Способ автоматического управления реактором суспензионной полимеризации


B01J19/00 - Химические, физические или физико-химические способы общего назначения (физическая обработка волокон, нитей, пряжи, тканей, пера или волокнистых изделий, изготовленных из этих материалов, отнесена к соответствующим рубрикам для такого вида обработки, например D06M 10/00); устройства для их проведения (насадки, прокладки или решетки, специально предназначенные для биологической обработки воды, промышленных и бытовых сточных вод или отстоя сточных вод C02F 3/10; разбрызгивающие планки или решетки, специально предназначенные для оросительных холодильников F28F 25/08)

Владельцы патента RU 2679221:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский химико-технологический университет имени Д. И. Менделеева" (РХТУ им. Д. И. Менделеева) (RU)

Изобретение относится к химической промышленности, в частности к автоматическим системам регулирования, и может быть использовано для поддержания температуры реакционной массы химических реакторов–полимеризаторов. Система состоит из двух контуров управления. Первый контур обеспечивает заданную скорость вращения мешалки внутри реактора-полимеризатора, второй контур обеспечивает стабилизацию температуры реакционной массы внутри реактора-полимеризатора. Канал упреждения вырабатывает сигнал упреждения в зависимости от изменения выходного сигнала регулятора обеспечивающего стабилизацию скорости вращения мешалки реактора–полимеризатора. Сигнал упреждения подается на элемент сравнения контура стабилизации температуры реакционной массы в реакторе–полимеризаторе с целью обеспечения увеличения подачи хладагента в рубашку реактора–полимеризатора, избежав тем самым резкого возрастания температуры реакционной массы внутри реактора–полимеризатора, которая начинает увеличиваться за счет увеличения диссипации механической энергии на перемешивание. Технический результат заключается в улучшении качества управления технологическим объектом за счет изменения динамических свойств канала управления температурой реакционной массы в зависимости от состояния объекта управления. 1 ил.

 

Изобретение относится к области систем автоматического управления и может быть использовано при автоматизации работы реакторов - полимеризаторов, имеющих один или несколько контуров управления, подключаемых в зависимости от динамических характеристик объекта и особенностей возмущающего воздействия.

Процессы суспензионной полимеризации являются одной из типовых технологий получения полимеров различного назначения. Данные процессы являются экзотермическими реакциями с явно выраженными нелинейными зависимостями, что приводит к возникновению различных проблем при управлении данными процессами.

Процессы полимеризации, протекающие по радикальному механизму инициирования, обладают характерной нелинейностью протекания процесса, а именно гель - эффектом, который, например, проявляется при степени конверсии 30% в случае суспензионной полимеризации метилметакрилата, 60% для стирола и 80% для винилацетата.

В момент возникновения гель - эффекта происходит резкое выделение тепла, которое может вывести реактор – полимеризатор из устойчивого состояния, а также приводит к изменению параметров объекта управления (реактор - полимеризатор), которые также меняются при возникновении гель – эффекта.

Известны способы автоматического управления процессом суспензионной полимеризации путем регулирования температурного режима в зоне реакции в зависимости от величины отклонения значения измеренной температуры от заданного значения подачей теплоносителя и хладагента в рубашку реактора – полимеризатора (RU № 93012620 A от 20.09.96 г.). При данном способе управления процессом отсутствует возможность воздействия на температуру с помощью изменения гидродинамического режима внутри реактора - полимеризатора. Учитывать это воздействие необходимо, так как при применении аппаратов с мешалками увеличение их оборотов при значительной вязкости реакционных сред приводит как к значительному росту мощности, потребляемой мешалкой, так и к опасности локального перегрева самой реакционной массы за счет трения слоев вязкой среды, что снижает качество получаемого продукта.

Способ управления процессом суспензионной полимеризации путем регулирования температурного режима в зоне реакции, с помощью изменения подачи теплоносителя и/или хладагента в рубашку реактора - полимеризатора, отличается тем что, используется дополнительное воздействие на температуру реакционной массы путем изменения гидродинамического режима внутри реактора - полимеризатора за счет изменения заданной скорости вращения мешалки реактора – полимеризатора в дополнительном канале управления, которая корректируется в зависимости от рассчитанных по модели свойств реакционной массы (RU № 2 534 365 C2 от 24.04.2012). При данном способе необходимо построить адекватную математическую модель процесса с учетом изменения вязкости реакционной массы, что не всегда возможно.

Способ управления процессом суспензионной полимеризации путем регулирования температурного режима в зоне реакции, с помощью изменения подачи хладагента в рубашку реактора - полимеризатора отличается тем что, используется информация об изменении токовой нагрузки на асинхронный электродвигатель привода мешалки реактора - полимеризатора для организации сигнала упреждения на регулятор основного канала управления, который рассчитывается с помощью математической модели динамики реактора - полимеризатора (RU № 2 649 039 C1 от 30.01.2017). При данном способе необходимо построить адекватную математическую модель изменения вязкости реакционной массы, что не всегда возможно.

Технической задачей предлагаемого изобретения является улучшение качества управления температурой процесса суспензионной полимеризации. Поставленная задача решается путем введения канала упреждения, который в зависимости от изменения выходного сигнала регулятора, обеспечивающего стабилизацию скорости вращения мешалки реактора – полимеризатора, будет вырабатывать сигнал упреждения.

Система управления процессом суспензионной полимеризации с использованием канала упреждения изображена в виде блок схемы на фигуре 1.

Система состоит из двух контуров управления. Первый контур обеспечивает заданную скорость вращения мешалки NЗД с помощью регулятора 2 (RN). Второй контур обеспечивает стабилизацию температуры реакционной массы Т внутри реактора - полимеризатора с помощью регулятора 6 (RT).

В первом контуре управления, заданная скорость вращения мешалки NЗД реактора – полимеризатора сравнивается с текущим значением N в элементе сравнения 1. Ошибка рассогласования εN=(NЗД-N) поступает на вход регулятора 2 (RN), стабилизирующего скорость вращения мешалки N реактора - полимеризатора. Регулятор 2 (RN) вырабатывает управляющее воздействие UN, которое подается на технологический объект управления (ТОУ) 7 в виде мощности необходимой для вращения мешалки реактора - полимеризатора. Текущее значение скорости вращения N мешалки реактора – полимеризатора в виде обратной связи поступает в элемент сравнения 1, тем самым замыкая первый контур управления.

Во втором контуре управления, заданная температура реакционной массы TЗД сравнивается с текущим значением температуры T реакционной массы в элементе сравнения 5. Ошибка рассогласования εT=(TЗД-T) поступает на вход регулятора 6 (RT), стабилизирующего температуру реакционной массы T внутри реактора - полимеризатора. Регулятор 6 (RT) вырабатывает управляющее воздействие UT, которое подается на ТОУ 7 в виде расхода хладагента необходимого для поддержания заданной температуры реакционной массы T внутри реактора - полимеризатора. Текущее значение температуры реакционной массы T внутри реактора - полимеризатора в виде обратной связи поступает в элемент сравнения 5, тем самым замыкая второй контур управления.

На фигуре 1 показано также, что в контур управления температурой реакционной массы Т введен канал упреждения, который включает блок математической модели (ММ) 4 и блок корректирующего устройства (КУ) 3.

Блоки 3 и 4 работают следующим образом, в момент, когда вязкость реакционной массы начинает значительно возрастать выходной сигнал UN регулятора 2 (RN) начинает значительно увеличиваться и в этот момент включается в работу блок 4 (ММ), который рассчитывает скорость изменения сигнала UN и если она превышает заданное значение, то в блоке 3 (КУ) вырабатывается сигнала SK, который подается на элемент сравнения 5 контура стабилизации температуры реакционной массы Т с целью обеспечения увеличения подачи хладагента в рубашку реактора - полимеризатора избежав тем самым резкого возрастания температуры реакционной массы Т, которая начинает увеличиваться за счет увеличения диссипации механической энергии на перемешивание.

Отличительной особенностью данного способа управления является отслеживание изменения выходного сигнала UN с регулятора 2 (RN) и на его основании выработка упреждающего воздействия в контур стабилизации температуры реакционной массы Т в реакторе – полимеризаторе, что позволяет улучшить качество управления технологическим объектом и как следствие качество получаемого продукта.


Способ управления реактором суспензионной полимеризации путем регулирования температурного режима в зоне реакции с помощью изменения подачи хладагента в рубашку реактора-полимеризатора, отличающийся тем, что отслеживается изменение выходного сигнала UN с регулятора 2 (RN) и на его основании вырабатывается упреждающее воздействие в контур стабилизации температуры реакционной массы T в реакторе-полимеризаторе.



 

Похожие патенты:

Изобретение относится к системе отопления и охлаждения и способу его регулирования. Представлен способ регулирования для системы отопления и/или охлаждения с по меньшей мере одним нагрузочным контуром, через который протекает флюид в качестве теплоносителя и который выключают или включают в зависимости от температуры помещения в помещении, в котором с помощью нагрузочного контура должен поддерживаться температурный режим, при этом устанавливают температуру (Tmix) флюида в подающей линии, подводимого к по меньшей мере одному нагрузочному контуру, в зависимости от относительной длительности (D) включения по меньшей мере одного нагрузочного контура, которая соответствует отношению длительности включения к интервалу времени между включением нагрузочного контура и следующим за этим повторным включением нагрузочного контура.

Изобретение относится к бесплатформенным инерциальным навигационным системам, которые широко применяются в системах управления и ориентации подвижных объектов на земле, на море и в космическом пространстве.

Изобретение относится к способу управления для системы передачи теплоты, а также к такой системе передачи теплоты. Система передачи теплоты имеет подающий трубопровод, по меньшей мере один контур нагрузки, определяющий поток, и одно устройство передачи теплоты между подающим трубопроводом и по меньшей мере одним контуром нагрузки, при этом подаваемый поток в подающем трубопроводе регулируют на основе заданной входной температуры контура нагрузки, фактической входной температуры контура нагрузки, которую измеряют в контуре нагрузки, и потока нагрузки в контуре нагрузки.

Настоящее изобретение относится к способу гидроформилирования олефинов, в котором осуществляют контакт СО, Н2 и, по меньшей мере, одного олефина в присутствии катализатора гидроформилирования в текучей реакционной среде в, по меньшей мере, одном реакторе в условиях гидроформилирования, достаточных для образования, по меньшей мере, одного альдегидного продукта, удаляют поток текучей реакционной среды из, по меньшей мере, одного реактора и пропускают данный поток в теплообменник, удаляют некоторое количество тепла из данного потока с образованием охлажденного потока и возвращают охлажденный поток в реактор.

Система (1) управления температурой в помещении содержит радиаторы (2, 3, 4), расположенные в одном помещении. Каждый радиатор (2, 3, 4) имеет клапан (7, 8, 9) для управления потоком жидкого теплоносителя через соответствующий радиатор (2, 3, 4), который приводится в действие электронным блоком (10, 11, 12) управления.

Изобретение относится к технологиям управления и регулирования температуры зданий с помощью электрических средств и может быть использовано для систем автоматического регулирования отопления зданий с центральным водяным отоплением.

Клапан // 2659849
Изобретение относится к клапану. Клапан (1) содержит корпус (2) клапана, клапанное седло (3) и клапанный элемент (4).

Изобретение относится к способу контроля функционирования подогревателя охлаждающей жидкости теплового двигателя автомобильного транспортного средства, при этом жидкость циркулирует в контуре охлаждения, причем температуру охлаждающей жидкости в контуре измеряют, согласно изобретению в контрольном органе осуществляют моделирование температуры охлаждающей жидкости на основе параметров функционирования подогревателя, при этом смоделированную температуру (1а) сравнивают затем с измеренной температурой (4) охлаждающей жидкости и в зависимости от этого сравнения устанавливают диагностику (6, 7) функционирования подогревателя.

Группа изобретений относится к регулированию температуры нагревательного прибора. Способ регулирования нагревательного прибора в зависимости от его расстояния до препятствия заключается в том, что включает в себя обнаружение всех объектов, находящихся в зоне обнаружения датчика расстояния, измерение расстояния до ближайшего препятствия, сравнение измеренного расстояния до ближайшего препятствия с предварительно определенным порогом безопасности.

Устройство для управления теплопотреблением содержит подающую магистраль, на выходе которой установлен ключ, потребитель тепла со стояковой системой отопления, соединенный с циркуляционным насосом, обратную магистраль, блок управления, подключенный к ключу, к циркуляционному насосу и к датчику температуры, установленному на входе потребителя тепла.

Изобретение относится к способу получения полиэтилена низкой плотности. Способ полимеризации или сополимеризации этиленненасыщенных мономеров проводят при давлении 110-500 МПа и температуре 100-350°С в производственной линии.
Изобретение относится к составу полимера этилена и его использованию для производства изделий, например кабельной оболочки и пластиковых деталей автомобилей. Состав полимера этилена содержит: А) 25-75 мас.% полимера этилена, выбранного из гомополимеров (А1) этилена, сополимеров этилена (А2) с содержанием не более 10 мас.% одного или нескольких олефиновых сомономеров и смесей указанных гомополимеров и сополимеров, и B)25-75 мас.% сополимера этилена и пропилена, содержащего от 45 до 70 мас.% этилена.

Настоящее изобретение касается применения гелеобразной полимерной композиции в композициях для машинного мытья посуды. Предложено применение гелеобразной полимерной композиции, получаемой способом, при котором: a) предоставляют мономерную композицию, которая состоит из акриловой кислоты или акриловой кислоты и по меньшей мере одной другой α,β-этиленненасыщенной кислоты, выбранной из карбоновых кислот, сульфоновых кислот, фосфоновых кислот и их смесей, причем мономерная композиция свободна от мономеров со сшивающим действием, которые содержат две или больше двух способных к полимеризации α,β-этиленненасыщенных двойных связей на каждую молекулу; b) предоставленную на стадии а) мономерную композицию подвергают радикальной полимеризации в присутствии по меньшей мере одного простого полиэфирного компонента, который выбран из простых полиэфироспиртов со среднечисленной молекулярной массой по крайней мере 200 г/моль и их простых моно- и диалкиловых эфиров с 1-6 атомами углерода в алкиле, поверхностно-активных веществ, содержащих простые полиэфирные группы, и их смесей, причем радикальную полимеризацию на стадии b) дополнительно осуществляют в присутствии растворителя, который выбран из воды, алкановых спиртов с 1-6 атомами углерода, отличающихся от простого полиэфирного компонента полиолов, их простых моно- и диалкиловых эфиров и их смесей, в композициях для машинного мытья посуды.

Изобретение относится к процессу полимеризации этилена. Описан технологический процесс производства полиэтилена путем суспензионной полимеризации этилена и, необязательно, одного или нескольких С3-С10 альфа-олефинов.

Изобретение относится к непрерывному способу получения высокоразветвленных гомо- или сополимеров этиленненасыщенной монокарбоновой кислоты. Непрерывный способ получения гомо- или сополимеров моноэтиленненасыщенной монокарбоновой кислоты, содержащей от 3 до 8 атомов углерода, или ее солей (мономер А) осуществляют свободнорадикальной полимеризацией мономера А и необязательно свободнорадикальной полимеризацией растворимых в воде этиленненасыщенных мономеров (мономер В), отличных от мономера А, в водной среде в присутствии по меньшей мере одного растворимого в воде инициатора.
Изобретение относится к частицам акрилового полимера. Частицы акрилового полимера содержат: составляющее звено (A), полученное из метилметакрилата, составляющее звено (B), полученное из алкилового эфира (мет)акриловой кислоты, где алкиловый эфир имеет от 2 до 8 атомов углерода, и составляющее звено (C), полученное из α,β-ненасыщенной карбоновой кислоты, причем частицы находятся в порошкообразной форме и частицы имеют количество элемента натрия от 3,5 до 50 ч./млн.

Изобретение относится к гетерофазному сополимеру полипропилена, полученному с использованием катализа с единым центром полимеризации на металле. Гетерофазный сополимер пропилен-этилена включает (i) гомополимер пропилена и (ii) этилен-пропиленовую эластичную (ЭПЭ) фазу, диспергированную в матрице.

Изобретение относится к способу получения латексов, применяемых для производства различных изделий методом погружного макания. Латекс получают в полупериодическом режиме, путем получения затравочного латекса, добавления к затравочному латексу воды, по меньшей мере одного защитного коллоида, инициирующей системы и части основной смеси мономеров.

Изобретение относится к композиции C2-C3 неупорядоченного сополимера. Композиция C2-C3 неупорядоченного сополимера содержит 3 полимерные фракции (А), (В) и (С) с различным содержанием сомономеров.

Изобретение относится к компоненту катализатора полимеризации этилена, а именно - бис{2-[(3-диаллиламинофенилимино)метил]-4-R2-6-R1-фенокси}титан(IV) дихлориду, имеющему структуру, представленную формулой 1, или бис{2-[(4-диаллиламинофенилимино)метил]-4-R2-6-R1-фенокси}титан(IV) дихлориду, имеющему структуру, представленную формулой 2 Заместитель R1 выбирают из группы, включающей вторичные или третичные алкилы любого строения с формулой CH3-(x+y+z)(Alk1)x(Alk2)y(Alk3)z (2≤x+y+z≤3), первичные, вторичные или третичные алкилароматические заместители любого строения с формулой СН3-(k+l+m+n+p)(Alk1)k(Alk2)l(Ar1)m(Ar2)n(Ar3)p (k+l+m+n+p≤3), ароматические заместители любого строения, первичные, вторичные и третичные алкоксигруппы любого строения с формулой OCH3-(q+r+s+t+u+v)(Alk1)q(Alk2)r(Alk3)s(Ar1)t(Ar2)u(Ar3)v (q+r+s+t+u+v≤3), атомы галогенов.

Изобретение относится к непрерывному способу получения высокоразветвленных гомо- или сополимеров этиленненасыщенной монокарбоновой кислоты. Непрерывный способ получения гомо- или сополимеров моноэтиленненасыщенной монокарбоновой кислоты, содержащей от 3 до 8 атомов углерода, или ее солей (мономер А) осуществляют свободнорадикальной полимеризацией мономера А и необязательно свободнорадикальной полимеризацией растворимых в воде этиленненасыщенных мономеров (мономер В), отличных от мономера А, в водной среде в присутствии по меньшей мере одного растворимого в воде инициатора.

Изобретение относится к химической промышленности, в частности к автоматическим системам регулирования, и может быть использовано для поддержания температуры реакционной массы химических реакторов–полимеризаторов. Система состоит из двух контуров управления. Первый контур обеспечивает заданную скорость вращения мешалки внутри реактора-полимеризатора, второй контур обеспечивает стабилизацию температуры реакционной массы внутри реактора-полимеризатора. Канал упреждения вырабатывает сигнал упреждения в зависимости от изменения выходного сигнала регулятора обеспечивающего стабилизацию скорости вращения мешалки реактора–полимеризатора. Сигнал упреждения подается на элемент сравнения контура стабилизации температуры реакционной массы в реакторе–полимеризаторе с целью обеспечения увеличения подачи хладагента в рубашку реактора–полимеризатора, избежав тем самым резкого возрастания температуры реакционной массы внутри реактора–полимеризатора, которая начинает увеличиваться за счет увеличения диссипации механической энергии на перемешивание. Технический результат заключается в улучшении качества управления технологическим объектом за счет изменения динамических свойств канала управления температурой реакционной массы в зависимости от состояния объекта управления. 1 ил.

Наверх