Антенное устройство наземной станции автоматического зависимого наблюдения вещательного типа

Изобретение относится к антенной технике и может быть использовано для приема наземными станциями сигналов автоматического зависимого наблюдения вещательного типа. Поставленная задача достигается введением в схему антенного устройства дополнительной секторной антенны, имеющей ширину диаграммы направленности в угломестной плоскости не менее 90° в направлении, перпендикулярном к поверхности Земли, и расположенной так, чтобы обеспечить перекрытие своей ДН мертвой зоны антенны наземной станции АЗН-В. Техническим результатом, наблюдаемым при реализации заявленного решения, является сокращение мертвой зоны (воронки) до минимума, в которой не обеспечен прием наземной станцией сигналов АЗН-В. 4 ил.

 

Изобретение относится к антенной технике и может быть использовано для приема наземными станциями сигналов автоматического зависимого наблюдения вещательного типа.

Известно приемное антенное устройство автоматического зависимого наблюдения вещательного типа (АЗН-В, в Английской транскрипции Automatic dependent surveillance-broadcast (ADS-B) [1]. Известное приемное антенное устройство АЗН-В является всена-правленным и применяется для приема наземной станцией сообщения от бортового оборудования летательных аппаратов передаваемые по известному способу автоматического зависимого наблюдения широковещательного типа [2] в интересах управления воздушным движением.

В соответствии с «Технической спецификацией к наземным станциям расширенного сквитера 1090 МГц АЗН-В» [3], антенное устройство образует важную часть наземной станции, влияя на ее работу. При этом для нормально работы наземной станции необходим как прием сигналов АЗН-В, так и сигналов глобальной навигационной спутниковой системы, например сигналов GPS.

Недостатки приемного антенного устройства АЗН-В связаны, во-первых с физикой распространения радиоволн в пространстве, во-вторых с невозможностью обеспечения приема сигналов глобальной навигационной спутниковой системы, что отражается на работе наземной станции АЗН-В.

В соответствие с п. 3.1.3 с «Технической спецификации к наземным станциям расширенного сквитера 1090 МГц АЗН-В» [3] антенная система наземной станции АЗН-В должна быть номинально всенаправленной в горизонтальной плоскости, при этом могут применяться как секторные, так и всенаправленные антенны.

Наиболее близким к предлагаемому устройству, то есть прототипом, является антенная система наземной станции АЗН-В 1090 ES НС-1 [4, 5]. Антенная система (фиг. 1) содержит несколько, например четыре, секторные антенны для приема сигналов АЗН-В (1) и две антенны для приема сигналов глобальной навигационной спутниковой системы (2). Все антенны связанны с наземной станцией АЗН-В (3). Секторные антенны для приема сигналов АЗН-В (1) образуют в азимутальной плоскости ДН 360°, при этом сигналы АЗН-В от летательных аппаратов (ЛА) принимаются одной из секторных антенн для приема сигналов АЗН-В (1) в зоне ДН которой находится ЛА.

Также возможны варианты применения трех секторных антенн для обеспечения диаграммы направленности (ДН) в азимутальной плоскости 360° или одной всенаправленной антенны, обладающих схожей мертвой зоной (воронкой) ДН.

Известны технические решения обладающие теме же недостатками, например, антенны А10-1090, 1090SJ mk2, 1G09-GA и прочие.

Антенная система прототипа обеспечивает зону действия по сигналам АЗН-В при максимальной высоте обнаружения (приема сигналов АЗН-В от летательных аппаратов) 20000 м:

по азимуту: 360°,

по углу места: от 0,5° до 45°

ДН прототипа в угломестной плоскости приведена на фиг. 2.

Каждая из антенн, обеспечивающих прием сигналов АЗН-В и образующих антенную система прототипа, имеет диаграмму направленности (ДН) в азимутальной плоскости как минимум 90°.

Антенная система прототипа работает следующим образом:

Секторные антенны для приема сигналов АЗН-В (1) располагаются, так что бы образовать своими ДН в азимутальной плоскости ДН 360°, сигналы АЗН-В от летательных аппаратов (ЛА) принимаются одной из секторных антенн для приема сигналов АЗН-В (1) в зоне ДН которой находится летательный аппарат. Одна антенна для приема сигналов глобальной навигационной спутниковой системы (2) обеспечивает прием сигналов глобальной навигационной спутниковой системы, например ГЛОНАСС или GPS. А вторая для приема сигналов глобальной навигационной спутниковой системы (2) находится в так называемом «горячем» резерве и применяется посредствам автоматического переключения на нее, в случае выхода другой антенны из строя.

Недостаток прототипа связан с физикой распространения радиоволн в пространстве образованием мертвой зоны (воронки) в ДН антенной системы АЗН-В.

Исходя из максимального угла места диаграммы направленности (ДН) приемного антенного устройства АЗН, при работе антенной системы образуется мертвая зона (воронка) в которой не обеспечивается прием сигналов АЗН-В от летательных аппарата (ЛА). Радиус мертвой зоны (воронка) определяется по формуле [6]:

Rмв=H*ctg ε,

где Н - высота, а ε угол места диаграммы направленности антенны.

Для максимальной заявленной высоты приема сигналов АЗН-В от летательных аппаратов прототипом в 20 км, мертвая зона составит 24,6 км. Что при скорости полета самолета, например, такого как Boeing 737, составляющей 852 км/ч, составит 1,7 мин.

Исходя из заданного «Технической спецификацией к наземным станциям расширенного сквитера 1090 МГц АЗН-В» [3] наибольшего допустимого темпа обновления информации в 10 с, со стороны ЛА, за время нахождения в мертвой зоне (воронке) ДН, будет проведено 10 циклов передачи данных. При фактически применяемом темпе обновления информации в 2 сек, количество циклов передачи данных от ЛА будет составлять 51 цикл. Данные указанных циклов передачи данных от ЛА, не будут приняты антенной для приема сигналов АЗН-В из-за нахождения ЛА в мертвой зоне (воронки) ДН антенны.

Целью изобретения является задача сокращения мертвой зоны (воронки) до минимума в которой не обеспечен прием наземной станции сигналов АЗН-В.

Поставленная задача достигается введением в схему антенного устройства дополнительной секторной антенны, имеющей ширину ДН в угломестной плоскости не менее 90° в направлении перпендикулярном к поверхности Земли и расположенной так, что бы обеспечить перекрытие своей ДН мертвой зоны (воронки) прототипа.

На фиг. 3 представлена структурная схема антенного устройства наземной станции автоматического зависимого наблюдения вещательного типа.

Предлагаемое антенное устройство состоит из нескольких, например четырех, секторные антенны для приема сигналов АЗН-В (1) и двух антенн для приема сигналов глобальной навигационной спутниковой системы (2) и одной секторной антенны с ДН в угломестной плоскости расположенной так, что бы обеспечить перекрытие мертвой зоны приема сигналов АЗН-В (4). Все антенны связанны с наземной станцией АЗН-В (3).

Предлагаемое антенное устройство наземной станции автоматического зависимого наблюдения вещательного типа, работает следующим образом:

Секторные антенны для приема сигналов АЗН-В (1) располагаются, так что бы образовать своими ДН в азимутальной плоскости ДН 360°, а в угломестной плоскости до 45°. Сигналы АЗН-В от летательных аппаратов (ЛА) принимаются одной из секторных антенн для приема сигналов АЗН-В (1) в зоне ДН, которой находится летательный аппарат. При нахождение ЛА в зоне превышающей угол 45° ДН в угломестной плоскости секторной антенны для приема сигналов АЗН-В (1), то есть мертвой зоны (воронки) в которой ранее не обеспечивался прием сигналов АЗН-В, прием сигналов АЗН-В от летательного аппарата происходит секторной антенной с ДН в угломестной плоскости расположенной так, что бы обеспечить перекрытие мертвую зону приема сигналов АЗН-В (4). Одна антенна для приема сигналов глобальной навигационной спутниковой системы (2) обеспечивает прием сигналов глобальной навигационной спутниковой системы, например ГЛОНАСС или GPS.

ДН предлагаемого антенного устройства наземной станции автоматического зависимого наблюдения вещательного типа без мертвой зоны (воронки) приведена на фиг. 4.

Обеспечение приема данных АЗН-В от летательных аппаратов с сокращенной до минимума мертвой зоной (воронкой) повышает качество и точность наблюдения за летательными аппаратами, что обеспечивает повышение целостности приема данных, эффективности управления воздушным движением и его безопасность.

Источники информации

1. Патент CN 204464436 U «Ads-b receiver antenna devices», Дата публикации 8 июля 2015.

2. «Автоматизированные системы управления воздушным движением: Новые информационные технологии в авиации»: Учебное пособие / Р.М. Ахмедов, А.А. Бибутов, А.В. Васильев и др.; под ред. С.Г. Пятко и А.И. Красова. СПб.: Политехника, 2004. - с. 191-203.

3. EUROCAE ED-129 «Technical specification for а 1090 MHz extended squitter ADS-B ground station».

4. Наземная станция АЗН-В 1090 ES HC-1 Формуляр РШПИ.461515.001-03 ФО.

5. Наземная станция АЗН-В 1090 ES НС-1 Технические условия РШПИ.461515.001-03 ТУ.

6. Ботов, М.И. Основы теории радиолокационных систем и комплексов: учеб. / М.И. Ботов, В.А. Вяхирев; под общ. ред. М.И. Ботова. - Красноярск: Сиб. федер. ун-т, 2013.

Антенное устройство наземной станции автоматического зависимого наблюдения вещательного типа, состоящее из нескольких секторных антенн для приема сигналов автоматического зависимого наблюдения вещательного типа, образующих в азимутальной плоскости диаграмму направленности 360°, и двух антенн для приема сигналов глобальной навигационной спутниковой системы, отличающееся тем, что вводится дополнительная секторная антенна, имеющая ширину диаграммы направленности в угломестной плоскости не менее 90° в направлении, перпендикулярном к поверхности Земли, и расположенная так, чтобы обеспечить перекрытие своей диаграммой направленности мертвую зону (воронку) нескольких секторных антенн для приема сигналов автоматического зависимого наблюдения вещательного типа, образующих в азимутальной плоскости диаграмму направленности 360°.



 

Похожие патенты:

Многодиапазонная зеркальная антенна содержит ориентированные соосно основное параболическое зеркало, вспомогательный отражатель и первый облучатель. При этом вспомогательный отражатель выполнен в виде выпукло-вогнутого тела вращения, ограниченного гиперболическим зеркалом с выпуклой в направлении первого облучателя стороны, а с противоположной вогнутой стороны - малым параболическим зеркалом, в фокусе которого установлен второй облучатель, образуя совместно с малым параболическим зеркалом однозеркальную схему с прямым возбуждением.

Изобретение относится к антенной технике. .

Изобретение относится к антенной технике. .

Изобретение относится к антенной технике. .

Изобретение относится к антенной технике и может быть использовано в системах радио, радиорелейной связи, телевидения и беспроводного Интернета, работающих в диапазоне УКВ.

Изобретение относится к антенной технике. .

Изобретение относится к радиолокации и может быть использовано на борту летательных аппаратов. .

Изобретение относится к антенной технике и может быть использовано, например, в мобильных приемопередающих центрах. Антенная система представляет собой совокупность рамочных излучателей, равномерно распределенных по кругу.

Изобретение относится к антенной технике. Антенна состоит из двух равнобедренных треугольных незамкнутых рамок, расположенных в одной плоскости вдоль общей оси и соединенных между собой разомкнутыми углами с образованием точек питания.

Изобретение относится к антенной технике. Технический результат – возможность поддержки антенными блоками множества системных функций.

Изобретение относится к системе возбуждения антенн и способу конструирования структуры питания антенной решетки. Структура питания антенной решетки содержит одну или несколько схемных плат, на которых выполнена одна или несколько схем, один или несколько проводящих слоев, на которых смонтирована одна или несколько схемных плат, и один или несколько соединителей, подсоединенных к одной или нескольким схемам через отверстие в одном или нескольких проводящих слоях.

Изобретение относится к радиотехнике и может применяться в антенной технике, в частности в конструкции фазированных антенных решеток (ФАР), используемых в радиолокационных станциях с электрическим сканированием.

Изобретение относится к системам управления, а именно к системам управления территориально разнесенными объектами, и может быть использовано в качестве аппаратной управления связью в полевых условиях для управления сетями и системами связи различного предназначения и обеспечения устойчивого функционирования подвижных объектов узлов и систем связи.

Изобретение относится к метаматериалам для получения сильной локализации электромагнитных полей в небольшой, по сравнению с длиной волны, областью. Изобретение может использоваться для прототипирования оптических устройств различного рода и диапазонов частот, в качестве элементов сенсоров, в качестве элементов нано-антенн.

Изобретение относится к радиотехнической промышленности, в частности к технике сверхвысоких частот (СВЧ) и может применяться в радиолокационных антенных системах с частотным сканированием.

Изобретение относится к радиотехнике и может найти применение в радиотехнических системах различного назначения, например в радиолокации для повышения разрешающей способности РЛС.

Изобретение относится к радиотехнике, в частности к приемо-передающим элементам антенн, и может быть использовано в цифровых антенных решетках. Техническим результатом изобретения является расширение функциональных возможностей за счет возможности его использования в цифровых антенных решетках.

Изобретение относится к радиолокационному измерителю уровня. Техническим результатом является улучшенное функционирование радиолокационного измерителя уровня в условиях влияния узкополосных помех.

Изобретение относится к антенной технике и может быть использовано для приема наземными станциями сигналов автоматического зависимого наблюдения вещательного типа. Поставленная задача достигается введением в схему антенного устройства дополнительной секторной антенны, имеющей ширину диаграммы направленности в угломестной плоскости не менее 90° в направлении, перпендикулярном к поверхности Земли, и расположенной так, чтобы обеспечить перекрытие своей ДН мертвой зоны антенны наземной станции АЗН-В. Техническим результатом, наблюдаемым при реализации заявленного решения, является сокращение мертвой зоны до минимума, в которой не обеспечен прием наземной станцией сигналов АЗН-В. 4 ил.

Наверх