Центратор скважинного оборудования



Центратор скважинного оборудования
Центратор скважинного оборудования

Владельцы патента RU 2677182:

Публичное акционерное общество "Татнефть" имени В.Д. Шашина (RU)

Изобретение относится к нефтегазодобывающей промышленности, в частности к устройствам для центрирования внутрискважинного оборудования. Технический результат – упрощение конструкции и повышение надежности. Центратор содержит корпус с верхней и нижней присоединительными резьбами и центральным каналом, упругий центрирующий элемент и механизм для временного увеличения его жесткости. Упругий центрирующий элемент выполнен в виде разрезного кольца таврового сечения полкой внутрь, установленного в кольцевой проточке с кольцевыми выступами корпуса такого же сечения с упором полок в соответствующие кольцевые выступы проточки в расширенном состоянии кольца и с возможностью радиального перемещения при сжатии. Механизм увеличения жесткости центратора выполнен из двух соединенных осью вращения подпружиненных наружу рычагов, противоположные концы которых установлены на осях в противоположных концах паза, изготовленного поперек кольцевой проточки, с возможностью ограниченного поворота. Соединенные осью концы рычагов выполнены с возможностью вхождения в разрез кольца при его полном расширении, а рычаги снабжены выступами для смещения внутрь паза при взаимодействии выступов с началом суженного участка в скважине. 3 з.п. ф-лы, 5 ил.

 

Изобретение относится к нефтегазодобывающей промышленности, в частности к устройствам для центрирования внутрискважинного оборудования.

Центраторы в нефтегазодобывающих скважинах выполняют разные функции, такие как обеспечение состыковки с ранее установленным в скважине оборудованием, центрирование оборудования перед его установкой в скважине, обеспечение срабатывания некоторых механизмов, как это делают фонари-центраторы пакеров, а также обеспечение защиты от трения об стенку скважины некоторых узлов, таких как эластичные уплотнения. Последняя функция особенно важна для горизонтальных скважин, где к нижней части скважины прижимается весь вес с спускаемого оборудования, поэтому центраторы для таких скважин должны быть очень жесткими и в то же время обеспечивать вхождение и прохождение насквозь и обратно сужений в эксплуатационной колонне (ЭК), таких как установочные втулки или постоянные пакеры, которые могут применяться в горизонтальных скважинах, например, как в патенте РФ №2531964.

Известен пружинный центратор (патент ПМ RU №163577, Е21В 17/10, опубл. в бюл. №21 от 27.07.2016), включающий патрубок с муфтами, два модуля, каждый из которых состоит из корпуса с концевыми частями в виде колец и центрирующих ребер, выполненных в виде упругих дугообразных планок, причем центратор состоит из двух зеркально выполненных мо-дулей, размещенных на патрубке с муфтами, а упругие дугообразные планки имеют режущие кромки и расположены под острым углом к осевой линии центратора.

Его недостатком является малая жесткость, не обеспечивающая защиты оборудования в горизонтальной скважине.

Наиболее близок по своей технической сущности к предлагаемому центратор скважинного оборудования (патент ПМ RU №62419, Е21В 17/10, опубл. в бюл. №10 от 10.04.2007), содержащий корпус с верхней и нижней присоединительными резьбами и центральным каналом, оправку, установленную с возможностью вращения на наружной поверхности корпуса, плашки, размещенные равномерно по периметру оправки с возможностью ограниченного съемными упорами радиального перемещения наружу, при этом каждая плашка поджата наружу пружинами сжатия, а корпус выше и ниже оправки снабжен верхним и нижним выступами, причем оправка снабжена полыми цилиндрическими выступами, а плашки цилиндрическими выборками, в которые вставлены цилиндрические выступы оправки с возможностью герметичного осевого перемещения, при этом корпус снабжен наружными кольцевыми проточками, сообщающимися с центральным каналом и полостями цилиндрических выступов оправки, причем оправка сверху и снизу загерметизирована относительно корпуса.

Недостатками центратора являются сложность конструкции и работы, а также малая жесткость, зависящая от давления закачки жидкости.

Техническими задачами предлагаемого центратора являются упрощение конструкции и повышение жесткости.

Указанные задачи решаются предлагаемым центратором скважинного оборудования, содержащим корпус с верхней и нижней присоединительными резьбами и центральным каналом, упругий центрирующий элемент и механизм для временного повышения его жесткости.

Новым является то, что упругий центрирующий элемент выполнен в виде разрезного кольца таврового сечения полкой внутрь, установленного в кольцевой проточке с кольцевыми выступами корпуса такого же сечения с упором полок в соответствующие кольцевые выступы проточки в расширенном состоянии кольца и с возможностью радиального перемещения при сжатии, а механизм повышения жесткости центратора выполнен из двух соединенных осью вращения подпружиненных наружу рычагов, противоположные концы которых установлены на осях в противоположных концах паза, изготовленного поперек кольцевой проточки, с возможностью ограниченного поворота, причем соединенные осью концы рычагов выполнены с возможностью вхождения в разрез кольца при его полном расширении, а рычаги имеют выступы для смещения внутрь паза при взаимодействии выступов с началом суженного участка в скважине.

Новым является также то, что противоположный разрезу сегмент кольца зафиксирован в проточке с возможностью радиального перемещения.

Новым является также то, что разрезное кольцо выполнено из полимерного материала.

Новым является также то, что внутри кольца выполнены канавки, в которые установлены вставки из пружинной стали.

На фиг. 1 изображен центратор в транспортном положении.

На фиг. 2 - сечение Б-Б в транспортном положении. На фиг. 3 - вид А в транспортном положении.

На фиг. 4 изображен центратор при прохождении его через сужение (втулку) в эксплуатационной колонне (ЭК) скважины.

На фиг. 5 изображено сечение В-В центратора при прохождении его через сужение (втулку) в ЭК.

Центратор скважинного оборудования содержит корпус 1 (фиг. 1) с присоединительными резьбами 2, в кольцевой проточке 3 с кольцевыми выступами 4 которого полкой 5 внутрь установлено упругое разрезное кольцо 6 таврового сечения (фиг. 2) с разрезом 7. Поперек проточки 3 (фиг. 1) на корпусе 1 выполнен продольный паз 8 с большей глубиной, чем проточка 3, в котором размещены левый 9 и правый 10 рычаги с осями 11 в соответствующих противоположных концах паза 8, шарнирно соединенные между собой штифтом 12, который жестко закреплен в отверстиях 13 правого рычага 10, а отверстие 14 в левом рычаге 9 выполнено овальным. Ширина рычагов 9 и 10 равна ширине разреза 7 (фиг. 2) кольца 6 в полностью расширенном состоянии.

Каждый из рычагов 9 (фиг. 1) и 10 поджат соответствующей пружиной 15 до ограничителя 16. На наружной стороне рычагов 9 и 10 выполнены выступы 17.

Противоположный разрезу 7 сегмент кольца 6 для исключения поворота в проточке 4 может быть соединен через отверстие в нем 18 и штифт 19 с корпусом 1 с возможностью радиального перемещения. Штифт 19 жестко закреплен в корпусе 1 и свободно перемещается в отверстии 18 кольца 6.

Центратор на фиг. 4 помещен в ЭК 20 с сужением 21, корпус 1 имеет сквозной канал 22 для прохождения жидкости и спуска, при необходимости, приборов.

Работает центратор следующим образом.

Перед спуском центратора в скважину его корпус 1 соединяют резьбами 2 со спускаемым оборудованием (на фиг. не показано). Упругое кольцо 6 полностью расширено до упора полок 5 в кольцевые выступы 4 проточки 3, а соединенные штифтом 12 концы рычагов 9 и 10 выдвинуты пружинами 15 до упора левого рычага 9 в ограничитель 16. А правый рычаг 10 ограничивает через овальное отверстие 14 штифт 12, запрессованный в отверстие 13. При этом соединенные концы рычагов 9 и 10 входят в разрез 7 (фиг. 2) кольца 6. Это полностью его замыкает и в сочетании с упором полок 5 (фиг. 1) в кольцевые выступы 4 проточки 3 делает совершенно жестким, что предотвращает контакт спускаемого оборудования со стенками ЭК.

При вхождении центратора в сужение 21 (фиг. 4) его стенки давят на выступ 17 (фиг. 1) рычага 9 или 10 в зависимости от направления движения, рычаги 9 или 10 поворачиваются в осях 11 к центральной оси центратора, а соединенные штифтом 12 концы рычагов 9 и 10, сжимая пружины 15, опускаются внутрь паза 8 и выходят из разреза 7 упругого кольца 6. Под действием сужения 21 (фиг. 4) кольцо 6 (фиг. 5) сжимается и входит внутрь проточки 3 (фиг. 1), разрез 7 (фиг. 5) кольца 6 сужается почти до смыкания. При этом штифт 19 (фиг. 1), не препятствуя сжатию кольца 6, не дает ему поворачиваться внутри проточки 3.

При выходе из сужения 21 (фиг. 4) упругое кольцо 6 (фиг. 1) вновь расширяется до упора полки 5 в сужение проточки 3, рычаги 9 и 10 под действием пружин 15 поворачиваются до упора левого рычага 9 в ограничитель 16, при этом соединенные штифтом 12 концы рычагов 9 и 10 входят во вновь расширившийся разрез 7 (фиг. 2) и фиксируют упругое кольцо 6. Точное их совпадение обеспечивает фиксация кольца 6 от проворота штифтом 19 (фиг. 1).

Чтобы исключить повреждение поверхности сужений 21 (фиг. 4) или втулок (не показаны), особенно если они имеют гладкую или даже полированную поверхность, упругое разрезное кольцо 6 (фиг. 1) может быть изготавлено из полимерного материала. При этом, если собственной жесткости кольца 6 недостаточно для расширения, его внутреннюю поверхность выполняют с канавками (не показаны), в которые помещают вставки из пружинной стали (не показаны).

Таким образом, предлагаемый центратор скважинного оборудования обеспечивает защиту спускаемого оборудования от стенок ЭК, особенно в горизонтальных скважинах, имеет упрощенную конструкцию и повышенную жесткость.

1. Центратор скважинного оборудования, содержащий корпус с верхней и нижней присоединительными резьбами и центральным каналом, упругий центрирующий элемент и механизм для временного увеличения его жесткости, отличающийся тем, что упругий центрирующий элемент выполнен в виде разрезного кольца таврового сечения полкой внутрь, установленного в кольцевой проточке с кольцевыми выступами корпуса такого же сечения с упором полок в соответствующие кольцевые выступы проточки в расширенном состоянии кольца и с возможностью радиального перемещения при сжатии, а механизм повышения жесткости центратора выполнен из двух соединенных осью вращения подпружиненных наружу рычагов, противоположные концы которых установлены на осях в противоположных концах паза, изготовленного поперек кольцевой проточки, с возможностью ограниченного поворота, причем соединенные осью концы рычагов выполнены с возможностью вхождения в разрез кольца при его полном расширении, а рычаги имеют выступы для смещения внутрь паза при взаимодействии выступов с началом суженного участка в скважине.

2. Центратор скважинного оборудования по п. 1, отличающийся тем, что противоположный разрезу сегмент кольца зафиксирован в проточке с возможностью радиального перемещения.

3. Центратор скважинного оборудования по п. 1 или 2, отличающийся тем, что разрезное кольцо выполнено из полимерного материала.

4. Центратор скважинного оборудования по п. 3, отличающийся тем, что внутри кольца выполнены канавки, в которые установлены вставки из пружинной стали.



 

Похожие патенты:

Автоотцеп // 2675277
Изобретение относится к области нефтегазодобывающей отрасли, в частности к устройствам для установки автономных приборов в скважине, и может быть использовано при исследованиях скважинных процессов.

Изобретение используется для токоподвода и двухсторонней передачи сигналов с устья скважины на системы телеметрии низа буровой колонны в процессе бурения. Электрический кабель подают внутрь бурильной трубы БТ(1) секциями С (2), длина которых равна длине БТ (1).

Изобретение относится к геофизическим измерениям в стволе скважины, в том числе к телеметрическим системам передачи сигналов между наземным блоком управления и скважинным инструментом, размещенным в стволе скважины, проходящей через геологический пласт.

Группа изобретений относится к области исследования, передачи данных и электроэнергии в буровых скважинах. Система содержит электроприводной скважинный прибор, спусковую колонну гибких труб, прикрепленную к скважинному прибору, для размещения скважинного прибора в пустотелом стволе скважины, трубу-кабель, размещенную внутри колонны гибких труб и функционально связанную со скважинным прибором.

Изобретение относится к нефтегазодобывающей промышленности и может быть применено для фиксации оптико-волоконного кабеля при исследовании скважин, в том числе наклонно-направленных и горизонтальных.

Группа изобретений относится к буровым долотам, буровому устройству и способу оснащения бурового долота. Технический результат заключается в обеспечении непосредственного воздействия силы на датчик.

Изобретение относится к области нефтегазовой промышленности и может быть использовано при исследовании скважин для получения информации о давлении и температуре жидкости в затрубном пространстве скважины с помощью автономных измерительных приборов, спускаемых на насосно-компрессорных трубах.

Изобретение относится к области исследования, диагностики и обработки нефтяных, газовых, водяных и прочих скважин и предназначено для гибкого соединения различных геофизических и прочих модулей с целью увеличения проходимости длинных конструкций.

Изобретение относится к области исследования, диагностики и обработки нефтяных, газовых, водяных и прочих скважин и предназначено для гибкого соединения различных геофизических и прочих модулей с целью увеличения проходимости длинных конструкций.
Изобретение относится к геофизической технике и может быть использовано при проведении геофизических исследований и ремонтно-изоляционных работ в действующих скважинах.

Изобретение относится к скважинной эксплуатационной обсадной колонне, предназначенной для введения в ствол скважины в пласте. Технический результат – улучшение обсадной колонны.

Изобретение относится к нефтегазовой промышленности, преимущественно к устройствам для герметизации эксплуатационных колонн и отключения пластов. Устройство содержит башмак с центратором, герметично соединенный с пластырем в виде гладкого металлического патрубка, имеющего снаружи на концах эластичные уплотнительные кольца, а внутри - узел расширения пластыря.

Группа изобретений относится к цементированному карбиду для компонента, подвергаемого воздействию давления текучей среды. Согласно варианту 1 цементированный карбид содержит Со, Ni, TiC, Mo, WC и Cr3C2.

Изобретение относится к буровой технике. Технический результат - повышение надежности крепления гибкого длинномерного изделия на НКТ в области муфтового соединения и упрощение технологии крепления.

Группа изобретений относится к морской добыче углеводородов из скважины на платформу. Технический результат – непрерывная добыча углеводородов, за счет непрерывной эксплуатации судна-трубоукладчика.

Изобретение используется для токоподвода и двухсторонней передачи сигналов с устья скважины на системы телеметрии низа буровой колонны в процессе бурения. Электрический кабель подают внутрь бурильной трубы БТ(1) секциями С (2), длина которых равна длине БТ (1).

Изобретение относится к области металлургии, в частности к титановым сплавам с высокой коррозионной стойкостью, и может быть использовано для производства компонентов системы производства и/или извлечения нефти и газа.

Группа изобретений относится к системам ввода кабеля с трубчатой оболочкой в гибкую трубу. Технический результат заключается в создании поперечных сил, противодействующих изгибаниям кабеля.

Изобретение относится к нефтедобывающей отрасли. Технический результат – обеспечение надежной герметизации резьбовых соединений при многократном свинчивании-развинчивании.

Группа изобретений относится к ударно-поворотному бурению. Технический результат – повышение КПД бурения, максимизация достижимой амплитуды ударной волны без повреждения зоны замка бурильной колонны.

Изобретение относится к скважинной эксплуатационной обсадной колонне, предназначенной для введения в ствол скважины в пласте. Технический результат – улучшение обсадной колонны.
Наверх