Способ и устройство для концентрирования взвешенных компонентов в пробах воды



Способ и устройство для концентрирования взвешенных компонентов в пробах воды
Способ и устройство для концентрирования взвешенных компонентов в пробах воды
Способ и устройство для концентрирования взвешенных компонентов в пробах воды
G01N1/10 - Исследование или анализ материалов путем определения их химических или физических свойств (разделение материалов вообще B01D,B01J,B03,B07; аппараты, полностью охватываемые каким-либо подклассом, см. в соответствующем подклассе, например B01L; измерение или испытание с помощью ферментов или микроорганизмов C12M,C12Q; исследование грунта основания на стройплощадке E02D 1/00;мониторинговые или диагностические устройства для оборудования для обработки выхлопных газов F01N 11/00; определение изменений влажности при компенсационных измерениях других переменных величин или для коррекции показаний приборов при изменении влажности, см. G01D или соответствующий подкласс, относящийся к измеряемой величине; испытание

Владельцы патента RU 2678653:

Федеральное государственное бюджетное учреждение науки Институт океанологии им. П.П. Ширшова Российской академии наук (RU)

Изобретение предназначено для использования при гидробиологических и гидрохимических исследованиях. Устройство для концентрирования взвешенных компонентов в пробах воды содержит устройство фильтрации, выполненное в виде цилиндра с открытым дном, в верхней части которого расположена трубка для удаления отфильтрованной жидкости, а на расстоянии от верхней стенки расположен фильтр. Цилиндр размещен внутри транспортировочной тары. Поверхности цилиндра, не занятые фильтром, покрыты слоем гидрофобного материала. В устройстве осуществляют способ концентрирования взвешенных компонентов в пробах воды путем удаления воды в транспортировочной таре. Технический результат: минимизация количества операций и обеспечение автоматического получения заданного конечного объема концентрата. 2 н.п. ф-лы, 3 ил.

 

Предполагаемое изобретение относится к области приборостроения и может быть использовано при гидробиологических и гидрохимических исследованиях.

Известен способ повышения концентрации взвешенных в воде компонентов (взвесь, фито- и зоопланктон) - мягкая обратная фильтрация [1]. Этот способ реализуется по схеме, представленной на фиг. 1. Емкость (1) с природной водой (2) (транспортировочная тара) помещается на полку (3) на определенной высоте h над уровнем размещения установки обратной фильтрации (4). Значение h в сантиметрах соответствует перепаду давления на фильтре с размерностью 10-3 атм. При концентрировании проб с фитопланктоном необходимо обеспечить давление в фильтрационной системе не более 0.04 атм. Вода из транспортировочной емкости по соединительной трубке (5) поступает в нижнюю камеру установки обратной фильтрации (6) и через мембранный фильтр, установленный между нижней и верхней камерами, попадает в верхнюю камеру, из которой по соединительной трубке (7) сливается в емкость для фильтрата (8). По окончании фильтрации перекрывается кран (9), соединительная трубка (5) отсоединяется от установки обратной фильтрации (предварительно перевернутой для избежания вытекания концентрата из нижней камеры). Два-три раза встряхнув установку, сливают концентрат в приготовленную емкость. Для полного извлечения взвешенных частиц из установки фильтр ополаскивают со стороны нижней камеры с помощью слабой струи воды из промывалки (мягкий флакон с тонким носиком). Для промывания фильтра используется фильтрат. Смыв также переносится в сконцетрированную пробу.

К недостаткам существующего способа можно отнести необходимость переливания пробы из транспортировочной тары в емкость фильтрационного устройства. При этом часть пробы может остаться на стенках транспортировочной тары, в соединительных трубках и в фильтрационном устройстве, что снижает точность измерений. При перемещении пробы между транспортировочной тарой и фильтрационным устройством возможно механическое повреждение живых клеток или конгломератов взвешенных частиц.

Наиболее близким к предполагаемому изобретению является установка обратной фильтрации [1], устройство которой показано на фиг. 2. Устройство состоит из двух основных частей: корпуса (10) и крышки (11). Корпус включает в себя нижнюю камеру (12), подставку (13), входной штуцер (14) и штуцер для удаления пузырьков воздуха (15) при начальном заполнении нижней камеры исходной пробой. Крышка включает в себя верхнюю камеру (16) и выходной штуцер (17). Мембранный лавсановый фильтр (18) помещается между корпусом и крышкой и прижимается резиновым кольцом уплотнения (19) при соединении корпуса и крышки с помощью откидных болтов (20) и гаек (21).

Недостатками существующего метода обратной фильтрации и установки для его осуществления являются сложность получения заданного конечного объема пробы и невозможность полного забора пробы из транспортировочной тары. Требуется большой объем промывок транспортировочной тары, соединительных трубок и фильтрационного устройства после концентрирования пробы отфильтрованной жидкостью (фильтратом), что увеличивает итоговый объем сконцентрированной пробы. При промывке серии фильтрационных установок с единой емкостью сбора фильтрата (ресивера) невозможно обеспечить идентичность используемого для промывки фильтрата пробе. Процесс является избыточно трудоемким и не обеспечивает получение заданного конечного объема пробы.

Целью предполагаемого изобретения является упрощение процесса концентрирования пробы, автоматическое обеспечение необходимого заданного объема сконцентрированной пробы (автоматическое достижение необходимой степени концентрирования), минимизация механического воздействия на пробу в процессе концентрирования.

Поставленная цель в способе достигается тем, что концентрирование до заданного объема жидкости осуществляется непосредственно в транспортировочной таре путем удаления избытка жидкости через фильтр.

Поставленная цель в устройстве достигается тем, что фильтрация пробы осуществляется путем удаления воды через фильтр, расположенный на внутренней верхней или внутренней боковой поверхности цилиндра с открытым дном, установленного на дне транспортировочной тары.

Возможности реализации:

На чертеже (фиг. 3) показана конструкция устройства для концентрирования. Она содержит открытый снизу цилиндр (22), с объемом, равным конечному объему пробы, с расположенным в верхней части фильтром (23). Нижний торец цилиндра выполнен с искусственно сформированными неровностями, превышающими максимальный размер взвешенных компонентов, для обеспечения протекания воды в цилиндр. Между верхней поверхностью цилиндра и фильтром располагается накопительная камера (24). В верхней части цилиндра располагается трубка (25) для удаления отфильтрованной жидкости. На все поверхности цилиндра, не занятые фильтром, наносится гидрофобное покрытие. Устройство помещено на дно транспортировочной тары (26).

Устройство работает следующим образом. В пробу воды на дно транспортировочной тары помещается устройство концентрирования. Устройство через трубку (25) соединяется с системами откачки жидкости (вакуумная система). Вода из транспортной тары поступает во внутреннюю полость цилиндра и отфильтровывается через фильтр (23). Отфильтрованная вода накапливается в полости (24) и удаляется через трубку (25). Фильтрация выполняется до полного удаления воды из транспортировочной тары. После этого во внутреннюю полость цилиндра начинает поступать воздух, который проходит через фильтр и удаляется через систему откачки. При этом объем жидкости, находящейся внутри цилиндра, изменяться не будет. Поступление воздуха в систему откачки сигнализирует о завершении процесса концентрирования. При этом не требуется точный момент остановки процесса концентрирования. В дальнейшем устройство концентрирования отсоединяется от системы откачки и обратным током воды из камеры (24) осуществляется промывка фильтра (23). В устройстве автоматически обеспечивается идентичность промывочной воды воде пробы.

Покрытие устройства гидрофобным слоем позволяет не осуществлять смыв остатков пробы с наружной и внутренней поверхностей цилиндра (22). Цилиндр извлекается из транспортировочной тары, при этом вода из внутреннего объема цилиндра выливается в транспортировочную тару. Объем оставшейся воды равен внутреннему объему цилиндра. Автоматическое получение конечного объема отфильтрованной пробы с высокой точностью, а также отсутствие дополнительной промывочной операции, увеличивающей неопределенным образом объем пробы, позволяет получить точную степень концентрирования пробы.

К достоинствам предлагаемого способа концентрирования пробы можно отнести:

1) Возможность концентрирования пробы непосредственно в транспортировочной таре, что минимизирует механическое воздействие на чувствительные компоненты пробы.

2) Возможность концентрирования пробы с использованием в качестве транспортировочной тары термоса, что позволяет избежать резких изменений температуры пробы. Это особенно актуально для одноклеточных микроводорослей умеренных и высоких широт, которые при повышении температуры воды в пробе теряют идентификационные признаки или полностью разрушаются, что приводит к необратимым изменениям в пробе и, таким образом, к потере информации.

3) Автоматическое получение точного конечного объема пробы, позволяющего обеспечить высокую точность концентрирования пробы.

4) Отсутствие жестких требований к моменту завершения процесса фильтрации.

5) Автоматическая промывка фильтра водой (фильтратом), идентичной пробе.

Источники использованной информации

1. Суханова И.Н. Концентрирование фитопланктона в пробе. В кн.: Современные методы количественной оценки распределения морского планктона. М.: Наука, 1983. С. 97-106.

1. Устройство для концентрирования взвешенных компонентов в пробах воды, характеризующееся тем, что оно содержит устройство фильтрации, выполненное в виде цилиндра с открытым дном, в верхней части которого расположена трубка для удаления отфильтрованной жидкости, а на расстоянии от верхней стенки расположен фильтр, при этом цилиндр размещен внутри транспортировочной тары, причем поверхности цилиндра, не занятые фильтром, покрыты слоем гидрофобного материала.

2. Способ концентрирования взвешенных компонентов в пробах воды, характеризующийся тем, что концентрирование осуществляют путем удаления воды в транспортировочной таре через устройство по п. 1.



 

Похожие патенты:

Изобретение относится к медицине и представляет собой способ дифференциальной диагностики типов воспаления дыхательных путей у больных бронхиальной астмой (БА) и хронической обструктивной болезнью легких (ХОБЛ), отличающийся тем, что осуществляют комплексную математическую оценку показателей по формуле: у=0,0206×x1-0,0583×x2+0,0205×x3-0,0011×x4+0,582, где у - тип воспаления дыхательных путей; x1 - содержание эозинофилов в индуцированной мокроте, %; x2 - количество нейтрофилов в крови, 109/л; x3 - количество эозинофильного катионного протеина в крови, нг/мл; x4 - количество нейтрофильной эластазы в крови, нг/мл; при значении у=0-0,4 диагностируют нейтрофильный тип воспаления дыхательных путей у больных БА и ХОБЛ, а при значении у=0,6 и выше диагностируют эозинофильный тип воспаления дыхательных путей у больных БА и ХОБЛ.

Изобретение относится к области биотехнологии, конкретно к способам для идентификации связывающих полипептидов (например, антител или их антигенсвязывающих фрагментов), которые специфически связываются с антигеном клеточной поверхности, что может быть использовано в медицине.

Изобретение относится к области биотехнологии, конкретно к композиции для специфического связывания гетеротипичного комплекса кератина 7 с кератином 19, что может быть использовано в медицине.

Изобретение относится к аналитической химии и может быть использовано для контроля аутентичности и качества вареных колбасных изделий. Для этого проводят двумерный электрофорез в полиакриламидном геле исследуемого изделия и эталонного образца с последующим сравнением маркерных белков в полученных электрофореграммах, которые идентифицируют масс-спектрометрически после извлечения из полиакриламидного геля.

Изобретение относится к области медицины, а именно дерматологии и клинической лабораторной диагностике. Изобретение представляет собой способ оценки эффективности проводимой стандартной терапии у больных нумулярной микробной экземой, включающий определение в крови иммунологических показателей, отличающийся тем, что исследование проводят на 10-й день терапии, в качестве иммунологических показателей в капиллярной крови из очага воспаления определяют фагоцитарное число и окислительно-восстановительную активность нейтрофилов в тесте спонтанного восстановления нитросинего тетразолия и при их значениях соответственно 5,0 и 5,0% и ниже эффективность лечения оценивают как низкую, а при 6,0 и 6,0% и выше - как высокую.

Изобретение относится к области измерительной техники, а именно к средствам градуировки импульсных ЯМР-спектрометров, и может быть использовано для определения содержания олеиновой кислоты в масле семян подсолнечника.

Изобретение относится к медицине и представляет собой способ диагностики тяжелого течения механической желтухи доброкачественного генеза, отличающийся тем, что методом непрямой иммунофлюоресценции в крови определяют абсолютное количество pan-маркеров Т-лимфоцитов и естественных киллеров (NK-клеток), а в сыворотке крови методом иммуноферментного анализа определяют уровни иммуноглобулина IgG и цитокинов - интерлейкина-10 (ИЛ-10) и фактора некроза опухоли-альфа (TNF-α), спектрофотометрическим методом в эритроцитах определяют содержание малонового диальдегида (MDA) и активность дуплекса ферментов супероксиддисмутазы и каталазы (SOD-CAT) и при абсолютном количестве раn-маркеров Т-лимфоцитов ниже 0,47×109/л, NK-клеток ниже 0,14×109/л, уровне IgG выше 5 г/л, ИЛ-10 выше 30 пг/мг, TNF-α выше 2 пг/мл, MDA выше 40 нмоль/1 г Нb, активности SOD ниже 600 ед./мин /1 г Hb, CAT ниже 0,8 ммоль/с/1 г Нb прогнозируют тяжелое течение механической желтухи доброкачественного генеза.

Изобретение относится к области медицины, молекулярной биологии и микробиологии. Предложен способ определения генетических детерминант резистентности возбудителя туберкулеза к бедаквилину и линезолиду, включающий мультиплексную амплификацию генов Rv0678, atpE, 23S рРНК, rplC, обеспечение олигонуклеотидного микрочипа для установления наличия/отсутствия точечных мутаций, инсерций, делеций в указанных генах, гибридизацию амплифицированных флуоресцентно-меченных продуктов на олигонуклеотидном микрочипе и регистрацию результатов гибридизации.

Изобретение относится к измерительной технике и может быть использовано при исследовании процессов массопереноса и для определения коэффициентов диффузии растворителей в ортотропных капиллярно-пористых материалов в бумажной, легкой, строительной и других отраслях промышленности.

Изобретение относится к наглядным учебным пособиям и предназначено для использования в учебных и исследовательских лабораториях по теоретической, строительной механике, строительным конструкциям как в качестве наглядной демонстрации работы стержневых пространственных конструкций, так и в качестве моделей шарнирно-стержневых систем при проектировании зданий и сооружений, при изучении работы пространственных стержневых конструкций.

Изобретение относится к области медицины, в частности к кардиологии, и предназначено для прогнозирования типа раннего ремоделирования левого желудочка (РЛЖ) у больных острым инфарктом миокарда. В первые сутки в сыворотке крови определяют концентрацию CITP, исследуют полиморфизм генов ММР20 rs2245803 и COL1A1 rs1107946 и рассчитывают прогностический коэффициент р(РЛЖ). При значениях прогностического коэффициента р(РЛЖ)<0,34 прогнозируют развитие гипертрофического типа раннего ремоделирования левого желудочка. При коэффициенте р(РЛЖ)>0,34 прогнозируют дилатационный тип изменения геометрии левого желудочка. Изобретение позволяет осуществить комплексный подход в обследовании пациентов в раннем периоде инфаркта миокарда, выделяя среди них группу больных с высоким риском развития неблагоприятного типа геометрии левого желудочка, предрасполагающего к более тяжелому течению сердечной недостаточности. 1 ил., 1 табл., 2 пр.

Изобретение относится к картриджу для обработки биологического образца. Картридж содержит корпус с реакционной камерой, системой подачи текучей среды и системой отвода текучей среды. В реакционной камере имеется отверстие, которое может закрываться подложкой, несущей образец. Система подачи текучей среды обеспечивает поступление по меньшей мере одного текучего реагента в реакционную камеру. Система подачи текучей среды, реакционная камера с подложкой, закрывающей ее отверстие, и система отвода текучей среды являются закрытыми для обмена жидкостями с окружающей средой. Подложка может прикрепляться к корпусу картриджа с помощью адгезии, склеивания, вакуумной камеры, прижатия или электромагнитных сил. Высота реакционной камеры над подложкой составляет менее 200 мкм, предпочтительно менее 50 мкм. Обеспечивается закрытость системы, включающей картридж и подложку, от окружающей среды, отсутствие опасности внесения загрязнения в образец из окружающей среды или загрязнения окружающей среды образцом, снижение потребления реагентов, ускорение реакции и улучшение воспроизводимости при промышленном производстве картриджей. 9 з.п. ф-лы, 2 ил., 1 табл., 1 пр.

Изобретение относится к области аналитических исследований пленок из нефти и нефтепродуктов, в частности к методам отбора проб для последующих анализов и контроля поверхностной концентрации. Устройство для отбора пленок нефти и нефтепродуктов с поверхности воды содержит пробоотборник, выполненный в виде полого цилиндра из инертного материала, на внешней поверхности которого выполнены риски для измерения объема отбираемой пробы, и крышку из инертного материала, которая может быть установлена на торце цилиндра со стороны отбора пробы с поверхности воды. Цилиндр пробоотборника имеет широкий L1 и узкий L2 участки. Длины широкого и узкого участков выбирают из условия L1≤3,5-5,5 L2, диаметры из условия D1≥2,5-4,5 D2. Устройство дополнительно содержит крышку, которая может быть установлена на втором торце цилиндра пробоотборника. Риски для измерения объема отбираемой пробы выполнены на поверхности узкого участка цилиндра. Изобретение позволяет точно экспрессно определить качественное и количественное содержание нефти и нефтепродуктов на поверхности воды за счет концентрирования органического вещества в процессе пробоотбора и расширения объектов исследования и улучшает аналитические характеристики способа. 10 ил.

Изобретение относится к области ветеринарии и животноводства и может быть использовано при искусственном осеменении для выявления генетически неполноценных сперматозоидов, их выбраковки и недопустимости использования для искусственного осеменения. Изобретение представляет собой способ оценки генетической полноценности сперматозоидов, включающий использование пробы эякулята in vitro в среде для разбавления, отличающийся тем, что в пробы эякулята in vitro в среде для разбавления добавляют гиалуроновую кислоту, меченную флуоресцеином, в концентрации 0,5-1,0 ммоль с последующей инкубацией при 37°С в течение 5-10 мин и регистрацией интенсивности флуоресценции с максимумом 495 нм, при интенсивности флуоресценции пробы выше 50-60 а.u. сперматозоиды считают зрелыми, генетически полноценными, при интенсивности флуоресценции пробы ниже 30-35 а.u. сперматозоиды считают генетически неполноценными. Изобретение позволяет повысить эффективность оценки генетической полноценности сперматозоидов для определения целесообразности дальнейшего их использования при искусственном осеменении.

Изобретение относится к области медицинской диагностики и предназначено для прогнозирования риска развития гипертонической болезни. У индивидуумов русской национальности, являющихся жителями Центрального Черноземья, выделяют ДНК из периферической венозной крови и проводят анализ полиморфизмов генов цитокинов rs1800469 TGFβ-1 и rs833061 VEGFА. Высокий риск развития гипертонической болезни прогнозируют при выявлении сочетания генотипа СС rs1800469 TGFβ-1 с генотипом ТТ rs833061 VEGFА. Изобретение обеспечивает получение новых критериев оценки риска развития гипертонической болезни на основе данных о сочетаниях генетических вариантов локусов rs1800469 TGFβ-1 и rs833061 VEGFА. 3 ил., 3 пр.
Наверх