Способ поиска оптических и оптико-электронных приборов



Способ поиска оптических и оптико-электронных приборов
Способ поиска оптических и оптико-электронных приборов
Способ поиска оптических и оптико-электронных приборов

Владельцы патента RU 2676856:

Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации (RU)

Способ поиска оптических и оптико-электронных приборов основан на использовании дистанционно пилотируемого аппарата, который осуществляет сканирование зоны поиска по определенной траектории. При сканировании получают изображение зоны поиска как с облучением ее оптическим излучением и без облучения. Вычитают из изображения с облучением изображение без облучения. Параметры разностного изображения сравнивают с эталонными значениями параметров отраженных сигналов. При совпадении параметров запоминают координаты летательного аппарата и относительно них пеленгационные углы. Координаты искомого прибора определяют как пересечение пеленгов. Технический результат заключается в расширении зоны поиска и обнаружении оптических и оптико-электронных приборов одним средством и обеспечение оценки координат их местоположения. 2 ил.

 

Изобретение относится к области оптической локационной техники и может быть использовано для дистанционного обнаружения и измерения координат оптических и оптико-электронных приборов различного типа и назначения.

Наиболее близким по технической сущности и достигаемому результату является способ (прототип) обнаружения оптических и оптико-электронных приборов (ООЭП) (см., например, Белкин Н.Д., Демкин В.К., Печерский Е.А., Пшеничников С.М. Патент на изобретение №22155357, G01S 5/12. Способ обнаружения оптических и оптико-электронных приборов. М.: Роспатент, опубл. 27.08.2000), основанный на облучении зоны предполагаемого расположения ООЭП оптическим излучением, приеме отраженного излучения, формировании сигнала пропорционального разности интенсивностей отраженного излучения в n-м и n-1-м шагах обзора, пропорционального разности интенсивностей отраженного излучения в n+1-м и n-м шагах обзора, по наличию которых судят о наличии оптико-электронного прибора. Недостатком способа является необходимость размещения большого количества средств обнаружения ООЭП, обеспечивающих поиск и обнаружения пространственно разнесенных ООЭП. Этот недостаток обуславливается ограниченным сектором просмотра средств обнаружения ООЭП зоны их возможного размещения, а также взаимной ориентацией полей зрения. Еще одним недостатком способа является отсутствие оценки координат местоположения ООЭП.

Техническим результатом, на достижение которого направлено предлагаемое изобретение, является расширение зоны поиска и обнаружения ООЭП одним средством поиска ООЭП и обеспечение оценки координат их местоположения.

Технический результат достигается тем, что в известном способе поиска ООЭП, основанный на облучении зоны предполагаемого расположения ООЭП оптическим излучением, приеме отраженного излучения, используют дистанционно пилотируемый летательный аппарат (ДПЛА) с установленными на борту оптико-электронными передающим и приемным устройствами, радионавигационным приемником и блоком передачи данных, разбивают зону поиска ООЭП на N секторов и формируют маршрут полета ДПЛА, запускают ДПЛА и управляют траекторией его полета по заданному маршруту, осуществляют периодическую поочередную съемку без облучения и с облучением оптическим излучением «-го сектора поиска ООЭП, где - номер сектора поиска ООЭП, при каждой съемке n-го сектора поиска ООЭП формируют изображение и запоминают его параметры, вычитают параметры in-го изображения, полученные без облучения n-го сектора поиска ООЭП из параметров jn-го изображения, полученных при облучении n-го сектора поиска ООЭП, где - номер изображения, полученного без облучения оптическим излучением n-го сектора поиска ООЭП, где j=1,1 - номер изображения, полученного при облучении оптическим излучением n-го сектора поиска ООЭП, - общее количество пар изображений, полученных без облучения и при облучении оптическим излучением n-го сектора поиска ООЭП, и формируют разностное ijn-е изображение ООЭП, параметры которого сравнивают с эталонными значениями параметров отраженных сигналов от ООЭП, при совпадении значений сравниваемых параметров определяют и запоминают kn-е координаты ДПЛА и относительно их kn-е пеленгационные углы ООЭП в n-ом секторе поиска ООЭП, где - номера координат ДПЛА и углов пеленгов, измеренных при совпадении параметров ijn-го разностного изображения ООЭП с эталонными с параметрами отраженных сигналов от ООЭП, при завершении просмотра n-го сектора поиска ООЭП определяют координаты местоположения ООЭП по координатам точки пересечения линий kn-х пеленгов ООЭП относительно kn-х координат местоположения ДПЛА в процессе его полета и повторяют процедуры поиска ООЭП для n+1-го сектора поиска, передают значения измеренных координат местоположения ООЭП на пункт управления ДПЛА.

Сущность изобретения заключается в использовании ДПЛА с установленными на борту оптико-электронными передающим и приемным устройствами, радионавигационным приемником и блоком передачи данных, осуществляющими полет по заданному маршруту для поиска ООЭП по секторам в определенной зоне. Осуществляют периодическую поочередную съемку без облучения и с облучением оптическим излучением секторов поиска ООЭП и корреляционную обработку получаемых изображений, на основе которой обнаруживают и определяют координаты размещения ООЭП относительно координат местоположения ДПЛА в процессе полета.

На фигуре 1 представлена схема, поясняющая способ, где: 1, 2 - ООЭП; 3 - ДПЛА с установленными на борту оптико-электронными передающим и приемным устройствами, радионавигационным приемником и блоком передачи данных; 4, 5 - сектор поиска ООЭП; 6, 7 - линии пеленгов ООЭП; 8 - маршрут полета ДПЛА; 9 - изображение, полученное без облучения текущего сектора поиска ООЭП; 10 - изображение, полученное при облучении текущего сектора поиска ООЭП; 11 - разностное изображение; 12 - зона поиска ООЭП. При необходимости осуществления поиска ООЭП 1, 2 в зоне 12 их возможного размещения ее делят на секторы 4, 5. При этом размеры и количество секторов 4, 5 определяется характеристиками полей зрения оптико-электронных передающего и приемного устройств, размерами зоны и расстоянием ее наблюдения, а также на основе пространственных характеристик секторов 4, 5 поиска ООЭП и 1, 2 формируют маршрут полета ДПЛА 8. Запускают ДПЛА 3 и управляют его полетом по заданному маршруту 8. На начальном этапе поиска ООЭП 1, 2 в зоне 12 осуществляют периодическую поочередную съемку без облучения и с облучением оптическим излучением первого сектора поиска ООЭП 4. При этом каждый раз формируют изображения 9, 10 и запоминают их параметры. Вычитают параметры изображения 9, полученные без облучения сектора поиска ООЭП 4 из параметров 10 изображения, полученных при облучении сектора поиска ООЭП 4, при каждой парной съемке и формируют разностное изображение 11, параметры которого сравнивают с эталонными значениями параметров отраженных сигналов от ООЭП. При совпадении значений сравниваемых параметров определяют и запоминают координаты текущего местоположения ДПЛА 3 (х31, у31), (х32, у32) и относительно их пеленгационные углы ООЭП 6 (θ1, θ2) в секторе поиска 4. При завершении просмотра сектора поиска ООЭП 4 определяют координаты местоположения ООЭП 1 (х1, у1) по координатам точки пересечения линий их пеленгов 6 (θ1, θ2) относительно координат местоположения ДПЛА в процессе его полета (х31, y31), (х32, y32). Повторяют аналогичные процедуры поиска ООЭП для следующего сектора поиска 5, включающие: периодическую поочередную съемку без облучения и с облучением оптическим излучением сектора ООЭП 5, корреляционную обработку текущих изображений 9, 10 и 11, определении координат текущего местоположения ДПЛА 3 (х33, у33), (х34, y34) и пеленгационных углов ООЭП 7 (θ3, θ4) и на их основе координат местоположения ООЭП 2 (х2, у2). Значения измеренных координат местоположения ООЭП (x1, y1), (х2, y2) передают потребителю, например, на пункт управления ДПЛА.

На фигуре 2 представлена блок-схема устройства, с помощью которого может быть реализован предлагаемый способ. Блок-схема устройства содержит: выносной блок управления ДПЛА 13, оптико-электронное передающее устройство 15, оптико-электронное приемное устройство 16, радионавигационный приемник 14, блок синхронизации, обработки и управления 17 и блок передачи данных 18, остальные обозначения соответствуют фигуре 2. Все бортовые устройства и блоки связаны линиями передачи данных.

Устройство функционирует следующим образом. Запускают ДПЛА 3 и управляют через блок передачи данных 18 с помощью выносного блока управления ДПЛА 13 траекторией его полета. По маршруту полета ДПЛА 3 ориентируют поля зрения оптико-электронных передающего и приемного устройств 15, 16 в текущий сектор поиска ООЭП. Оптико-электронное приемное устройство 16 по сигналу управления блока синхронизации, обработки и управления 17 осуществляет съемку текущего сектора поиска ООЭП и формирует его изображение, параметры которого передает в блок синхронизации, обработки и управления 17. Блок синхронизации, обработки и управления 17 запоминает параметры изображения, вырабатывает и передает сигналы управления в оптико-электронное передающее устройство 15 и оптико-электронное приемное устройство 16. Оптико-электронное передающее устройство 15 излучает оптический сигнал в направлении текущего сектора поиска ООЭП, а оптико-электронное приемное устройство повторно осуществляет его съемку и формирует изображение, параметры которого передает в блок синхронизации, обработки и управления 17. Блок синхронизации, обработки и управления 17 вычитает из параметров изображения с подсветом сектора поиска ООЭП запомненные параметры предыдущего изображения, результат сравнивает с эталонными значениями параметров отраженных сигналов от ООЭП и в случае их совпадения определяет угловые координаты ООЭП текущего сектора поиска и вырабатывает сигналы радионавигационному приемнику 14, который определяет текущие координаты своего местоположения и передает их значения в блок синхронизации, обработки и управления 17. Далее блок синхронизации, обработки и управления 17 повторяет перечисленный цикл для последующего этапа просмотра текущего сектора поиска ООЭП в процессе полета ДПЛА 3. По окончании поиска ООЭП в текущем секторе блок синхронизации, обработки и управления 17 определяет координаты ООЭП, формирует пакет данных координат ООЭП и передает его с помощью блока передачи данных 18 в выносной блок управления БПЛА 13. Далее осуществляется процедура поиска последующего сектора поиска ООЭП по маршруту полета ДПЛА 3.

Таким образом, предлагаемый способ позволяет за счет использования ДПЛА с установленными на борту элементами оптической локации, радионавигационного обеспечения и информационного обмена, осуществляющего полет по заданному маршруту для поиска ООЭП по секторам в определенной зоне с периодической поочередной съемкой без облучения и с облучением оптическим излучением секторов поиска ООЭП и корреляционной обработкой получаемых изображений, на основе которой обнаруживают и оценивают координаты размещения ООЭП относительно местоположения ДПЛА, позволяет расширить зону поиска и обнаружения ООЭП одним средством поиска ООЭП и обеспечить оценку их координат местоположения. Тем самым предлагаемый авторами способ устраняет недостатки прототипа.

Предлагаемое техническое решение является новым, поскольку из общедоступных сведений неизвестен способ поиска оптических и оптико-электронных приборов, основанный на облучении зоны предполагаемого расположения ООЭП оптическим излучением, приеме отраженного излучения, использовании ДПЛА с установленными на борту оптико-электронными передающим и приемным устройствами, радионавигационным приемником и блоком передачи данных, разбитии зоны поиска ООЭП на N секторов и формировании маршрута полета ДПЛА, запуске ДПЛА и управлении траекторией его полета по заданному маршруту, осуществлении периодической поочередной съемки без облучения и с облучением оптическим излучением n-го сектора поиска ООЭП, где - номер сектора поиска ООЭП, формировании при каждой съемке n-го сектора поиска ООЭП изображения и запоминании его параметров, вычитании параметров in-го изображения, полученных без облучения n-го сектора поиска ООЭП из параметров jn-го изображения, полученных при облучении n-го сектора поиска ООЭП, где - номер изображения, полученного без облучения оптическим излучением n-го сектора поиска ООЭП, где - номер изображения, полученного при облучении оптическим излучением n-го сектора поиска ООЭП, j=i, I - общее количество пар изображений, полученных без облучения и при облучении оптическим излучением n-го сектора поиска ООЭП и формировании разностного ijn-го изображения ООЭП, сравнении параметров разностного ijn-го изображения ООЭП с эталонными значениями параметров отраженных сигналов от ООЭП, определении и запоминании при совпадении значений сравниваемых параметров kn-х координат ДПЛА и относительно их kn-х пеленгационных углов ООЭП в n-м секторе поиска ООЭП, где - номера координат ДПЛА и углов пеленгов, измеренных при совпадении параметров ijn-го разностного изображения ООЭП с эталонными с параметрами отраженных сигналов от ООЭП, определении при завершении просмотра n-го сектора поиска ООЭП координат местоположения ООЭП по координатам точки пересечения линий kn-х пеленгов ООЭП относительно kn-х координат местоположения ДПЛА в процессе его полета и повторении процедуры поиска ООЭП для n+1-го сектора поиска, передаче значений измеренных координат местоположения ООЭП на пункт управления ДПЛА.

Предлагаемое техническое решение практически применимо, так как для его реализации могут быть использованы типовые оптико-электронные и электротехнические узлы и устройства. В качестве оптико-электронного передающего устройства могут быть использованы источники оптического излучения, как газоразрядные лампы или матрицы полупроводниковых лазеров. Для приемного канала могут быть использованы камеры матричного типа с внешней синхронизацией режимов работы. Обработка изображений может быть реализована на основе котроллеров с алгоритмами корреляционной обработки базы данных.

Способ поиска оптических и оптико-электронных приборов, основанный на облучении зоны предполагаемого расположения оптических и оптико-электронных приборов оптическим излучением, приеме отраженного излучения, отличающийся тем, что используют дистанционно пилотируемый летательный аппарат с установленными на борту оптико-электронными передающим и приемным устройствами, радионавигационным приемником и блоком передачи данных, разбивают зону поиска оптических и оптико-электронных приборов на N секторов и формируют маршрут полета дистанционно пилотируемого летательного аппарата, запускают дистанционно пилотируемый летательный аппарат и управляют траекторией его полета по заданному маршруту, осуществляют периодическую поочередную съемку без облучения и с облучением оптическим излучением n-го сектора поиска оптических и оптико-электронных приборов, где - номер сектора поиска оптических и оптико-электронных приборов, при каждой съемке n-го сектора поиска оптических и оптико-электронных приборов формируют изображение и запоминают его параметры, вычитают параметры in-го изображения, полученные без облучения n-го сектора поиска оптических и оптико-электронных приборов из параметров jn-го изображения, полученных при облучении n-го сектора поиска оптических и оптико-электронных приборов, где - номер изображения, полученного без облучения оптическим излучением n-го сектора поиска оптических и оптико-электронных приборов, где - номер изображения, полученного при облучении оптическим излучением n-го сектора поиска оптических и оптико-электронных приборов, j=i, I - общее количество пар изображений, полученных без облучения и при облучении оптическим излучением n-го сектора поиска оптических и оптико-электронных и формируют разностное ijn-е изображения оптических и оптико-электронных приборов, параметры которого сравнивают с эталонными значениями параметров отраженных сигналов от оптических и оптико-электронных приборов, при совпадении значений сравниваемых параметров определяют и запоминают kn-е координаты местоположения дистанционного пилотируемого летательного аппарата и относительно их kn-е пеленгационные углы оптических и оптико-электронных приборов в n-м секторе поиска оптических и оптико-электронных приборов, где - номера координат дистанционного пилотируемого летательного аппарата и углов пеленгов, измеренных при совпадении параметров ijn-го разностного изображения оптических и оптико-электронных приборов с эталонными с параметрами отраженных сигналов от оптических и оптико-электронных приборов, при завершении просмотра n-го сектора поиска оптических и оптико-электронных приборов определяют координаты местоположения оптических и оптико-электронных приборов по координатам точки пересечения линий kn-х пеленгов оптических и оптико-электронных приборов относительно kn-х координат местоположения дистанционно пилотируемого аппарата в процессе его полета и повторяют процедуры поиска оптических и оптико-электронных приборов для n+1-го сектора поиска, передают значения измеренных координат местоположения оптических и оптико-электронных приборов на пункт управления дистанционно пилотируемого летательного аппарата.



 

Похожие патенты:

Изобретение относится к области радиотехники, а именно к системам радиоконтроля для определения координат местоположения источников радиоизлучения (КМПИРИ) УКВ-СВЧ диапазонов, как цифровых, так и аналоговых видов связи, сведения о которых отсутствуют в базе данных (например, государственной радиочастотной службы).

Изобретение относится к системам радиоконтроля для определения координат местоположения источников радиоизлучения (КМПИРИ) УКВ-СВЧ диапазонов, сведения о которых отсутствуют в базе данных (например, государственной радиочастотной службы).

Изобретение относится к системам радиоконтроля для определения координат местоположения источников радиоизлучения (КМПИРИ) УКВ-СВЧ диапазонов, как цифровых, так и аналоговых видов связи, сведения о которых отсутствуют в базе данных (например, государственной радиочастотной службы).

Устройство, способ и считываемый компьютером носитель данных для определения расстояния или положения камеры относительно источника света на основании изображения этого источника света, захватываемого камерой.

Изобретение относится к способу определения положения летательного аппарата. Для определения местоположения летательного аппарата в декартовой системе координат производят засечки дирекционного угла с первого измерительного пункта с известными координатами и угла места со второго измерительного пункта с известными координатами, производят последующую обработку внешнетраекторной информации путем решения геометрической задачи пересечения вертикальной полуплоскости, проходящей через первый измерительный пункт, прямого, круглого конуса и сферы с центрами во втором измерительном пункте.

Изобретение относится к радиолокации и радионавигации и предназначено для определения оценок местоположения подвижных источников радиосигнала на дорожной сети. Достигаемый технический результат – расширение возможностей способа однопозиционной радиолокации.

Изобретение относится к области мобильной связи. Технический результат изобретения заключается в уменьшении погрешности в получаемой информации о местоположении терминала, местоположение которого нужно определить.

Изобретение относится к технике связи и может использоваться для активирования функций в радиоприемнике (RX). Технический результат состоит в повышении точности приема информации.

Изобретение относится к области позиционирования. Техническим результатом является повышение точности позиционирования в здании, например, при спасательных операциях или во время работы пожарных.

Изобретение относится к области автоматизации информационно-управляющих систем управления и контроля за состоянием удаленных объектов, функционирующих в реальном масштабе времени.

Группа изобретений относится к системам управления движением транспортных средств и способу генерирования информации плана движения транспортных средств в зоне движения или парковки.

Группа изобретений относится к способу управления транспортным средством в системе управления движением транспортных средств и транспортному средству. Для управления транспортным средством принимают проекцию от генератора сетки, генерируют навигационный выходной сигнал и передают его в систему управления движением транспортных средств, от которой принимают план управления движением, выполняют план движения.

Предлагаемое изобретение относится к области технической оптики и касается способа обнаружения наблюдателя. Способ включает в себя локализацию возможного места размещения наблюдателя и энергетическое освещение фронтальной поверхности оптического прибора наблюдателя экипированной группой из опознавателя и операторов.

Изобретение относится к области оптико-электронного приборостроения и может быть использовано в приборах кругового и секторного обзора, обнаружения, сопровождения и телевизионной регистрации морских и наземных объектов.

Изобретение относится к оптикоэлектронике, пассивной оптической локации и наземным системам обнаружения воздушных объектов и может быть использовано для обнаружения и распознавания малоразмерных воздушных объектов различного типа: беспилотных летательных аппаратов, птиц, воздушных шаров и других объектов, представляющих опасность для воздушного движения.

Изобретение относится к измерительной технике, в частности к пеленгаторам. Предложено устройство для определения местоположения источника сигналов, содержащее персональную электронно-вычислительную машину (ПЭВМ), а также первый и второй идентичные каналы, каждый из которых включает первый блок магнитных антенн и последовательно соединенные первый усилитель и первый фильтр, дополнительно содержит подключенные к ПЭВМ блок системы единого времени и блок связи с абонентами, последовательно соединенные второй блок магнитных антенн, первый блок усилителей, первый пороговый блок, первый блок схем ИЛИ, первый таймер, первую схему И и первый блок счетчиков, последовательно соединенные приемник радиации, второй усилитель и первый пороговый элемент, последовательно соединенные блок приемников температуры, второй блок усилителей, второй пороговый блок и первый блок схем И, а также первый тактовый генератор, подключенный ко второму входу первой схемы И и первый блок аналого-цифровых преобразователей (АЦП), подключенный входами к первому и второму блокам усилителей, а выходами подключенный к ПЭВМ, причем выход первого таймера подключен к ПЭВМ и ко вторым входам первого блока схем И, выходы первого блока схем И подключены ко входам останова первого блока счетчиков, выход первого порогового элемента подключен к первому блоку схем ИЛИ и к ПЭВМ, выходы первого и второго пороговых блоков, выходы первого блока счетчиков, третьи входы первого блока схем И, управляющие входы первого и второго блоков усилителей, второго усилителя, первого и второго пороговых блоков, первого порогового элемента и первого таймера подключены к ПЭВМ, а в каждом канале дополнительно содержатся последовательно соединенные блок датчиков света, третий блок усилителей, первый блок фильтров, четвертый блок усилителей, третий пороговый блок и второй блок схем ИЛИ, последовательно соединенные пятый блок усилителей, второй блок фильтров, шестой блок усилителей, четвертый пороговый блок и третий блок схем ИЛИ, последовательно соединенные первый блок цифроаналоговых преобразователей (ЦАП) и первый блок калибраторов, последовательно соединенные второй блок ЦАП и второй блок калибраторов, последовательно соединенные первый ЦАП, первый калибратор и сейсмометр, последовательно соединенные третий усилитель, второй фильтр, второй пороговый элемент и вторую схему И, последовательно соединенные второй таймер, третью схему И и счетчик, последовательно соединенные второй ЦАП и второй калибратор, последовательно соединенные блок микробарометров, седьмой блок усилителей, третий блок фильтров, восьмой блок усилителей, четвертый блок фильтров, пятый пороговый блок и второй блок схем И, последовательно соединенные третий таймер, четвертую схему И и второй блок счетчиков, а также АЦП и второй блок АЦП, подключенные входами соответственно к первому фильтру и третьему блоку фильтров, а выходами подключенные к ПЭВМ, третий и четвертый блоки АЦП, подключенные входами соответственно к первому и ко второму блокам фильтров, а выходами подключенные к ПЭВМ, четвертый и пятый таймеры, подключенные выходами соответственно ко вторым входам второй схемы И и второго блока схем И, а входами запуска и управляющими входами подключенные к ПЭВМ, второй тактовый генератор, подключенный выходом ко вторым входам третьей и четвертой схем И, схему ИЛИ, подключенную входами ко второму пороговому элементу и к первому блоку ИЛИ, а выходом подключенную к третьему таймеру, и пятую схему И, подключенную первым и вторым входами соответственно к третьему таймеру и к первому блоку ИЛИ, инверсным входом подключенную ко второму таймеру, а выходом подключенную к управляющим входам второго и третьего таймеров.

Изобретение относится к радиотехнике и может быть использовано в системах определения местоположения источников грозовых разрядов в системах сбора и обработки метеорологической информации.

Изобретение относится к способу определения местоположения наземных объектов. Техническим результатом является повышение точности определения местоположения наземного объекта в условиях городской застройки.

Изобретение относится к области оптических устройств отслеживания положения/ориентации шлема и, в частности, таких устройств, в которых шлем не содержит ни передатчиков, ни приемников, а только пассивные оптические компоненты, обнаружение которых обеспечивают неподвижные оптоэлектронные средства, внешние по отношению к шлему.

Изобретение относится к системам определения местоположения объекта с помощью отражения оптических волн, а также селекции множественных объектов на сложном фоне.

Изобретение относится к способам определения координат источников электромагнитных излучений с помощью средств космического базирования путем регистрации и измерения поляризационных характеристик регистрируемого излучения.

Способ поиска оптических и оптико-электронных приборов основан на использовании дистанционно пилотируемого аппарата, который осуществляет сканирование зоны поиска по определенной траектории. При сканировании получают изображение зоны поиска как с облучением ее оптическим излучением и без облучения. Вычитают из изображения с облучением изображение без облучения. Параметры разностного изображения сравнивают с эталонными значениями параметров отраженных сигналов. При совпадении параметров запоминают координаты летательного аппарата и относительно них пеленгационные углы. Координаты искомого прибора определяют как пересечение пеленгов. Технический результат заключается в расширении зоны поиска и обнаружении оптических и оптико-электронных приборов одним средством и обеспечение оценки координат их местоположения. 2 ил.

Наверх