Индикаторная трубка для определения 1,1-диметилгидразина в воздухе

Изобретение относится к аналитической химии, а именно к химическим индикаторам на твердофазных кремнеземных носителях, и может быть использовано для экспрессного определения предельно допустимых и опасных концентраций 1,1-диметилгидразина в воздухе. Индикаторная трубка состоит из прозрачной трубки, заполненной порошкообразным наполнителем с сорбированным на нем индикатором, в качестве наполнителя содержит диоксид кремния с размером частиц 60÷500 мкм, в качестве индикатора - тетрагидро-12-молибдосиликат калия. Достигается возможность определять концентрацию ДМГ в воздушной среде на уровне ПДК с большей точностью по градуировочному графику, не требуется дальнейший нагрев для проведения хромогенной реакции, имеет место более глубокий цветовой сдвиг тест-реакции, исключен ложноотрицательный результат при контакте с органическими аминами, аммиаком и щелочными средами. 3 пр., 3 ил.

 

Изобретение относится к аналитической химии, конкретно к химическим индикаторам на твердофазных кремнеземных носителях и может быть использовано для экспрессного определения предельно допустимых и опасных концентраций 1,1-диметилгидразина (ДМГ) в воздухе с помощью индикаторной трубки (ИТ). Конкретное изменение цвета наполнителя в ИТ в процессе реакции дает возможность осуществлять визуальный анализ линейно-колористическим методом: по длине окрашенной зоны наполнителя.

При просмотре научно-технической и патентной информации были выявлены аналоги.

Известна индикаторная трубка на определения гидразина и 1,1-диметилгидразина [Drager-Tubes & CMS Handbook 16th edition: Soil, water, and air investigations as well as technical gas analysis, , 2011 P. 174]. В качестве индикатора использован бромтимоловый синий (рН-индикатор), изменяющий цвет в присутствии гидразина от желтого до синего. ИТ применима и для индикации ДМГ. Диапазон определяемых содержаний 0.33-13.32 мг/м3.

Недостатки этой ИТ: чувствительность определения ниже предельно-допустимой концентрации (ПДК), мешающее влияние аммиака и органических аминов, которые также дают синее окрашивание.

Известна ИТ для определения ДМГ (гидразинового горючего, несимметричного диметил гидразина) в воздухе. Наполнитель ИТ выполнен из смеси адсорбента цеолита марки NaA и силикагеля с адсорбированным нитратом серебра. [Литвиненко А.Н, Авзалов А.Ф., Литвиненко А.А., Литвиненко Н.А. Наполнитель индикаторной трубки для определения гидразинового горючего. // Пат. RU 2084872, 1994. (Опубликовано 20.07.1997)] Основной недостаток этой ИТ заключается в том, что ее невозможно применять во внелабораторных полевых условиях, так как изменение цвета наполнителя происходит только после нагрева трубки до 50-60°С для осуществления собственно тест-реакции. Кроме этого наполнитель ИТ дает ложную цветовую окраску при взаимодействии с щелочными средами и нет данных по диапазону определяемых концентраций ДМГ.

Наиболее близким по технической сущности и взятым за прототип является индикаторная трубка ИТМ-8М. В качестве индикатора в ИТ использован 4-пиридинальдегид, который дает при взаимодействии с ДМГ цветовой переход от светло-серого до оранжевого-желтого цвета. [Колесников С.В., Степанов Н.Д., Болдакова И.П., Стуколова Е.В. // Пат. RU 2305835 // Бюл. 2007. №25.]. Эта ИТМ-8М предложена для определения гидразина; определяемые содержания прерывистые: три оранжевые полоски соответствуют концентрациям 0.1, 0.4, 4 мг/м3 [Трубки индикаторные. ЗАО «НПФ»СЕРВЭК» Санкт-Петербург. www.servek.spb.rul.

Недостатками данного тест-средства является ограниченный цветной переход при тест-реакции, отсутствие градуировочного графика.

Таким образом, каждая из известных ИТ имеет свои преимущества и свою область применения, но не может обеспечить одновременного сочетания требуемых аналитических метрологических характеристик, таких как глубокий цветовой переход тест-реакции, высокая чувствительность и избирательность, определение ДМГ в широком диапазоне концентраций, доступность и устойчивость при хранении индикатора.

В основу изобретения положена задача создания индикаторной трубки, состав и форма которой обеспечивает осуществление экспрессного метода селективного количественного определения ДМГ с чувствительностью на уровне ПДК. Предложение направлено на создание ИТ для контроля безопасности окружающей воздушной среды и воздуха рабочей зоны при работе с ДМГ.

Технический результат изобретения - повышение чувствительности и избирательности и широты диапазона определения ДМГ с помощью ИТ при одновременном упрощении конструкции и способа изготовления ИТ, повышении устойчивости ИТ при хранении.

Указанный технический результат достигается тем, что предложена индикаторная трубка для определения 1,1-диметилгидразина в воздухе, состоящая из прозрачной трубки, заполненной порошкообразным наполнителем с сорбированным на нем индикатором, в качестве наполнителя ИТ содержит диоксид кремния с размером частиц 600÷500 мкм, в качестве индикатора - тетрагидро-12-молибдосиликат калия (ТГМС).

При меньшем размере частиц затруднено пропускание анализируемого воздуха через ИТ, при большем размере частиц нечеткая граница раздела по- разному окрашенных зон.

Предлагаемое новое средство индикации условно обозначено ИТ-ТГМС.

Изобретение проиллюстрировано фигурами 1-3:

Фиг. 1. Схема устройства для определения длины окрашенной зоны ИТ-ТГМС от концентрации ДМГ в воздухе: 1 - пакет Тэдлера, 2 - штуцер с мембраной для ввода микродозы аналита, 3 - соединительный клапан, 4 - ИТ, 5 - штуцер с насосом.

Фиг. 2. Градуировочный график по зависимости длины окрашенной зоны ИТ-ТГМС от концентрации ДМГ в воздухе.

Фиг. 3. Сравнение метрологических характеристик ИТ-ТГМС со штатной трубкой ИТМ-8М (ЗАО «НПФ» СЕРВЭК).

Способ получения индикаторной трубки для определения ДМГ (ИТ-ТГМС) состоял в том, что диоксид кремния пропитывали водным раствором тетрагидро-12-молибдосиликата калия (ТГМС), {калий тетрагидро-12-молибдосиликат октагидрат, K4H4[Si(Mo2O7)6]⋅8H2O (ТУ 6-09-01-6568-78)}, сушили, индикаторный порошок помещали в стеклянную трубку с перетяжкой и закрепляли его в трубке с помощью тонкого кварцевого волокна.

Испытание ИТ и определение зависимости ее окрашенной зоны от концентрации ДМГ в воздухе проводили с помощью устройства (фиг. 1), включающего прозрачный полипропиленовый пакет Тэдлера объемом 10 дм3 (Restek Corporation, USA) с мембраной для ввода пробы, со штуцером для присоединения приточного насоса или отсасывающего насоса через ИТ. Преимущество пакета Тэдлера перед ранее применяемым стеклянным баллоном заключается в том, что концентрация ДМГ в воздухе по мере его откачки из пакета остается постоянной, так как давление в пакете остается постоянным, а объем пакета уменьшается и затем пакет складывается после полной откачки воздушной массы через ИТ. Для получения метрологической характеристики ИТ через мембрану пакета Тэдлера вводили определенную микродозу этанольного раствора ДМГ, с помощью микрошприца (Hamilton, Switzerland) объемом 10 мкл. Принудительное введение атмосферного воздуха в пакет и перемешивание с ним введенной пробы для создание равномерной концентрации вещества по всему объему пакета происходило с помощью мембранного воздушного насоса (АВ Aqua Medic GMBH, Germany). Отбор воздушной смеси объемом 10 дм3 через ИТ-ТГМС проводился с помощью прокачивающего насоса со скоростью 10 дм3/25÷30 мин. Измерение длины окрашенной зоны проводили с помощью масштабной линейки.

Достижение технического результата предполагаемого изобретения поясняются следующими примерами изготовления и применением ИТ-ТГМС.

Пример 1. Изготовление и применение индикаторной трубки с содержанием 0.5% ТГМС (ИТ-ТГМС).

Смешали 10 мл 0.25%-го водного раствора ТГМС с 5 г диоксида кремния марки Диасорба-500-SO2 (с размером частиц 350-500 мкм, ЗАО «БиоХимМак СТ», Москва), высушили. Полученный индикаторный порошок с содержанием 0.5% ТГМС по отношению к диоксиду кремния поместили в стеклянную трубку с внутренним диаметром 2.4-2.5 мм, имеющую перетяжку на конце (ООО «ИМИД» г. Краснодар) на высоту 20 мм. Фиксирование порошка в трубке достигали с помощью тонкого кварцевого волокна «Quartz wool» (LTD Elementar, Germany). Через полученную ИТ пропустили полностью из пакета Тэдлера 10 дм3 воздуха с заданной концентрацией ДМГ. В ИТ появилась окрашенная в синий цвет индикаторная зона. На фиг. 2 представлен градуировочный график, построенный для ИТ-ТГМС при концентрации ДМГ от 0.05 до 5 мг/м3. Возможно построение градуировочного графика для большего диапазона концентраций, например, от 5 мг/м3 и выше при пропускании через ИТ-ТГМС соответственно меньших по объему проб воздуха.

Пример 2. Индикаторная трубка с содержанием 1% ТГМС (ИТ-ТГМС-2).

Получение ИТ с содержанием 1% ТГМС порошке проводили, как в примере 1 с тем отличием, что использовали 10 мл 0.5%-го раствора ТГМС и 5 г порошка Диасорб-100-SO2 (с размером частиц 160-350 мкм). При пропускании через ИТ 10 дм3 воздуха с концентрацией 0.1 мг/м3 ДМГ. В ИТ появилась окрашенная в темно-синий цвет индикаторная зона длиной <1 мм.

Пример 3. Индикаторная трубка с содержанием ТГМС 0.1% (ИТ-ТГМС-3).

Получение ИТ с содержанием 0.1% ТГМС в наполнителе проводили, как в примере 1, с тем отличием, что в качестве наполнителя применяли Диасорб-100-SO2 (с размером частиц 63÷200 мкм), использовали 0.1%-ый раствор ТГМС и ИТ с внутренним диаметром 1.4 мм. При пропускании через ИТ 10 дм3 воздуха с концентрацией 0.1 мг/м3 ДМГ в ИТ появилась окрашенная в светло-синий цвет индикаторная зона длиной 1.5 мм.

Были сопоставлены метрологические характеристики ИТ-ТГМС, полученной в примере 1, и аттестованной индикаторной трубки ИТМ-8М (ЗАО «НПФ» СЕРВЭК») с участием и по методике представителя НПО «ИНКРАМ», г. Москва. При пропускании через обе ИТ 2.8 л воздуха с концентрацией ДМГ 4 мг/м3 оранжевая зона ИТМ-8М оказалась короче синей зоны ИТ-ТГМС (фиг. 3). Это свидетельствует о том, что ИТ-ТГМС дает возможность проводить определение 1,1-диметилгидразина с более высокой чувствительностью.

Таким образом предложенная новая индикаторная трубка позволяет определять концентрацию ДМГ в воздушной среде на уровне ПДК, с большей точностью по градуировочному графику, не требует дальнейшего нагрева для проведения хромогенной реакции, имеет более глубокий цветовой сдвиг тест-реакции, исключает ложноотрицательный результат при контакте с органическими аминами, аммиаком и щелочными средами.

Индикаторная трубка для определения 1,1-диметилгидразина в воздухе, состоящая из прозрачной трубки, заполненной порошкообразным наполнителем с сорбированным на нем индикатором, отличающаяся тем, что в качестве наполнителя содержит диоксид кремния с размером частиц 60÷500 мкм, в качестве индикатора - тетрагидро-12-молибдосиликат калия.



 

Похожие патенты:

Изобретение относится к области аналитической химии, а именно к фотометрическому методу анализа, и может быть использовано для определения содержания железа (III) в растворах чистых солей, содержащих железо (III) в очень малой концентрации.

Изобретение относится к области аналитической химии, а именно к фотометрическому методу анализа, и может быть использовано для определения содержания железа (III) в растворах чистых солей, содержащих железо (III) в очень малой концентрации.

Группа изобретений относится к области исследования топлив на соответствие показателям качества при их использовании, в частности к колориметрическим способам определения серосодержащих соединений в неэтилированных бензинах и дизельном топливе.

Изобретение относится к устройствам исследования и анализа небиологических материалов химическими индикаторными средствами с целью экспрессного обнаружения в контактно отбираемой пробе следов взрывчатых веществ (ВВ), в том числе, при проведении обследований во внелабораторных условиях.

Изобретение относится к аналитической химии и может быть использовано в практике аналитических, агрохимических, медицинских лабораторий. Осуществляют концентрирование микроэлементов для последующего аналитического определения путем соосаждения с диантипирилметаном, образующим в системе вода - минеральная кислота - тиоцианат аммония коллектор дитиоцианат диантипирилметания.

Изобретение относится к аналитической химии, а именно изготовлению индикаторных растворов для изготовления индикаторных лент для фотоколориметрических измерений при определении газообразного аммиака в воздухе.

Настоящая заявка относится к маркирующей метке для бензинов, представляющей собой гидроксилсодержащие производные ароматического ряда, в которых гидроксильная группа соединена непосредственно с ароматическим ядром, выбранные из ряда резорцина, 4-гексилрезорцина или β-нафтола.

Изобретение относится к физико-химическим методам анализа, в частности к потенциометрическому способу определения концентрации ионов таллия в растворах, и касается состава мембраны химического сенсора для определения концентрации ионов таллия в водных растворах.
Изобретение относится к устройствам для выявления утечек аммиака и может быть использовано в областях химической и холодильной промышленностей, в сфере производства удобрений и аммиака, а также для контроля воздушной среды в производственных помещениях.

Группа изобретений относится к области обнаружения воздействия воды, а именно к этикеткам, указывающим на воздействие жидкостей. Клейкое изделие для обнаружения воздействия воды включает в себя слой, поглощающий жидкость, включающий первую основную поверхность и вторую основную поверхность; слой чувствительного к давлению клея, расположенный под второй основной поверхностью поглощающего слоя; прозрачное поверхностное покрытие; а также слой мигрирующего красителя.

Изобретение относится к области аналитической химии, а именно к фотометрическому методу анализа, и может быть использовано для определения содержания железа (III) в растворах чистых солей, содержащих железо (III) в очень малой концентрации.

Изобретение относится к области аналитической химии, а именно к фотометрическому методу анализа, и может быть использовано для определения содержания железа (III) в растворах чистых солей, содержащих железо (III) в очень малой концентрации.

Группа изобретений относится к определению уровней газообразных элементов. Способ определения уровней газообразных элементов, содержит получение в начале периода измерения первого электронного изображения устройства, имеющего колориметрический чувствительный элемент, выполненный с возможностью изменения цвета в ответ на воздействие одного или более загрязняющих веществ, и степень изменения цвета зависит от концентрации загрязняющих веществ; получение в конце периода измерения второго электронного изображения колориметрического чувствительного элемента; определение первого значения и второго значения, основанного на цвете колориметрического чувствительного элемента в первом и втором электронных изображениях соответственно; определение на основе первого и второго значений величины загрязнения для одного или более загрязняющих веществ, воздействию которых колориметрический чувствительный элемент подвергался в течение периода измерения.

Группа изобретений относится к определению уровней газообразных элементов. Способ определения уровней газообразных элементов, содержит получение в начале периода измерения первого электронного изображения устройства, имеющего колориметрический чувствительный элемент, выполненный с возможностью изменения цвета в ответ на воздействие одного или более загрязняющих веществ, и степень изменения цвета зависит от концентрации загрязняющих веществ; получение в конце периода измерения второго электронного изображения колориметрического чувствительного элемента; определение первого значения и второго значения, основанного на цвете колориметрического чувствительного элемента в первом и втором электронных изображениях соответственно; определение на основе первого и второго значений величины загрязнения для одного или более загрязняющих веществ, воздействию которых колориметрический чувствительный элемент подвергался в течение периода измерения.

Изобретение относится к аналитической химии и может быть использовано в практике аналитических, агрохимических, медицинских лабораторий. Осуществляют концентрирование микроэлементов для последующего аналитического определения путем соосаждения с диантипирилметаном, образующим в системе вода - минеральная кислота - тиоцианат аммония коллектор дитиоцианат диантипирилметания.

Изобретение относится к аналитической химии и может быть использовано для качественного и количественного определения пиридоксина, в условиях контрольно-аналитических лабораторий.

Изобретение относится к области медицины, а именно к детским инфекционным болезням, и может быть использовано для определения степени тяжести острого инфекционного мононуклеоза, вызванного вирусом Эпштейна-Барр у детей.

Изобретение относится к области аналитической химии и касается способа определения роданида с использованием полиметакрилатной матрицы. Способ включает в себя образование окрашенного комплекса с роданидом, измерение оптического сигнала в максимуме светопоглощения окрашенного комплекса и оценку содержания роданида.

Изобретение относится к области аналитической химии и касается способа определения роданида. Способ включает реакцию роданида с железом (III) и образование красного окрашивания.
Изобретение относится к реактиву для спектрофотометрического определения аминов и их полиаминополикарбоновых производных (комплексоны). Реактив состоит из двух компонентов: иона-комплексообразователя на основе поливалентных элементов в низших степенях окисления, такого как Со2+, Mn2+, Се3+, образующих устойчивые комплексы с азотсодержащими лигандами, и окислителя на основе 18-вольфрамо, молибдо-2-фосфатов состава M6[P2W18-nMonO62]⋅xH2O, где M = Li, Na, K, NH4; n = 0-18; x = 10-12.
Наверх