Скользящий элемент, в частности поршневое кольцо

Изобретение относится к скользящему элементу, в частности поршневому кольцу. Скользящий элемент имеет по меньшей мере одну поверхность скольжения, снабженную покрытием на основе углерода и по меньшей мере на отдельных участках имеющую среднеквадратичное значение локальных углов наклона профиля RΔq шероховатости согласно стандарту DIN EN ISO 4287, равное от 0,05 до 0,11 или от 0,08 до 0,1. Обеспечивается скользящий элемент, имеющий улучшенную комбинацию наименьшего возможного износа и наименьшего возможного трения в начале скользящего движения, в частности в двигателе. 12 з.п. ф-лы, 1 табл., 1 пр.

 

Изобретение относится к скользящему элементу, в частности, к поршневому кольцу.

Для скользящих элементов вообще, и для поршневых колец в частности, существенным критерием является то, до какой степени во время работы возникают потери на трение. Для двигателей внутреннего сгорания, в которых используются поршневые кольца, как рынок, так и законодательство требуют снижения расхода топлива и тем самым выбросов диоксида углерода. Поскольку поршневые кольца ответственны приблизительно за четверть потерь на механическое трение, и тем самым примерно за 4% расхода топлива, исследования в значительной мере сосредоточиваются на мерах сокращения этих потерь на трение вообще, обусловленных поршневыми кольцами и скользящими элементами.

Для этого, как было описано, например, в DE 44 19 713 А1, применяются покрытия из твердого сплава, которые обычно формируют методами PVD (физического осаждения из паровой фазы). С другой стороны, используются покрытия из аморфного алмазоподобного углерода (DLC), которые, однако, обычно могут быть нанесены только слоем толщиной в несколько мкм. Еще одной сложной задачей является создание экстремально твердых DLC-покрытий с достаточно низкой шероховатостью, чтобы избежать повреждения беговых поверхностей цилиндра или гильз цилиндров, а также износа. Различные системы ТаС-покрытий, пригодные для этой цели, известны из DE 10 2008 022 039 А1 и ЕР 0 724 023 А1.

С учетом этой ситуации изобретение имеет задачей создание скользящего элемента и, в частности, поршневого кольца, которое улучшено в отношении комбинации наименьшего возможного износа и наименьшего возможного трения также в начале скользящего движения, в частности, в двигателе.

Эта задача решается с помощью скользящего элемента, описанного в пункте 1 формулы изобретения. Соответственно этому, скользящий элемент, который предпочтительно представляет собой поршневое кольцо, имеет поверхность скольжения (рабочая поверхность), снабженную покрытием на основе углерода, и по меньшей мере на отдельных участках, имеющую среднеквадратичное значение локальных углов наклона профиля RΔq шероховатости (далее называется просто как шероховатость RΔq)согласно стандарту DIN EN ISO 4287, составляющее 0,05-0,11, предпочтительно от 0,08 до 0,1. Многочисленные испытания показали, что сравнительно низкие потери на трение при использовании покрытия на основе углерода обеспечиваются тем обстоятельством, что термически и/или механически возбужденно sp3-гибридизованные атомы углерода преобразуются в sp2-гибридизованные атомы углерода. Это имеет результатом очень тонкий и - по сравнению с расположенным под ним DLC-слоем - более мягкий верхний слой, который обусловливает снижение трения.

Согласно изобретению, это желательное преобразование в особенности благоприятно по тем соображениям, что средний наклон профиля в профиле шероховатости составляет величину, превышающую или по меньшей мере равную минимальному значению 0,05. Используемое в изобретении значение RΔq определяется именно указанным стандартом как среднеквадратичное значение локальных углов наклона профиля шероховатости (то есть как среднеквадратичный наклон фильтрованного профиля) относительно средней линии. Таким образом, низкое значение означает сравнительно «плоский» профиль, и высокое значение предполагает сравнительно «крутой» профиль. Испытания показали, что ниже значения RΔq, равного 0,05, коэффициент трения становится выше 0,035, что лежит в нежелательном порядке величин. Поэтому при значениях RΔq, превышающих или только равных 0,05, могут быть обеспечены очень низкие коэффициенты трения, что объясняется тем фактом, что, хотя изобретение не должно ограничиваться этим, наклон профиля является достаточно крутым, чтобы вызвать многочисленные преобразования из sp3- в sp2-гибридизированные атомы углерода и тем самым обеспечить положительное влияние на коэффициент трения желательным образом.

В то же время было обнаружено, что при значениях RΔq 0,1 или более, и, в частности, 0,11 или более, износ усиливается нежелательным образом, а именно лежит в порядке величин более 3 мкм. Объяснение этому, чем изобретение также не должно ограничиваться, состоит в том, что при сравнительно «крутом» наклоне профиля шероховатости возрастает контактное давление, что влечет за собой износ. Тем самым изобретение представляет предпочтительный баланс между благоприятными значениями износа и низкими коэффициентами трения. Что касается желательных значений RΔq, то следует упомянуть, что они могут быть настроены подходящими процессами нанесения покрытия и, в частности, процессами обработки. Значения RΔq обеспечиваются подходящим сочетанием процессов нанесения покрытия и выравнивания (придания гладкости). Способ нанесения покрытия представляет собой способ PA-CVD (стимулируемое плазмой химическое осаждение из паровой фазы) или PVD. Эти способы позволяют целенаправленно настраивать механические свойства, необходимые для достижения требуемых величин шероховатости. Параметром настройки является энергия осаждаемых ионов углерода. На эту энергию могут влиять изменения мощности испарения, магнитные поля, а также источник напряжения смещения. Процесс выравнивания (придания гладкости) является сверхчистовой обработкой с использованием определенных содержащих алмазы выглаживающих инструментов, причем морфология алмазов, распределение связанных алмазов, а также сам инструмент подгоняются надлежащим образом.

Изобретение главным образом основывается на вышеуказанных обнаруженных фактах относительно диапазона значений RΔq, тогда как в отношении прочих параметров шероховатости было найдено, что эти параметры непригодны для ограничения заданных диапазонов, чтобы достичь предпочтительного баланса между величинами износа и значениями трения. В отношении вышеупомянутых измеренных значений следует сказать, что, как более подробно разъясняется ниже со ссылкой на таблицу, эти значения были определены в смешанных условиях трения, насколько они существенны во время реальной работы двигателей внутреннего сгорания. Здесь толщина смазочной пленки достигает по существу общей глубины шероховатости поверхности основной детали и сопряженной детали, то есть, например, поршневого кольца и гильзы цилиндра, так что нагрузки за счет непосредственного контакта вершин шероховатостей могут передаваться на партнера скольжения. В этой ситуации на характеристику трения влияет контакт твердых тел, что требует по возможности более гладких поверхностей. Даже малейшие неровности могут создавать срезающие силы, которые повреждают, в частности, покрытие на основе углерода, и могут приводить к отслоению покрытия.

Предпочтительные варианты исполнения скользящего элемента согласно изобретению описаны в зависимых пунктах формулы изобретения.

Поскольку скользящий контакт между, например, поршневым кольцом и гильзой цилиндра возникает, в частности, в области выпуклости (бочкообразность), то есть, выпукло изогнутой рабочей поверхности поршневого кольца, предпочтительно, чтобы шероховатость согласно изобретению формировалась по меньшей мере на участке такой выпуклости.

Более того, было найдено, что описываемые значения RΔq должны иметь место в осевом направлении поршневого кольца на 10-90%, предпочтительно 25-75% поверхности скольжения (рабочая поверхность).

Покрытие предпочтительно представляет собой покрытие на основе углерода типа ТаС, чтобы быть в состоянии особенно хорошо использовать описываемые эффекты.

Что касается толщины слоя покрытия на основе углерода, то диапазон 0,5, предпочтительно от 10 до 30 мкм, проявил себя как особенно благоприятный. Дополнительно предпочтительный диапазон толщин слоя составляет от 0,5 до 10 мкм.

Равным образом это применимо для sp3-, то есть имеющего возможность преобразования в sp2, количества гибридизованных атомов углерода по меньшей мере 40 ат.%.

Во время испытаний удалось дополнительно установить, что существует стабильная корреляция между значениями RΔq и износом, а также коэффициентами трения, в частности, для значений модуля Юнга от 180 до 260 ГПа, и величин твердости от 1600 до 2800 HV0,02. Оба параметра измеряются согласно методу Оливера и Фарра (O&P).

Что касается соотношения «sp3/sp2», то предпочтительным является значение от 0,3 до 1,2.

Для прочной адгезии покрытия на основе углерода к подложке предпочтительным является металлсодержащий адгезивный слой, включающий хром и/или титан, между покрытием на основе углерода и подложкой.

Для толщины адгезивного слоя оказался благоприятным диапазон от 0,05 мкм до 1,0 мкм.

Описанные благоприятные эффекты в отношении как износа, так и коэффициента трения, могут быть установлены, в частности, для количества углерода в покрытии, которое составляет более 99% по всей толщине слоя.

Наконец, поршневое кольцо предпочтительно изготавливается из чугуна или стали.

ПРИМЕРЫ

Примеры согласно изобретению в форме реальных сегментов поршневых колец на действительном хонингованном участке рабочей поверхности цилиндра из серого чугуна в системе измерения «колебание-трение-износ» были испытаны в смешанных условиях трения при заданных условиях давления и температуры. Приведенная ниже таблица представляет соответственные значения RΔq в мкм, обозначенные как Rdq, совместно с соответствующим износом кольца и коэффициентом трения. Как, в частности, очевидно из общей оценки, как износ кольца, так и коэффициент трения являются находятся в порядке («OK») только в диапазоне значения RΔq от 0,05 до 0,11. Величины модуля Юнга и твердости были в вышеуказанных диапазонах, для которых удалось найти особенно стабильную корреляцию между значениями RΔq и износом кольца, а также коэффициентом трения.

Rdq Rz Rk Rpk Износ кольца Коэффициент трения μ Оценка износа кольца Оценка коэффициента трения В целом
(мкм) (мкм) (мкм) (мкм) ()
0,02 0,2 0,06 0,02 1,0 0,049 OK не OK не OK
0,02 0,3 0,07 0,02 0,5 0,048 OK не OK не OK

0,02 0,23 0,1 0,02 1,0 0,052 OK не OK не OK
0,02 0,18 0,07 0,02 1,5 0,044 OK не OK не OK
0,02 0,22 0,11 0,03 0,5 0,043 OK не OK не OK
0,04 0,56 0,15 0,02 0,5 0,05 OK не OK не OK
0,06 0,45 0,18 0,08 1,0 0,024 OK OK OK
0,07 0,88 0,24 0,13 2,5 0,027 OK OK OK
0,08 0,94 0,25 0,15 2,0 0,032 OK OK OK
0,08 1,07 0,18 0,19 1,0 0,027 OK OK OK
0,09 1,15 0,24 0,16 1,5 0,03 OK OK OK
0,09 1,06 0,26 0,16 1,5 0,03 OK OK OK
0,1 1,11 0,31 0,18 3,0 0,033 OK OK OK
0,12 1,06 0,32 0,18 11,0 0,012 не OK OK не OK
0,14 1,1 0,43 0,17 6,5 0,015 не OK OK не OK
0,15 1,08 0,45 0,18 5,5 0,009 не OK OK не OK

1. Скользящий элемент, имеющий по меньшей мере одну поверхность скольжения, снабженную покрытием на основе углерода и по меньшей мере на отдельных участках имеющую среднеквадратичное значение локальных углов наклона профиля RΔq шероховатости согласно стандарту DIN EN ISO 4287, равное от 0,05 до 0,11 или от 0,08 до 0,1.

2. Скользящий элемент по п.1, отличающийся тем, что среднеквадратичное значение локальных углов наклона профиля RΔq шероховатости составляет от 0,05 до 0,1 по меньшей мере в области выпуклости скользящего элемента.

3. Скользящий элемент по п.1 или 2, отличающийся тем, что среднеквадратичное значение локальных углов наклона профиля RΔq шероховатости составляет от 0,05 до 0,1 в осевом направлении на 10-90%, предпочтительно 25-75% поверхности скольжения.

4. Скользящий элемент по п.1, отличающийся тем, что покрытие на основе углерода представляет собой покрытие типа Та-С.

5. Скользящий элемент по п.1, отличающийся тем, что толщина слоя покрытия составляет от 0,5 до 30 мкм, предпочтительно от 10 до 30 мкм.

6. Скользящий элемент по п.1, отличающийся тем, что покрытие на основе углерода имеет sp3-количество гибридизованных атомов углерода по меньшей мере 40 ат.%.

7. Скользящий элемент по любому из пп.1, 4 или 6, отличающийся тем, что покрытие на основе углерода имеет модуль Юнга от 180 до 260 ГПа и/или твердость от 1600 до 2800 HV0,02.

8. Скользящий элемент по п.1, отличающийся тем, что покрытие на основе углерода включает кислород и/или водород, каждый в количестве менее 0,5 ат.%.

9. Скользящий элемент по п.1 или 6, отличающийся тем, что покрытие на основе углерода имеет соотношение «sp3/sp2» от 0,3 до 1,2.

10. Скользящий элемент по п.1, отличающийся тем, что между покрытием на основе углерода и подложкой создан металлсодержащий адгезивный слой, включающий хром и/или титан.

11. Скользящий элемент по п.10, отличающийся тем, что адгезивный слой имеет толщину от 0,05 до 1,0 мкм.

12. Скользящий элемент по п.1, отличающийся тем, что доля углерода в покрытии на основе углерода составляет более 99% по всей толщине слоя.

13. Скользящий элемент по п.1, отличающийся тем, что скользящий элемент представляет собой поршневое кольцо, выполненное из чугуна или стали.



 

Похожие патенты:

Изобретение относится к области металлургии, а именно к теплопроводному поршневому кольцу для двигателя внутреннего сгорания. Поршневое кольцо содержит Mn-Cr-ую сталь в качестве основного материала и слой твердой пленки износостойкого покрытия на наружной окружной поверхности, причем Mn-Cr-ая сталь включает, в мас.%: С от 0,52 до 0,65, Si от 0,15 до 0,35, Mn от 0,60 до 1,00, Cr от 0,60 до 1,00, Р 0,04 или менее, S 0,04 или менее, небольшое количество компонентов Al, Ni и Cu (суммарное содержание) в диапазоне от 0,05 до 3,0 мас.%, при этом содержание каждого из компонентов Al, Ni и Cu составляет от 0,01 до 1,0, остальное – Fe и неизбежные примеси.
Настоящее изобретение относится к способу формования поршневого уплотнения гидравлического насоса, а также к гидравлическому насосу, включающему поршневое уплотнение.
Изобретение относится к скользящему элементу, в частности к поршневому кольцу. Скользящий элемент имеет по меньшей мере одну поверхность скольжения с покрытием, которое по направлению изнутри наружу имеет по меньшей мере один первый адгезионный слой, твердый безводородный DLC-слой, второй адгезионный слой, мягкий водородсодержащий, содержащий по меньшей мере один металл и/или по меньшей мере один карбид металла DLC-слой, который является более мягким, чем твердый безводородный DLC-слой, а также твердый водородсодержащий DLC-слой, который является более твердым, чем мягкий водородсодержащий, содержащий по меньшей мере один металл и/или по меньшей мере один карбид металла DLC-слой.

Изобретение относится к элементу скольжения для двигателя внутреннего сгорания, снабженному износостойким покрытием (10), которое находится на по меньшей мере одной ходовой поверхности элемента скольжения, причем покрытие (10) изнутри наружу имеет карбидный или нитридный слой (16), расположенный на нем карбидсодержащий DLC-слой (17), расположенный на предыдущем слое свободный от металла PVD-DLC-слой (22) и размещенный на предыдущем слое свободный от металла PACVD-DLC-слой (18).

Изобретение относится к поршневому кольцу (2) с повышенной усталостной прочностью из пластически деформируемого материала. Поршневое кольцо (2) содержит рабочую поверхность (4), которая сверху ограничена верхней кромкой (3) рабочей поверхности, а снизу - нижней кромкой (1) рабочей поверхности.

Изобретение относится к поршневому кольцу, способу его изготовления и двигателю внутреннего сгорания, содержащему упомянутое поршневое кольцо. Поршневое кольцо содержит основную часть из хромистой стали с более чем 10% по массе хрома, имеющую внутреннюю периферийную поверхность, первую боковую поверхность, вторую боковую поверхность и внешнюю периферийную поверхность.

Изобретение относится к поршневому кольцу, его применению и способу его изготовления. Поршневое кольцо (1) выполнено с основой (10) и нанесенным на нее защитным покрытием от износа (20), которое имеет, по меньшей мере, первый элемент, точка плавления которого составляет Tm≤700°C.

Изобретение относится к элементу скольжения, используемому в двигателе внутреннего сгорания, имеющему по меньшей мере на одной поверхности износоустойчивое покрытие.

Изобретение относится к поршневому кольцу, содержащему основной элемент поршневого кольца, изготовленный из материала с первым коэффициентом теплового расширения, слой защиты от износа, который расположен на наружной поверхности поршневого кольца в радиальном направлении и изготовлен из материала, имеющего второй коэффициент теплового расширения, меньший, чем первый коэффициент теплового расширения.

Изобретение относится к способу изготовления стального поршневого кольца (1′) с износоустойчивым покрытием (8, 9) для двигателя внутреннего сгорания, при котором формируют базовое тело (1), предназначенное для образования камеры (2) в двигателе внутреннего сгорания стороной рабочей поверхности (3).

Изобретение относится к способу нанесения покрытия на заготовку (варианты). Выполняют покрытие, содержащее по меньшей мере один слой TixSi1-xN, где x≤0,85.

Изобретение может быть использовано в двигателях внутреннего сгорания для соединения поршня с шатуном. Поршневой палец (1) содержит противозадирное покрытие (4), ограниченное угловым сектором (S), соответствующим по меньшей мере области трения, подвергаемой действию контактного давления вдоль предпочтительного направления.

Изобретение относится к технологии производства тонких алмазных пленок и может быть использовано в различных областях промышленности и науки для получения тонкопленочных упрочняющих покрытий и активных слоев тонкопленочных наноструктур.

Изобретение относится к технологии производства тонких алмазных пленок и может быть использовано в различных областях промышленности и науки для получения тонкопленочных упрочняющих покрытий и активных слоев тонкопленочных наноструктур.
Изобретение относится к способу получения многослойного защитного покрытия лопаток турбомашин из титановых сплавов. Способ включает вакуумно-плазменное осаждение легирующих элементов хрома, алюминия и иттрия на поверхность лопаток и термическую обработку.

Группа изобретений относится к получению содержащего нитрид хрома порошка для термического напыления покрытий в виде спекшихся агломератов. Способ включает следующие стадии: a) приготовление порошковой смеси (А), содержащей порошок (В), содержащий по меньшей мере один компонент, выбранный из группы, включающей хром (Cr), CrN и Cr2N, и порошок (С), содержащий по меньшей мере один компонент, выбранный из группы, включающей никель, кобальт, никелевый сплав, кобальтовый сплав и железный сплав, b) спекание порошковой смеси (А) при парциальном давлении азота выше 1 бар с получением спекшихся агломератов, при этом обеспечивают неизменное содержание химически связанного азота или увеличение содержания химически связанного азота по сравнению с порошковой смесью (А).

Изобретение относится к способам получения эпитаксиальных тонкопленочных материалов, а именно EuSi2 кристаллической модификации hP3 (пространственная группа N164, ) со структурой интеркалированных европием слоев силицена, которые могут быть использованы для проведения экспериментов по исследованию силиценовой решетки.

Изобретение относится к способам получения эпитаксиальных тонкопленочных материалов, а именно EuSi2 кристаллической модификации hP3 (пространственная группа N164, ) со структурой интеркалированных европием слоев силицена, которые могут быть использованы для проведения экспериментов по исследованию силиценовой решетки.

Изобретение относится к изготовлению поршневого кольца, выполненного из чугуна или литейной стали. Изготавливают тело поршневого кольца, на которое по внешней периферии наносят по меньшей мере одно PVD-покрытие переменной толщины таким образом, что оно в близкой к стыку концов поршневого кольца зоне имеет по сравнению с остальной внешней периферийной зоной тела поршневого кольца большую толщину.

Изобретение относится к нанесению покрытия на поверхность стального изделия, применяемого для защиты от эрозионного износа рабочих лопаток влажнопаровых ступеней турбин, эксплуатирующихся в экстремальных условиях.
Наверх