

Пример 2

Используют катализатор, состоящий из носителя, содержащего, % масс.: цеолит типа ZSM-5 - 60, алюмосиликатные нанотрубки - нанотрубки галлуазита - 10, гамма-оксид алюминия 30 и нанесенного на носитель палладия в количестве 2,0% от массы катализатора. При этом активная фаза носителя, состоящая из цеолита типа ZSM-5 и алюмосиликатных нанотрубок, представляет собой иерархический алюмосиликатный материал, имеющий систему микро-мезопор, сформированную мезопорами алюмосиликатных нанотрубок и микропорами цеолита типа ZSM-5, закристаллизованного на поверхности алюмосиликатных нанотрубок.

Проводят изомеризацию сырья, содержащего, % масс.: этилбензол - 10, пара-, орто- и мета-ксилол 10, 20, 60, соответственно. Процесс проводят в проточной установке с закрепленным слоем катализатора при 380°С, давлении водорода 0,5 МПа, объемном соотношении Н2/сырье, равном 3:1 и объемной скорости подачи сырья 1 ч-1. Конверсия этилбензола составляет 73,0% отн., потеря целевых орто- и пара-ксилолов 3,5% масс. Содержание в продукте изомеризации орто- и пара-ксилолов 24,9 и 25,7% масс, соответственно.

Пример 3

Используют катализатор, состоящий из носителя, содержащего, % масс.: цеолит типа ZSM-5 - 40, алюмосиликатные нанотрубки - нанотрубки галлуазита - 30, гамма-оксид алюминия 30 и нанесенной на носитель платины в количестве 0,5% от массы катализатора. При этом активная фаза носителя, состоящая из цеолита типа ZSM-5 и алюмосиликатных нанотрубок, представляет собой иерархический алюмосиликатный материал, имеющий систему микро-мезопор, сформированную мезопорами алюмосиликатных нанотрубок и микропорами цеолита типа ZSM-5, закристаллизованного на поверхности алюмосиликатных нанотрубок.

Проводят изомеризацию сырья, содержащего, % масс.: этилбензол - 10, пара-, орто- и мета-ксилол 10, 20, 60, соответственно. Процесс проводят в проточной установке с закрепленным слоем катализатора при 440°С, давлении водорода 1,0 МПа, объемном соотношении Н2/сырье, равном 7:1 и объемной скорости подачи сырья 0,5 ч-1. Конверсия этилбензола составляет 75% отн., потеря целевых орто- и пара-ксилолов - 2,7% масс. Содержание в продукте изомеризации орто- и пара-ксилолов 25,6 и 26,3% масс. соответственно.

Из данных таблицы следует, что все используемые в приведенных примерах катализаторы проявляют высокую активность в реакции изомеризации ароматических углеводородов С-8.

Так, конверсия этилбензола составляет 67-75% отн., что на 6-14% отн. выше, чем при использовании известного катализатора; содержание в продукте изомеризации орто-ксилола - 23,6-25,6% масс.; содержание в продукте изомеризации пара-ксилола - 24,1-26,3% масс., что на 0,7-2,6% масс. выше, чем при использовании известного катализатора; потеря целевых орто- и пара-ксилолов составляет 2,7-3,5% масс., что на 0,2-0,5% масс. ниже, чем при использовании известного катализатора.

Использование описываемого катализатора, содержащего компоненты в иных концентрациях, входящих в заявленный интервал, приводит к аналогичным результатам. Использование компонентов в количествах, выходящих за данный интервал, не приводит к желаемым результатам.

Таким образом, описываемый катализатор обладает высокой активностью изомеризации ароматических углеводородов С-8, приводящей к увеличению конверсии сырья и выхода целевого пара-ксилола.

Катализатор изомеризации ароматических углеводородов С-8, состоящий из носителя, содержащего, % масс.

- цеолит типа ZSM-5 10,0-75,0
- алюмосиликатные нанотрубки 5,0-70,0
- гамма-оксид алюминия остальное, до 100

и металла платиновой группы, нанесенного на носитель в количестве 0,1-5,0% от массы катализатора, причем активная фаза носителя, состоящая из цеолита типа ZSM-5 и алюмосиликатных нанотрубок, представляет собой иерархический алюмосиликатный материал, имеющий систему микромезопор, сформированную мезопорами алюмосиликатных нанотрубок и микропорами цеолита типа ZSM-5, закристаллизованного на поверхности алюмосиликатных нанотрубок.



 

Похожие патенты:

Изобретение относится к способу рециркуляции нафтенов в реактор, а также к устройству. Способ предусматривает: проведение в реакторе реакции сырьевого потока реактора, содержащего изомеры ксилола, этилбензол, С8-нафтены и водород, на катализаторе изомеризации этилбензола при условиях в реакторе, причем по меньшей мере часть этилбензола в сырьевом потоке реактора превращается в изомеры ксилола так, что образуется выходящий поток реактора, содержащий изомеры ксилола и С8-нафтены; охлаждение и разделение выходящего потока реактора с образованием первого сконденсированного жидкого потока и первого парообразного потока; охлаждение и разделение первого парообразного потока с образованием второго сконденсированного жидкого потока и второго парообразного потока; подачу первого сконденсированного жидкого потока и второго сконденсированного жидкого потока в колонну с отбором бокового погона с получением потока бокового погона, содержащего С8-ароматические вещества и С8-нафтены; извлечение параксилола из потока бокового погона в секции извлечения параксилола, получая обедненный по параксилолу поток, причем обедненный по параксилолу поток содержит часть С8-нафтенов; и рециркуляцию обедненного по параксилолу потока в реактор.

Изобретение относится к способу получения параксилола из потока С4 и потока каталитической нафты С5+ из установки каталитического крекинга. Способ содержит: a) отделение потока неароматических соединений C5-C9 и первого потока ароматических соединений C6-C10 от потока каталитической нафты С5+, причем стадия а) включает стадию перегонки и стадию экстракции; b) образование второго потока ароматических соединений C6-C10 из потока С4 и потока неароматических соединений C5-C9, причем по меньшей мере один из потока С4 и потока неароматических соединений C5-C9 содержит олефины; c) удаление примесей, с помощью секции удаления примесей, из первого и второго потоков ароматических соединений C6-C10 с получением очищенного потока ароматических соединений C6-C10; d) направление продуктов каталитического риформинга и пиролиза в сепарационную секцию; e) отделение в сепарационной секции потока C6-C7, первого потока C8, потока C9-C10 и потока С11+ от очищенных потоков ароматических соединений C6-C10 и продуктов каталитического риформинга и пиролиза; f) подача потока C6-C7 и потока C9-C10 в секцию образования ксилолов с получением второго потока C8; и g) подача первого и второго потоков C8 в секцию производства параксилола с получением параксилола высокой чистоты, при этом секция производства параксилола содержит зону отделения параксилола и зону изомеризации ксилолов.

Изобретение относится к химическому машиностроению и может быть использовано для распределения катализатора, циркулирующего в системе реактор-регенератор дегидрирования парафиновых углеводородов С3-С5 в соответствующие олефиновые углеводороды.

Изобретение относится к нефтехимии, в частности, к установкам дегидрирования парафиновых углеводородов С3-С5 в соответствующие олефиновые углеводороды, используемые для получения основных мономеров для синтетического каучука, а также при производстве полипропилена, метилтретичнобутилового эфира и др.

Изобретение относится к способу управления технологическим процессом и номенклатурой выпускаемых нефтепродуктов при переработке нефти. Способ заключается в ее физическом, наиболее полном, разделении на фракции и характеризуется тем, что для увеличения выхода наиболее ценных светлых топливных фракций нефть подвергают криолизу при температурах не выше -15°С в течение не менее 20 часов с предварительным введением в нее донорной присадки (воды) в количестве не менее 1% на различных этапах ее переработки: перед фракционированием, вместо вакуумной перегонки, на нефтепромыслах, где одновременно с повышением содержания топливных фракций в нефти происходит ее обезвоживание и обессоливание (частичное или полное), а также в различных сочетаниях этапов переработки, например перед фракционированием и вместо вакуумной перегонки или на нефтепромыслах и вместо вакуумной перегонки.

Изобретение относится к химической, нефтехимической и энергетической промышленности и может быть использовано для проведения каталитических процессов со значительными тепловыми эффектами при частичном превращении углеводородов.

Предложен способ получения предшественника катализатора. Способ получения предшественника катализатора включает: получение суспензии, включающей жидкость-носитель, растворимую соль металла, частицы нерастворимой неорганической соли металла и частицы и/или одно или более тел предварительно сформованных носителей катализатора, с осаждением металла из нерастворимой соли металла на частицах носителя за счет хемосорбции, и с осаждением металла из растворимой соли металла внутри и/или на частицах носителя за счет пропитки, при этом хемосорбция и пропитка осуществляются одновременно, и металлы в нерастворимой неорганической соли металла и в растворимой соли металла являются одними и теми же, и представляют собой Со или Ni, и при этом указанный металл является активным компонентом катализатора, с образованием обработанного носителя катализатора, и удаление жидкости-носителя из суспензии с получением высушенного обработанного носителя катализатора, который или непосредственно представляет собой предшественник катализатора, или необязательно подвергается прокаливанию для получения предшественника катализатора.

Изобретение относится к способу глубокой переработки нефтезаводского углеводородного газа одного и более нефтеперерабатывающих заводов, включающему многостадийную очистку газов, представляющих собой смеси однотипных нефтезаводских газов с различных технологических установок, и их разделение в массообменных аппаратах в несколько стадий, направленных на получение этилена, водорода, высокооктановых компонентов бензина и сжиженных топливных газов.
Изобретение относится к способу увеличения молярного соотношения между метилом и фенилом у одного или нескольких ароматических соединений в подаваемом исходном материале.

Изобретение относится к технологии переработки нефтяных газов и может быть использовано в нефте- и газоперерабатывающей промышленности. Изобретение касается способа глубокой переработки нефтезаводских углеводородных газов для одного и более нефтеперерабатывающих заводов, в котором в качестве исходных газов используются смеси однотипных нефтезаводских газов с различных технологических установок, представляющие собой этансодержащую фракцию углеводородов, фракцию углеводородов с повышенным содержанием водорода и рефлюксную фракцию, проходящие дальнейшую обработку на следующих стадиях: компримирование исходных газов, их очистка от сероводорода и диоксида углерода, последующее разделение рефлюксной фракции на газ деэтанизации, легкую этансодержащую фракцию углеводородов, пропан-пропиленовую фракцию, бутан-бутиленовую фракцию и фракцию углеводородов С5 и выше, получение водорода с использованием углеводородной фракции с повышенным содержанием водорода, компримирование, осушка, очистка от примесей О2, As, Hg, NOx и других примесей, являющихся ядами катализаторов и оборудования, этансодержащей фракции и разделение ее на деэтанизированный газ, этановую фракцию и фракцию углеводородов С3 и выше, химическое преобразование этановой фракции с получением продуктов пиролиза в печи пиролиза, разделение продуктов пиролиза с выделением этилена и использование пропан-пропиленовой и бутан-бутиленовой фракции для получения высокооктановых компонентов автомобильного бензина методом алкилирования и/или олигомеризации, продуктов нефтехимического синтеза и получением технической сжиженной пропан-бутановой смеси в качестве топлива для автомобильных двигателей.

Изобретение относится к нефтеперерабатывающей и нефтехимической отрасли промышленности. Заявлен катализатор для изомеризации ароматических углеводородов С-8, который состоит из носителя, содержащего, % масс.: упорядоченный алюмосиликат типа Аl-МСМ-41 10,0-75,0; алюмосиликатные нанотрубки 5,0-70,0; гамма-оксид алюминия - остальное до 100, и металла платиновой группы, нанесенного на носитель в количестве 0,1-5,0% от массы катализатора.

Изобретение относится к способу увеличения выхода из зоны изомеризации, который включает отделение части С6 циклических углеводородов от потока нафты, содержащего С4+ углеводороды, для получения потока, обедненного по С6 циклическим углеводородам; отделение изоC4 углеводородов, изоC5 углеводородов и изоC6 углеводородов от потока, обедненного по С6 циклическим углеводородам; и направление по меньшей мере одного потока, обогащенного по изоС4 углеводородам, изоC5 углеводородам, изоC6 углеводородам или их комбинации, в зону изомеризации.

Изобретение относится к способу рециркуляции нафтенов в реактор, а также к устройству. Способ предусматривает: проведение в реакторе реакции сырьевого потока реактора, содержащего изомеры ксилола, этилбензол, С8-нафтены и водород, на катализаторе изомеризации этилбензола при условиях в реакторе, причем по меньшей мере часть этилбензола в сырьевом потоке реактора превращается в изомеры ксилола так, что образуется выходящий поток реактора, содержащий изомеры ксилола и С8-нафтены; охлаждение и разделение выходящего потока реактора с образованием первого сконденсированного жидкого потока и первого парообразного потока; охлаждение и разделение первого парообразного потока с образованием второго сконденсированного жидкого потока и второго парообразного потока; подачу первого сконденсированного жидкого потока и второго сконденсированного жидкого потока в колонну с отбором бокового погона с получением потока бокового погона, содержащего С8-ароматические вещества и С8-нафтены; извлечение параксилола из потока бокового погона в секции извлечения параксилола, получая обедненный по параксилолу поток, причем обедненный по параксилолу поток содержит часть С8-нафтенов; и рециркуляцию обедненного по параксилолу потока в реактор.

Изобретение относится к способу рециркуляции нафтенов в реактор, а также к устройству. Способ предусматривает: проведение в реакторе реакции сырьевого потока реактора, содержащего изомеры ксилола, этилбензол, С8-нафтены и водород, на катализаторе изомеризации этилбензола при условиях в реакторе, причем по меньшей мере часть этилбензола в сырьевом потоке реактора превращается в изомеры ксилола так, что образуется выходящий поток реактора, содержащий изомеры ксилола и С8-нафтены; охлаждение и разделение выходящего потока реактора с образованием первого сконденсированного жидкого потока и первого парообразного потока; охлаждение и разделение первого парообразного потока с образованием второго сконденсированного жидкого потока и второго парообразного потока; подачу первого сконденсированного жидкого потока и второго сконденсированного жидкого потока в колонну с отбором бокового погона с получением потока бокового погона, содержащего С8-ароматические вещества и С8-нафтены; извлечение параксилола из потока бокового погона в секции извлечения параксилола, получая обедненный по параксилолу поток, причем обедненный по параксилолу поток содержит часть С8-нафтенов; и рециркуляцию обедненного по параксилолу потока в реактор.

Изобретение относится к области нефтепереработки, в частности к катализатору гидроизомеризации углеводородных фракций и способу его применения. Катализатор гидроизомеризации углеводородных фракций содержит 0,05-8,0% мас.

Изобретение относится к нефтеперерабатывающей и нефтехимической отрасли промышленности. Заявлен термостабильный катализатор изомеризации ароматических углеводородов С-8, состоящий из носителя, содержащего, мас.%: упорядоченный мезопористый оксид кремния - 10,0-75,0, алюмосиликатные нанотрубки - 5,0-70,0, гамма-оксид алюминия - остальное до 100, и металла платиновой группы, нанесенного на носитель в количестве 0,1-5,0% от массы катализатора, причем используемые в носителе упорядоченный мезопористый оксид кремния и алюмосиликатные нанотрубки представляют собой структурированный композит.

Изобретение относится к способу получения параксилола из потока С4 и потока каталитической нафты С5+ из установки каталитического крекинга. Способ содержит: a) отделение потока неароматических соединений C5-C9 и первого потока ароматических соединений C6-C10 от потока каталитической нафты С5+, причем стадия а) включает стадию перегонки и стадию экстракции; b) образование второго потока ароматических соединений C6-C10 из потока С4 и потока неароматических соединений C5-C9, причем по меньшей мере один из потока С4 и потока неароматических соединений C5-C9 содержит олефины; c) удаление примесей, с помощью секции удаления примесей, из первого и второго потоков ароматических соединений C6-C10 с получением очищенного потока ароматических соединений C6-C10; d) направление продуктов каталитического риформинга и пиролиза в сепарационную секцию; e) отделение в сепарационной секции потока C6-C7, первого потока C8, потока C9-C10 и потока С11+ от очищенных потоков ароматических соединений C6-C10 и продуктов каталитического риформинга и пиролиза; f) подача потока C6-C7 и потока C9-C10 в секцию образования ксилолов с получением второго потока C8; и g) подача первого и второго потоков C8 в секцию производства параксилола с получением параксилола высокой чистоты, при этом секция производства параксилола содержит зону отделения параксилола и зону изомеризации ксилолов.

Изобретение относится к способу получения параксилола из потока С4 и потока каталитической нафты С5+ из установки каталитического крекинга. Способ содержит: a) отделение потока неароматических соединений C5-C9 и первого потока ароматических соединений C6-C10 от потока каталитической нафты С5+, причем стадия а) включает стадию перегонки и стадию экстракции; b) образование второго потока ароматических соединений C6-C10 из потока С4 и потока неароматических соединений C5-C9, причем по меньшей мере один из потока С4 и потока неароматических соединений C5-C9 содержит олефины; c) удаление примесей, с помощью секции удаления примесей, из первого и второго потоков ароматических соединений C6-C10 с получением очищенного потока ароматических соединений C6-C10; d) направление продуктов каталитического риформинга и пиролиза в сепарационную секцию; e) отделение в сепарационной секции потока C6-C7, первого потока C8, потока C9-C10 и потока С11+ от очищенных потоков ароматических соединений C6-C10 и продуктов каталитического риформинга и пиролиза; f) подача потока C6-C7 и потока C9-C10 в секцию образования ксилолов с получением второго потока C8; и g) подача первого и второго потоков C8 в секцию производства параксилола с получением параксилола высокой чистоты, при этом секция производства параксилола содержит зону отделения параксилола и зону изомеризации ксилолов.

Группа изобретений относится к цеолитсодержащим катализаторам и их использованию. Предложен катализатор для гидроизомеризации углеводородного сырья, содержащего н-парафины С5-С8, на основе алюмосиликатного цеолита структуры MFI или ВЕА с мольным соотношением SiO2/Al2O3 от 25 до 130, модифицированного Pt и/или Pd и одним или несколькими металлами-промоторами, выбранными из Zn, Cu, Со, Cr, Fe, Ni, La.

Изобретение относится к способу приготовления катализатора для низкотемпературной изомеризации легких бензиновых фракций, применяемых для производства высокооктановых компонентов моторных топлив.

Изобретение относится к нефтеперерабатывающей и нефтехимической отрасли промышленности. Заявлен катализатор для изомеризации ароматических углеводородов С-8, который состоит из носителя, содержащего, % масс.: упорядоченный алюмосиликат типа Аl-МСМ-41 10,0-75,0; алюмосиликатные нанотрубки 5,0-70,0; гамма-оксид алюминия - остальное до 100, и металла платиновой группы, нанесенного на носитель в количестве 0,1-5,0% от массы катализатора.
Наверх