Способ определения доли мтднк с делециями в биологических образцах


C12N15/00 - Получение мутаций или генная инженерия; ДНК или РНК, связанные с генной инженерией, векторы, например плазмиды или их выделение, получение или очистка; использование их хозяев (мутанты или микроорганизмы, полученные генной инженерией C12N 1/00,C12N 5/00,C12N 7/00; новые виды растений A01H; разведение растений из тканевых культур A01H 4/00; новые виды животных A01K 67/00; использование лекарственных препаратов, содержащих генетический материал, который включен в клетки живого организма, для лечения генетических заболеваний, для генной терапии A61K 48/00 пептиды вообще C07K)

Владельцы патента RU 2676897:

Федеральное государственное бюджетное учреждение науки Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук (ИХБФМ СО РАН) (RU)

Изобретение относится к области биохимии и молекулярной биологии. Предложен способ определения доли мтДНК с делециями в биологических образцах, включающий выделение ДНК из образцов, одновременную амплификацию соответствующих участков ДНК в режиме триплекс при помощи ПЦР в реальном времени с последующим определением стартовых количеств выбранных фрагментов ДНК, отличающийся тем, что для каждого образца одновременно амплифицируют и детектируют по каналам FAM, HEX, ROX фрагменты мтДНК D-loop и ND4 и ядерной ДНК LINE-1, определяют стартовые количества этих фрагментов ДНК, далее рассчитывают относительное количество мтДНК по соотношению [D-loop]/[LINE-l], после чего определяют долю мтДНК с делециями от общего количества мтДНК по формуле l-[ND4]/[D-loop]. Способ позволяет снизить ошибки при выявлении делеций мтДНК. 1 табл.

 

Изобретение относится к области молекулярной биологии, генетике и клинической медицины и может быть использовано для выявления структурных перестроек и оценки относительного содержания митохондриальной ДНК (мтДНК) в клетках в биологических образцах.

Митохондрии - органеллы эукариотической клетки, специализирующиеся на выработке энергии в виде АДФ и АТФ в ходе окислительного фосфорилирования. В отличие от всех прочих органелл, митохондрии имеют собственную ДНК. В мтДНК закодировано 37 генов, преимущественно участвующих в окислительном фосфорилировании. Всего в жизнедеятельности митохондрий принимает участие порядка 3000 генов, большая часть которых содержится в ядерной ДНК. В эукартиоических клетках различных тканей содержится разное число митохондрий. Так, в клетках печени человека около 2000 митохондрий, и в каждой из них - по 10 копий мтДНК. Число митохондрий в клетке определяется ее энергетическими потребностями и может изменяться адаптивно. Кроме того, изменение числа митохондрий связано с некоторыми патологическими процессами. Например, большое число митохондрий характерно для онкоцитов и клеток опухолей, произошедших от них.

Известна группа заболеваний - митохиндриальные заболевания - связанные с наследственными или соматическими мутациями в мтДНК или ядерной ДНК, приводящими к нарушению энергетических функций митохондрий. На сегодняшний день от митохондриальных заболеваний страдает в среднем 1 из 5000 взрослых жителей мира [1].

Среди всех причин митохондриальных заболеваний частые мутации составляют незначительный процент. Большинство случаев связано с редкими мутациями и их сочетаниями. Поиск редких мутаций является сложнейшей задачей, выполняется в режиме секвенирования. Выявленные мутации могут быть уже описанными ранее или же выявленными впервые.

Среди частых мутаций мтДНК особый интерес представляет наиболее распространенная объемная делеция, протяженностью 4977 п.о., являющаяся причиной синдрома Пирсона, детских мультисистемных расстройств и синдрома Кернса-Сейра. Полноразмерная делеция 4977 составляет до 30% случаев всех делеций в мтДНК. С возрастом число копий мтДНК с делецией 4977 возрастает, в связи с чем делеция рассматривается как причина нервно-мышечной возрастной дегенерации [2]. Кроме того, делеция 4977 обнаруживается в раковых клетках, клетках мышц сердца пациентов с коронарным атеросклерозом и в сперматозоидах со сниженной подвижностью [3, 4, 5]. С другой стороны, накопление делеций 4977 рассматривают как естественный процесс старения [6].

Делеций представляют собой наиболее функционально значимые мутации, т.к. приводят к утрате целых белков и серьезным нарушениям энергетической функции клетки. Выявление делеций - один из возможных скрининговых способов выявления митохондриальных аномалий.

Таким образом, клинически значимыми событиями в геноме митохондрий являются: мутации в генах мтДНК и изменение числа митохондрий в клетках.

Маркером делеций в мтДНК является отсутствие гена ND4. Ген ND4 расположен в середине полноразмерной делеций 4977 и делетирован в 85% случаев всех делеций. Таким образом, одновременная амплификация участка гена ND4 и консервативной области мтДНК, например, гена тРНК, представляет собой надежный метод выявления молекул мтДНК с различными делециями. В 2014 году была опубликована работа авторов Nicole R. Phillips с соавт., описывающая тест-систему ПЦР в режиме реального времени, основанную на данном подходе. Авторы предлагают одновременную амплификацию участка гена ND4, консервативного участка мтДНК и участка ядерного гена b-2-микроглобулина, представленного двумя копиями на клетку [7]. Таким образом, выявляя соотношение числа копий мтДНК с делециями к числу копий мтДНК без мутаций, можно оценить, достигнута ли «пороговая экспрессия» - состояние с достаточным числом мутантных копий мтДНК для развития митохондриального заболевания. Соотношение числа копий мтДНК к числу копий гена b-2-микроглобулина отражает относительное содержание митохондрий в клетках.

Недостатком данного метода является тот факт, что деградация ДНК биообразца в области амплифицируемого участка гена b-2-микроглобулина приведет к значительному смещению истинного содержания митохондрий в клетках. Так, например, деградация, 50% копий гена b-2-микроглобулина приведет к увеличению среднего числа митохондральных геномов, приходящихся на клетку, в два раза. Эта проблема особенно актуальна для образцов, обработка которых сопряжена с деградацией ДНК, например, гистологические блоки или образцы ДНК-содержащих органических фаз после выделения РНК. Определение числа клеток в образце через амплификацию низкокопийного гена возможна при условии подбора условий сохранения целостности ДНК в образце. Большинство протоколов, применяемых в клинической практике, не учитывают аспекты сохранения целостности ДНК. Поэтому и в научных целях и для медицинских приложений обычно доступны образцы, в которых ДНК в той или иной степени деградирована.

Отличием предлагаемого изобретения является использование последовательностей LINE-1 (Long Interspersed Nuclear Elements, LN1g) для определения числа митохондриальных геномов, приходящихся на клетку. В геноме одной клетки человека содержится около 500 ООО копий LINE-1. Большое число копий гена сравнения снижает вклад процесса деградации ДНК в результаты.

Способ заключается в следующем. Из биологического образца выделяют ДНК. Проводят амплификацию генов LINE-1, D-loop и ND4 в режиме триплекс. Амплификационные смеси объемом 10-30 мкл содержат 10-500 нг ДНК, 300 нМ каждого специфичного праймера, 100 нМ каждого специфичного флуоресцентно меченого зонда, соответствующее количеству ДНК количество полимеразы и реакционный буфер, соответствующий полимеразе. Количественную ПЦР проводят с использованием любого амплификатора с возможностью регистрации продуктов реакции в режиме реального времени по каналам FAM, HEX, ROX. Протокол амплификации включает этапы: 3-минутную инкубацию при 96°С; 40 циклов, состоящих из денатурации при 96°С (6 сек), отжига праймеров, элонгации и съема сигнала при 60°С (1 мин). Для построения калибровочной кривой и учета эффективности амплификации при каждом анализе помимо тестовых образцов с каждой пары праймеров амплифицируют серию разведений смешанной в равных долях ДНК всех тестовых образцов, последовательно разведенную четыре раза в пять раз; контроль без матрицы. Каждую отдельную амплификацию проводят в трех повторах.

Для каждого образца рассчитывают относительное количество мтДНК по формуле:

[D-loop]/[LINE-1],

где

[D-loop] - стартовое количество мтДНК в образце, определенное по калибровочной кривой с помощью программного обеспечения амплификатора;

[LINE-1] - стартовое количество ядерной ДНК, определенное по калибровочной кривой с помощью программного обеспечения амплификатора.

Далее рассчитывают долю мтДНК с делециями от общего количества мтДНК по формуле:

1-[ND4]/[D-loop],

где

[ND4] - стартовое количество фрагмента гена ND4 в образце, определенное по калибровочной кривой с помощью программного обеспечения амплификатора;

[D-loop] - стартовое количество мтДНК в образце, определенное по калибровочной кривой с помощью программного обеспечения амплификатора.

Если необходимо, рассчитывают среднее число митохондрий, содержащееся в одной клетке, исходя из того, что в одной клетке содержится порядка 500000 копий LINE-1. Количество митохондрий специфично для различных типов клеток.

ИСТОЧНИКИ ИНФОРМАЦИИ

1 Schaefer A, McFarland R, Blakely E et al. Prevalence of mitochondrial DNA disease in adults. Ann Neurol. 63(1):35-39 (2008).

2 Porteous W, James A, Sheard P et al. Bioenergetic consequences of accumulating the common 4977-bp mitochondrial DNA deletion. Eur J Biochem. 257(1):192-201 (1998).

3 Ye C, Shu X, Wen W et al. Quantitative Analysis of Mitochondrial DNA 4977-bp Deletion in Sporadic Breast Cancer and Benign Breast Tumors. Breast Cancer Res Treat. 108(3):427-434 (2008).

4 Bogliolo M, Izzotti A, De Flora S et al. Detection of the '4977 bp' mitochondrial DNA deletion in human atherosclerotic lesions. Mutagenesis. 14(1):77-82 (1999).

5 Ieremiadou F, Rodakis G. Correlation of the 4977 bp mitochondrial DNA deletion with human sperm dysfunction. BMC Res Notes. 2:18 (2009).

6 Zheng Y, Luo X, Zhu J et al. Mitochondrial DNA 4977 bp deletion is a common phenomenon in hair and increases with age. Bosn J Basic Med Sci. 12(3):187-192(2012).

7 Phillips N, Sprouse M, Robye R. Simultaneous quantification of mitochondrial DNA copy number and deletion ratio: a multiplex real-time PCR assay. Sci Rep.4:3887 (2014).

Способ определения доли мтДНК с делециями в биологических образцах, включающий выделение ДНК из образцов, одновременную амплификацию соответствующих участков ДНК в режиме триплекс при помощи ПЦР в реальном времени с последующим определением стартовых количеств выбранных фрагментов ДНК, отличающийся тем, что для каждого образца одновременно амплифицируют и детектируют по каналам FAM, HEX, ROX фрагменты мтДНК D-loop и ND4 и ядерной ДНК LINE-1, определяют стартовые количества этих фрагментов ДНК, далее рассчитывают относительное количество мтДНК по соотношению [D-loop]/[LINE-l], после чего определяют долю мтДНК с делециями от общего количества мтДНК по формуле l-[ND4]/[D-loop].



 

Похожие патенты:

Изобретение относится к области биохимии, в частности к способу направленной модификации представляющего интерес геномного локуса в одной или более плюрипотентных клетках крысы, включающему введение в плюрипотентные клетки крысы большого таргетирующего вектора (LTVEC), содержащего вставку нуклеиновой кислоты, и идентификацию генетически модифицированной плюрипотентной клетки крысы, содержащей направленную генетическую модификацию в представляющем интерес геномном локусе, а также к способу создания гуманизированной крысы с использованием вышеуказанного способа модификации.

Изобретение относится к области молекулярной биологии и биотехнологии и представляет собой биологически активный белковый препарат, обладающий специфической активностью папаин-подобных цистеиновых протеиназ, характеризующийся тем, что представляет собой аминокислотную последовательность, выбранную из SEQ ID NO:2-4, экспрессирующийся в растворимой форме.

Изобретение относится к области биохимии, в частности к рекомбинантной молекуле ДНК для экспрессии гетерологической транскрибируемой полинуклеотидной молекулы, а также к клетке трансгенного растения, части трансгенного растения, семени трансгенного растения и трансгенному растению, ее содержащим.

Изобретение относится к области биохимии, в частности к генетически модифицированной мыши, которая экспрессирует зрелый полипептид IL-15 человека, в геноме которой в эндогенном локусе IL-15 мыши заменен геномный фрагмент мыши, содержащий последовательности экзонов 3, 4, 5 и 6 IL-15 мыши, которые кодируют зрелый полипептид IL-15 мыши, на человеческий геномный фрагмент, содержащий 3-6-й экзоны человеческого гена IL-15 и кодирующий зрелый полипептид IL-15 человека.

Данное изобретение относится к биотехнологии. Предложен олигонуклеотид для обеспечения пропуска двух или более экзонов пре-мРНК дистрофина.

Настоящее изобретение относится к области биотехнологии, конкретно к полипептидному биомаркеру эффективности применения ингибитора FGFR при лечении рака мочевого пузыря и рака легких, что может быть использовано в медицине.

Изобретение относится к области биохимии, в частности к растению подсолнечника, устойчивому к патогену ложной мучнистой росы, а также к его семени и ткани. Также раскрыт способ получения растения подсолнечника, устойчивого к патогену ложной мучнистой росы, содержащий этап введения в растение подсолнечника гена, обеспечивающего устойчивость к ложной мучнистой росе.

Изобретение относится к области биотехнологии, в частности к способу непрерывного культивирования линии клеток яичника китайского хомячка CHO, являющейся продуцентом антител, и применению указанного способа.

Изобретение относится к области биохимии, в частности к мыши для экспрессии гуманизированного белка SIRPα, содержащей замещение экзонов 2, 3 и 4 гена SIRPα мыши в эндогенном локусе SIRPα мыши на экзоны 2, 3 и 4 гена SIRPα человека с образованием гуманизированного гена SIRPα, а также к клетке и ткани вышеуказанной мыши.

Изобретение относится к области биохимии. Предложен способ преимплантационной генетической диагностики спинальной мышечной атрофии, предусматривающий определение делеции 7 экзона гена SMN1, где проводят прямую диагностику с использованием ПЦР-ПДРФ, и косвенную диагностику со специфическими праймерами для анализа наследования молекулярно-генетических маркеров, сцепленных с мутацией.

Изобретение относится к олигонуклеотиду, который может быть использован в медицине, включающему от двух до четырех последовательностей, каждая из которых представлена формулой 5'-X1X2CpGX3X4-3', имеющий длину, составляющую от 17 до 32 нуклеотидов, где CpG является неметилированным без модифицированных фосфатных остовов, где олигонуклеотид включает модифицированный фосфатный остов, включающий тиофосфат стереоизомера Sp-типа на сайте, за исключением частей, представленных формулой 5'-X1X2CpGX3X4-3', где Х1Х2 представляет собой один из АА, AT, GA или GT без модифицированных фосфатных остовов, и где Х3Х4 представляет собой ТТ, AT, АС, ТС или CG без модифицированных фосфатных остовов, и олигонуклеотид включает любую одну из последовательностей, где * означает Sp стереоизомер: Предложен новый CpG олигонуклеотид, обладающий высокой устойчивостью и уменьшенной цитотоксичностью, для выработки интерферона-α. 5 з.п. ф-лы, 3 ил., 11 табл., 6 пр., перечень последовательностей.

Изобретение относится к области биохимии и молекулярной биологии. Предложен способ определения доли мтДНК с делециями в биологических образцах, включающий выделение ДНК из образцов, одновременную амплификацию соответствующих участков ДНК в режиме триплекс при помощи ПЦР в реальном времени с последующим определением стартовых количеств выбранных фрагментов ДНК, отличающийся тем, что для каждого образца одновременно амплифицируют и детектируют по каналам FAM, HEX, ROX фрагменты мтДНК D-loop и ND4 и ядерной ДНК LINE-1, определяют стартовые количества этих фрагментов ДНК, далее рассчитывают относительное количество мтДНК по соотношению [D-loop][LINE-l], после чего определяют долю мтДНК с делециями от общего количества мтДНК по формуле l-[ND4][D-loop]. Способ позволяет снизить ошибки при выявлении делеций мтДНК. 1 табл.

Наверх