Способ, аппарат, устройство, компьютерно-читаемый носитель для расширения полосы частот аудиосигнала с использованием масштабируемого возбуждения верхней полосы

Изобретение относится к средствам для обработки сигналов. Технический результат заключается в повышении эффективности обработки сигнала за счет уменьшения динамического диапазона информации об усилении, предоставленной кодеру. Определяют первый смоделированный сигнал верхней полосы на основе возбуждающего сигнала нижней полосы аудиосигнала, при этом аудиосигнал включает в себя часть верхней полосы и часть нижней полосы. Определяют первый набор из коэффициентов масштабирования на основе энергии подкадров первого смоделированного сигнала верхней полосы и энергии соответствующих подкадров части верхней полосы аудиосигнала. Применяют второй набор из коэффициентов масштабирования, основанный на по меньшей мере одном среди первого набора из упомянутых коэффициентов масштабирования, к смоделированному возбуждающему сигналу верхней полосы, чтобы определить масштабированный возбуждающий сигнал верхней полосы. Определяют второй смоделированный сигнал верхней полосы на основе масштабированного возбуждающего сигнала верхней полосы. Определяют параметры усиления на основе второго смоделированного сигнала верхней полосы и части верхней полосы аудиосигнала. 4 н. и 17 з.п. ф-лы, 9 ил.

 

ПЕРЕКРЕСТНАЯ ССЫЛКА НА РОДСТВЕННЫЕ ЗАЯВКИ

[0001] Настоящая заявка испрашивает приоритет по Предварительной Заявке на Патент США под порядковым № 61/890,812, озаглавленной "СИСТЕМЫ И СПОСОБЫ ЭНЕРГЕТИЧЕСКИ МАСШТАБИРУЕМОЙ ОБРАБОТКИ СИГНАЛА", поданной 14 октября 2013 года, и Непредварительной Заявке на Патент США под порядковым № 14/512,892, озаглавленной "СИСТЕМЫ И СПОСОБЫ ЭНЕРГЕТИЧЕСКИ МАСШТАБИРУЕМОЙ ОБРАБОТКИ СИГНАЛА", поданной 13 октября 2014 года, содержание которых включено в данный документ посредством ссылки во всей своей полноте.

ОБЛАСТЬ ТЕХНИКИ

[0002] Настоящее раскрытие в целом относится к обработке сигналов.

УРОВЕНЬ ТЕХНИКИ

[0003] Достижения в технологии привели к меньшим и более мощным вычислительным устройствам. Например, в настоящее время существует многообразие портативных персональных вычислительных устройств, включая беспроводные вычислительные устройства, такие как портативные беспроводные телефоны, персональные цифровые секретари (PDA) и пейджеры, которые являются легкими и могут без труда переноситься пользователями. Более конкретно, портативные беспроводные телефоны, такие как сотовые телефоны и телефоны Протокола Интернета (IP) могут обмениваться голосовыми и информационными пакетами через беспроводные сети. Кроме того, много таких беспроводных телефонов включают в себя другие типы устройств, которые включены в настоящий документ. Например, беспроводной телефон также может включать в себя цифровой фотоаппарат, цифровую видеокамеру, цифровой диктофон и проигрыватель аудиофайлов.

[0004] В традиционных телефонных системах (например, телефонных коммутируемых сетях общего пользования (PSTN)) ширина полосы частот сигнала ограничена частотным диапазоном от 300 Герц (Гц) до 3.4 килоГерц (кГц). В широкополосных (WB) приложениях, таких как сотовая телефония и передача голоса по IP-протоколу (VoIP), ширина полосы частот сигнала может охватывать частотный диапазон от 50 Гц до 7 кГц. Сверхширокополосные (SWB) методы кодирования поддерживают ширину полосы частот, которая простирается примерно до 16 кГц. Расширение полосы частот сигнала от узкополосной телефонии на 3.4 кГц до телефонии SWB на 16 кГц может улучшить разборчивость и естественность речи.

[0005] Методы кодирования SWB, как правило, включают в себя кодирование и передачу низкочастотной части сигнала (например, от 50 Гц до 7 кГц, также называемой "нижней полосой"). Например, нижняя полоса может быть представлена с использованием параметров фильтра и/или возбуждающего сигнала нижней полосы. Однако, чтобы улучшить эффективность кодирования, высокочастотная часть сигнала (например, от 7 кГц до 16 кГц, также называемая "верхней полосой") может быть закодирована с использованием методов моделирования сигнала, чтобы предсказать верхнюю полосу. В некоторых реализациях данные, связанные с верхней полосой, могут быть предоставлены приемнику, чтобы помочь в предсказании. Такие данные могут называться "дополнительной информацией" и могут включать в себя информацию об усилении, частоты спектральных линий (LSF, также называемые парами спектральных линий (LSP)), и т.д. Информация об усилении может включать в себя информацию о форме усиления, определенную на основе энергий подкадров как сигнала верхней полосы, так и смоделированного сигнала верхней полосы. Информация о форме усиления может иметь более широкий динамический диапазон (например, большие колебания) из-за различий в исходном сигнале верхней полосы по отношению к смоделированному сигналу верхней полосы. Более широкий динамический диапазон может уменьшить эффективность кодирующего устройства, используемого для кодирования/передачи информации о форме усиления.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

[0006] Раскрыты системы и способы выполнения кодирования аудиосигнала. В конкретном варианте осуществления аудиосигнал кодируется в поток битов или поток данных, который включает в себя поток битов нижней полосы (представляющий низкочастотную часть нижней полосы аудиосигнала) и побочную информацию верхней полосы (представляющую часть верхней полосы аудиосигнала). Дополнительная информация верхней полосы может быть сгенерирована с использованием части нижней полосы аудиосигнала. Например, возбуждающий сигнал нижней полосы может быть расширен, чтобы сгенерировать возбуждающий сигнал верхней полосы. Возбуждающий сигнал верхней полосы может использоваться для генерирования (например, синтезирования) первого смоделированного сигнала верхней полосы. Различия в энергии между сигналом верхней полосы и смоделированным сигналом верхней полосы могут использоваться для определения коэффициентов масштабирования (например, первого набора или одно из большего количества коэффициентов масштабирования). Коэффициенты масштабирования (или второй набор коэффициентов масштабирования, определенных на основе первого набора коэффициентов масштабирования) могут быть применены к возбуждающему сигналу верхней полосы, чтобы сгенерировать (например, синтезировать) второй смоделированный сигнал верхней полосы. Второй смоделированный сигнал верхней полосы может использоваться для определения дополнительной информации верхней полосы. Поскольку второй смоделированный сигнал верхней полосы масштабирован для учета различий в энергии по отношению к сигналу верхней полосы, дополнительная информация верхней полосы, основанная на втором смоделированном сигнале верхней полосы, может иметь уменьшенный динамический диапазон по отношению к дополнительной информации верхней полосы, определенной без масштабирования для учета различий в энергии.

[0007] В конкретном варианте осуществления способ содержит этап, на котором определяют первый смоделированный сигнал верхней полосы на основе возбуждающего сигнала нижней полосы аудиосигнала. Аудиосигнал включает в себя часть верхней полосы и часть нижней полосы. Способ также содержит этап, на котором определяют коэффициенты масштабирования на основе энергии подкадров первого смоделированного сигнала верхней полосы и энергии соответствующих подкадров части верхней полосы аудиосигнала. Способ содержит этапы, на которых применяют коэффициенты масштабирования к смоделированному возбуждающему сигналу верхней полосы, чтобы определить масштабированный возбуждающий сигнал верхней полосы, и определяют второй смоделированный сигнал верхней полосы на основе масштабированного возбуждающего сигнала верхней полосы. Способ также содержит этап, на котором определяют информацию об усилении на основе второго смоделированного сигнала верхней полосы и части верхней полосы аудиосигнала.

[0008] В другом конкретном варианте осуществления аппарат включает в себя первый синтезирующий фильтр, выполненный с возможностью определения первого смоделированного сигнала верхней полосы на основе возбуждающего сигнала нижней полосы аудиосигнала, где аудиосигнал включает в себя часть верхней полосы и часть нижней полосы. Аппарат также включает в себя модуль масштабирования, выполненный с возможностью определения коэффициентов масштабирования на основе энергии подкадров первого смоделированного сигнала верхней полосы и энергии соответствующих подкадров части верхней полосы аудиосигнала и применения коэффициентов масштабирования к смоделированному возбуждающему сигналу верхней полосы для определения масштабированного возбуждающего сигнала верхней полосы. Аппарат также включает в себя второй синтезирующий фильтр, выполненный с возможностью определения второго смоделированного сигнала верхней полосы на основе масштабированного возбуждающего сигнала верхней полосы. Аппарат также включает в себя средство оценки усиления, выполненное с возможностью определения информации об усилении на основе второго смоделированного сигнала верхней полосы и части верхней полосы аудиосигнала.

[0009] В другом конкретном варианте осуществления устройство включает в себя средство для определения первого смоделированного сигнала верхней полосы на основе возбуждающего сигнала нижней полосы аудиосигнала, где аудиосигнал включает в себя часть верхней полосы и часть нижней полосы. Устройство также включает в себя средство для определения коэффициентов масштабирования на основе энергии подкадров первого смоделированного сигнала верхней полосы и энергии соответствующих подкадров части верхней полосы аудиосигнала. Устройство также включает в себя средство для применения коэффициентов масштабирования к смоделированному возбуждающему сигналу верхней полосы для определения масштабированного возбуждающего сигнала верхней полосы. Устройство также включает в себя средство для определения второго смоделированного сигнала верхней полосы на основе масштабированного возбуждающего сигнала верхней полосы. Устройство также включает в себя средство для определения информации об усилении на основе второго смоделированного сигнала верхней полосы и части верхней полосы аудиосигнала.

[0010] В другом конкретном варианте осуществления невременный компьютерно-читаемый носитель включает в себя инструкции, которые при выполнении компьютером приводят к тому, что компьютер выполняет операции, включающие в себя определение первого смоделированного сигнала верхней полосы на основе возбуждающего сигнала нижней полосы аудиосигнала, где аудиосигнал включает в себя часть верхней полосы и часть нижней полосы. Операции также включают в себя определение коэффициентов масштабирования на основе энергии подкадров первого смоделированного сигнала верхней полосы и энергии соответствующих подкадров части верхней полосы аудиосигнала. Операции также включают в себя применение коэффициентов масштабирования к смоделированному возбуждающему сигналу верхней полосы для определения масштабированного возбуждающего сигнала верхней полосы. Операции также включают в себя определение второго смоделированного сигнала верхней полосы на основе масштабированного возбуждающего сигнала верхней полосы. Операции также включают в себя определение параметров усиления на основе второго смоделированного сигнала верхней полосы и части верхней полосы аудиосигнала.

[0011] Конкретные преимущества, предоставленные по меньшей мере одним из раскрытых вариантов осуществления, включают в себя уменьшение динамического диапазона информации об усилении, предоставленной кодеру, путем масштабирования смоделированного возбуждающего сигнала верхней полосы, который используется для вычисления информации об усилении. Например, смоделированный возбуждающий сигнал верхней полосы может быть масштабирован на основе энергии подкадров смоделированного сигнала верхней полосы и соответствующих подкадров части верхней полосы аудиосигнала. Масштабирование смоделированного возбуждающего сигнала верхней полосы таким образом может захватить вариации во временных характеристиках из подкадра-к-подкадру и уменьшить зависимость информации о форме усиления от временных изменений в части верхней полосы аудиосигнала. Другие аспекты, преимущества и отличительные признаки настоящего раскрытия станут очевидными после рассмотрения всей заявки, включающей в себя следующие разделы: Краткое Описание Чертежей, Подробное Описание и Формула Изобретения.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

[0012] Фиг. 1 представляет собой схему для иллюстрации конкретного варианта осуществления системы, которая выполнена с возможностью генерирования дополнительной информации верхней полосы на основе масштабированного возбуждающего сигнала верхней полосы;

[0013] Фиг. 2 представляет собой схему для иллюстрации конкретного варианта осуществления модуля анализа верхней полосы на Фиг. 1;

[0014] Фиг. 3 представляет собой схему для иллюстрации конкретного варианта осуществления интерполяции информации подкадров;

[0015] Фиг. 4 представляет собой другую схему для иллюстрации конкретного варианта осуществления интерполяции информации подкадра;

[0016] Фиг. 5-7 вместе представляют собой схемы для иллюстрации другого конкретного варианта осуществления модуля анализа верхней полосы на Фиг. 1;

[0017] Фиг. 8 представляет собой блок-схему для иллюстрации конкретного варианта осуществления способа обработки аудиосигнала;

[0018] Фиг. 9 представляет собой структурную схему беспроводного устройства, выполненного с возможностью выполнения операций по обработке сигнала в соответствии с системами и способами на Фиг. 1-8.

ПОДРОБНОЕ ОПИСАНИЕ

[0019] Фиг. 1 представляет собой схему для иллюстрации конкретного варианта осуществления системы 100, которая выполнена с возможностью генерирования дополнительной информации верхней полосы на основе масштабированного возбуждающего сигнала верхней полосы. В конкретном варианте осуществления система 100 может быть интегрирована в систему кодирования или аппарат (например, беспроводной телефон или кодер/декодер (CODEC)).

[0020] В последующем описании различные функции, выполняемые системой 100 на Фиг. 1, описаны как выполняемые определенными компонентами или модулями. Однако, это разделение компонентов и модулей приведено только для иллюстрации. В альтернативном варианте осуществления функция, выполняемая определенным компонентом или модулем, может, вместо этого, быть разделена между несколькими компонентами или модулями. Кроме того, в альтернативном варианте осуществления два или более компонентов или модулей на Фиг. 1 могут быть интегрированы в единый компонент или модуль. Каждый компонент или модуль, проиллюстрированный на Фиг. 1, может быть реализован с использованием аппаратных средств (например, устройства программируемой вентильной матрицы, специализированной интегральной схемы (ASIC), цифрового сигнального процессора (DSP), контроллера, и т.д.), программных средств (например, инструкций, выполняемых процессором) или любой их комбинации.

[0021] Система 100 включает в себя набор 110 фильтров анализа, который выполнен с возможностью приема аудиосигнала 102. Например, аудиосигнал 102 может быть предоставлен микрофоном или другим устройством ввода. В конкретном варианте осуществления входной аудиосигнал 102 может включать в себя речь. Аудиосигнал 102 может быть сигналом SWB, который включает в себя данные в частотном диапазоне от примерно 50 герц (Гц) до примерно 16 килогерц (кГц). Набор 110 фильтров анализа может фильтровать входной аудиосигнал 102 на несколько частей на основе частоты. Например, набор 110 фильтров анализа может генерировать сигнал 122 нижней полосы и сигнал 124 верхней полосы. Сигнал 122 нижней полосы и сигнал 124 верхней полосы могут иметь равные или неравные полосы пропускания, и могут быть перекрывающимися или неперекрывающимися. В альтернативном варианте осуществления набор 110 фильтров анализа может генерировать более, чем два, выходных сигнала.

[0022] В примере на Фиг. 1 сигнал 122 нижней полосы и сигнал 124 верхней полосы занимают неперекрывающиеся полосы частот. Например, сигнал 122 нижней полосы и сигнал 124 верхней полосы могут занимать неперекрывающиеся полосы 50 Гц - 7кГц и 7кГц - 16кГц частот, соответственно. В альтернативном варианте осуществления сигнал 122 нижней полосы и сигнал 124 верхней полосы могут занимать неперекрывающиеся полосы 50 Гц - 8кГц и 8кГц - 16кГц частот, соответственно. В другом альтернативном варианте осуществления сигнал 122 нижней полосы и сигнал 124 верхней полосы перекрываются (например, 50 Гц - 8 кГц и 7 кГц - 16 кГц, соответственно), что может позволить низкочастотному фильтру и высокочастотному фильтру набора 110 фильтров анализа иметь гладкий спад, что может упростить конструкцию и уменьшить стоимость низкочастотного фильтра и высокочастотного фильтра. Перекрытие низкочастотного сигнала 122 и высокочастотного сигнала 124 может также обеспечить плавное смешивание сигналов нижней полосы и верхней полосы в приемнике, что может привести к меньшим слышимым артефактам.

[0023] Хотя описание Фиг. 1 относится к обработке сигнала SWB, оно приведено лишь для иллюстрации. В альтернативном варианте осуществления входной аудиосигнал 102 может быть сигналом WB, имеющим частотный диапазон от примерно 50 Гц до примерно 8 кГц. В таком варианте осуществления сигнал 122 нижней полосы может соответствовать частотному диапазона от примерно 50 Гц до примерно 6,4 кГц, а сигнал 124 верхней полосы может соответствовать частотному диапазона от примерно 6,4 кГц до примерно 8 кГц.

[0024] Система 100 может включать в себя модуль 130 анализа нижней полосы (также называемый кодером нижней полосы), выполненный с возможностью приема сигнала 122 нижней полосы. В конкретном варианте осуществления модуль 130 анализа нижней полосы может представлять вариант осуществления кодера с линейным предсказанием с кодовым возбуждением (CELP). Модуль 130 анализа нижней полосы может включать в себя модуль 132 кодирования и анализа линейного предсказания (LP), модуль 134 преобразования коэффициента линейного предсказания (LPC) в пару спектральных линий (LSP) и квантователь 136. LSP также могут называться частотами спектральных линий (LSF), и два термина могут использоваться взаимозаменяемо в материалах настоящей заявки. Модуль 132 кодирования и анализа LP может кодировать огибающую спектра сигнала 122 нижней полосы как набор LPC. LPC могут быть сгенерированы для каждого кадра аудио (например, 20 миллисекунд (мс) аудио, соответствующего 320 выборкам при частоте дискретизации 16 кГц), каждого подкадра аудио (например, 5 мс аудио) или любой их комбинации. Количество LPC, сгенерированных для каждого кадра или подкадра? может быть определено "порядком" выполненного анализа LP. В конкретном варианте осуществления модуль 132 кодирования и анализа LP может генерировать набор из одиннадцати LPC, соответствующих анализу LP десятого порядка.

[0025] Модуль 134 преобразования LPC в LSP может преобразовывать набор LPC, сгенерированных посредством модуля 132 кодирования и анализа LP, в соответствующий набор LSP (например, с использованием преобразования один-к-одному). Альтернативно, набор LPC может быть преобразован один-к-одному к соответствующий набор коэффициентов паркор (PARCOR - partial autocorrelation, частичная автокорреляция), значения регистрация-область-соотношение, спектральные пары иммитанса (ISP) или спектральные частоты иммитанса (ISF). Преобразование между набором LPC и набором LSP может быть обратимым без ошибки.

[0026] Квантователь 136 может квантовать набор LSP, сгенерированных модулем 134 преобразования. Например, квантователь 136 может включать в себя или может быть соединен со множеством кодовых книг (не показаны), которые включают в себя множество записей (например, векторов). Чтобы выполнить квантование набора LSP, квантователь 136 может идентифицировать записи кодовых книг, которые являются "самыми близкими к" (например, на основании меры искажения, такой как наименьшие квадраты или среднеквадратичная ошибка) набору LSP. Квантователь 136 может выводить индексное значение или последовательности значений индексов, соответствующих местоположению идентифицированных записей в кодовой книге. Выходной сигнал квантователя 136 может представлять параметры фильтра нижней полосы, которые включены в битовый поток 132 нижней полосы. Битовый поток 142 нижней полосы может, таким образом, включать в себя кодированные данные линейного предсказания, представляющие часть нижней полосы аудиосигнала 102.

[0027] Модуль 130 анализа нижней полосы может также генерировать возбуждающий сигнал 144 нижней полосы. Например, возбуждающий сигнал 144 нижней полосы может быть закодированным сигналом, который сгенерирован путем квантования остаточного сигнала LP, который сгенерирован во время обработки LP, выполняемой модулем 130 анализа нижней полосы. Остаточный сигнал LP может представлять ошибку предсказания.

[0028] Система 100 может дополнительно включать в себя модуль 150 анализа верхней полосы, выполненный с возможностью приема сигнала 124 верхней полосы из набора 110 фильтров анализа и возбуждающего сигнала 144 нижней полосы из модуля 130 анализа нижней полосы. Модуль 150 анализа верхней полосы может генерировать дополнительную информацию 172 верхней полосы на основе сигнала 124 верхней полосы и возбуждающего сигнала 144 нижней полосы. Например, дополнительная информация 172 верхней полосы может включать в себя данные, представляющие LSP верхней полосы, данные, представляющие информацию об усилении (например, на основе по меньшей мере отношения энергии верхней полосы к энергии нижней полосы), данные, представляющие коэффициенты масштабирования, или их комбинацию.

[0029] Модуль 150 анализа верхней полосы может включать в себя генератор 152 возбуждения верхней полосы. Генератор 152 возбуждения верхней полосы может генерировать возбуждающий сигнал верхней полосы (такой как возбуждающий сигнал 202 верхней полосы на Фиг. 2) путем расширения спектра возбуждающего сигнала 144 нижней полосы в полосу частот верхней полосы (например, 7 кГц - 16 кГц). Для иллюстрации, генератор 152 возбуждения верхней полосы может применять преобразование (например, нелинейное преобразование, такое как абсолютное значение или квадратичная операция) к возбуждающему сигналу 144 нижней полосы, и может смешивать преобразованный возбуждающий сигнал нижней полосы с сигналом шума (например, белого шума, модулированного или имеющего форму в соответствии с огибающей, соответствующей возбуждающему сигналу 144 нижней полосы, который имитирует медленно меняющиеся временные характеристики сигнала 122 нижней полосы), чтобы сгенерировать возбуждающий сигнал верхней полосы. Например, смешивание может быть выполнено в соответствии со следующим уравнением:

Возбуждение верхней полосы=(α * преобразованное возбуждение нижней полосы )+((1−α) * модулированный шум).

[0030] Отношение, в котором смешиваются преобразованный возбуждающий сигнал нижней полосы и модулированный шум, может оказывать влияние на качество восстановления верхней полосы в приемнике. Для сигналов голосовой речи смешивание может быть смещено по направлению к преобразованному возбуждению нижней полосы (например, коэффициент смешивания может быть в диапазоне от 0,5 до 1,0). Для сигналов голосовой речи смешивание может быть смещено по направлению к преобразованному возбуждению нижней полосы (например, коэффициент смешения может быть в диапазоне от 0,0 до 0,5).

[0031] Возбуждающий сигнал верхней полосы может использоваться для определения одного или более параметров усиления верхней полосы, которые включены в дополнительную информацию 172 верхней полосы. В конкретном варианте осуществления возбуждающий сигнал верхней полосы и сигнал 124 верхней полосы могут использоваться для определения информации масштабирования (например, коэффициентов масштабирования), которые применяются к возбуждающему сигналу верхней полосы, чтобы определить масштабированный возбуждающий сигнал верхней полосы. Масштабированный сигнал верхней полосы может использоваться для определения параметров усиления верхней полосы. Например, как описано дополнительно со ссылкой на Фиг. 2 и 5-7, средство 154 оценки энергии может определять оцененную энергию кадров или подкадров сигнала верхней полосы и соответствующих кадров или подкадров первого смоделированного сигнала верхней полосы. Первый смоделированный сигнал верхней полосы может быть определен путем применения синтеза линейного предсказания без памяти на возбуждающем сигнале верхней полосы. Модуль 156 масштабирования может определять коэффициенты масштабирования (например, первый набор коэффициентов масштабирования) на основе оцененной энергии кадров или подкадров сигнала 124 верхней полосы и оцененной энергии соответствующих кадров или подкадров первого смоделированного сигнала верхней полосы. Например, каждый коэффициент масштабирования может соответствовать соотношению Ei/Ei', где Ei представляет собой оцененную энергию подкадра, z, сигнала верхней полосы, а Ei' представляет собой оцененную энергию соответствующего подкадра, z, первого смоделированного сигнала верхней полосы. Модуль 156 масштабирования может также применять коэффициенты масштабирования (или второй набор коэффициентов масштабирования, определенных на основе первого набора коэффициентов масштабирования, например, посредством усреднения усилений по нескольким подкадрам первого набора коэффициентов масштабирования) на основе подкадра-за-подкадром, к возбуждающему сигналу верхней полосы, чтобы определить масштабированный возбуждающий сигнал верхней полосы.

[0032] Как проиллюстрировано, модуль 150 анализа верхней полосы может также включать в себя и модуль 158 кодирования и анализа LP, модуль 160 преобразования LPC в LSP и квантователь 162. Каждый из модуля 158 кодирования и анализа LP, модуля 160 преобразования и квантователя 162 может функционировать как описано выше со ссылкой на соответствующие компоненты модуля 130 анализа нижней полосы, но при сравнительно меньшем разрешении (например, с использованием меньшего количества бит для каждого коэффициента, LSP, и т.д.). Модуль 158 кодирования и анализа LP может генерировать набор LPC, которые преобразуются в LSP посредством модуля 160 преобразования и квантуются посредством квантователя 162 на основе кодовой книги 166. Например, модуль 158 кодирования и анализа LP, модуль 160 преобразования и квантователь 162 могут использовать сигнал 124 верхней полосы для определения информации о фильтре верхней полосы (например, LSP верхней полосы), которая включена в дополнительную информацию 172 верхней полосы. В конкретном варианте осуществления дополнительная информация 172 верхней полосы может включать в себя LSP верхней полосы, информацию об усилении верхней полосы, коэффициенты масштабирования или их комбинацию. Как объяснено выше, информация об усилении верхней полосы может быть определена на основе масштабированного возбуждающего сигнала верхней полосы.

[0033] Битовый поток 142 нижней полосы и дополнительная информация 172 верхней полосы могут быть мультиплексированы с помощью мультиплексора (MUX) 180, чтобы сгенерировать выходной поток данных или выходной битовый поток 192. Выходной битовый поток 192 может представлять закодированный аудиосигнал, соответствующий входному аудиосигналу 102. Например, выходной битовый поток 192 может быть передан (например через проводной, беспроводной или оптический канал) и/или сохранен. В приемнике могут быть выполнены обратные операции с помощью демультиплексора (DEMUX), декодера нижней полосы, декодера верхней полосы и набора фильтров, чтобы сгенерировать аудиосигнал (например, восстановленную версию входного аудиосигнала 102, который предоставляется в громкоговоритель или другое устройство вывода). Количество бит, используемых для представления битового потока 142 нижней полосы может быть существенно больше, чем количество бит, используемых для представления дополнительной информации 172 верхней полосы. Таким образом, большая часть бит в выходном битовом потоке 192 может представлять данные нижней полосы. Дополнительная информация 172 верхней полосы может использоваться в приемнике для восстановления возбуждающего сигнала верхней полосы из данных нижней полосы в соответствии с моделью прохождения сигнала. Например, модель прохождения сигнала может представлять ожидаемый набор взаимосвязей или корреляций между данными нижней полосы (например, сигналом 122 нижней полосы) и данными верхней полосы (например, сигналом 124 верхней полосы). Таким образом, различные модели прохождения сигнала могут использоваться для различных видов аудиоданных (например, речь, музыка, и т.д.), и конкретная модель прохождения сигнала, которая используется, может быть получена в результате взаимодействия передатчика и приемника (или определена промышленным стандартом) до передачи кодированных аудиоданных. Используя модель прохождения сигнала, модуль 150 анализа верхней полосы в передатчике может быть способен генерировать дополнительную информацию 172 верхней полосы, так что соответствующий модуль анализа верхней полосы в приемнике способен использовать модель прохождения сигнала для восстановления сигнала 124 верхней полосы из выходного битового потока 192.

[0034] Фиг. 2 представляет собой схему, иллюстрирующую конкретный вариант осуществления модуля 150 анализа верхней полосы на Фиг. 1. Модуль 150 анализа верхней полосы выполнен с возможностью приема возбуждающего сигнала 202 верхней полосы и части верхней полосы аудиосигнала (например, сигнала 124 верхней полосы), и генерирования информации об усилении, такой как параметры 250 усиления и усиление 254 кадра, на основе возбуждающего сигнала 202 верхней полосы и сигнала 124 верхней полосы. Возбуждающий сигнал 202 верхней полосы может соответствовать возбуждающему сигналу верхней полосы, сгенерированному посредством генератора 152 возбуждения верхней полосы с использованием возбуждающего сигнала 144 нижней полосы.

[0035] Параметры 204 фильтра могут быть применены к возбуждающему сигналу 202 верхней полосы с использованием полюсного синтезирующего фильтра 206 LP (например, синтезирующего фильтра), чтобы определить первый смоделированный сигнал 208 верхней полосы. Параметры 204 фильтра могут соответствовать памяти обратной связи полюсного синтезирующего фильтра 206 LP. В целях определения коэффициентов масштабирования, параметры 204 фильтра могут быть без памяти. В частности, память фильтра или состояния фильтра, которые связаны с i-м синтезирующим фильтром LP подкадра, 1/Ai(z) сбрасываются в ноль перед выполнением полюсного синтезирующего фильтра 206 LP.

[0036] Первый смоделированный сигнал 208 верхней полосы может быть применен к средству 210 оценки энергии, чтобы определить энергию 212 подкадра каждого кадра или подкадра первого смоделированного сигнала 208 верхней полосы. Сигнал 124 верхней полосы может также быть применен к средству 222 оценки энергии, чтобы определить энергию 224 каждого кадра или подкадра сигнала 124 верхней полосы. Энергия 212 подкадра первого смоделированного сигнала 208 верхней полосы и энергия 224 сигнала 124 верхней полосы может использоваться для определения коэффициентов 230 масштабирования. Коэффициенты 230 масштабирования могут измерять разности энергий между кадрами или подкадрами первого смоделированного сигнала 208 верхней полосы и соответствующими кадрами или подкадрами сигнала 124 верхней полосы. Например, коэффициенты 230 масштабирования могут быть определены как соотношение энергии 224 сигнала 124 верхней полосы и оцененной энергии 212 подкадра первого смоделированного сигнала 208 верхней полосы. В конкретном варианте осуществления коэффициенты 230 масштабирования определяются на основе подкадра-за-подкадром, где каждый кадр включает в себя четыре подкадра. В настоящем варианте осуществления один коэффициент масштабирования определяется для каждого набора подкадров, включающих в себя подкадр первого смоделированного сигнала 208 верхней полосы и соответствующий подкадр сигнала 124 верхней полосы.

[0037] Чтобы определить информацию об усилении, каждый подкадр возбуждающего сигнала 202 верхней полосы может быть компенсирован (например, умножен) на соответствующий коэффициент 230 масштабирования, чтобы сгенерировать возбуждающий сигнал 240 верхней полосы. Параметры 242 фильтра могут быть применены к масштабированному возбуждающему сигналу 240 верхней полосы с использованием полюсного фильтра 244, чтобы определить второй смоделированный сигнал 246 верхней полосы. Параметры 242 фильтра могут соответствовать параметрам модуля кодирования и анализа линейного предсказания, такого как модуль 158 кодирования и анализа LP на Фиг. 1. В целях определения информации об усилении параметры 242 фильтра могут включать в себя информацию, связанную с ранее обработанными кадрами (например, память фильтра).

[0038] Второй смоделированный сигнал 246 верхней полосы может быть применен к средству 248 оценки формы усиления вместе с сигналом 124 верхней полосы, чтобы определить параметры 250 усиления. Параметры 250 усиления, второй смоделированный сигнал 246 верхней полосы и сигнал 124 верхней полосы могут быть применены к средству 252 оценки кадра усиления, чтобы определить усиление 254 кадра. Параметры 250 усиления и усиление 254 кадра вместе формируют информацию об усилении. Информация об усилении может иметь уменьшенный динамический диапазон относительно информации об усилении, определенной без применения коэффициентов 230 масштабирования, поскольку коэффициенты масштабирования учитывают некоторые из разностей энергии между сигналом 124 верхней полосы и вторым смоделированным сигналом 246 верхней полосы, определенные на основе возбуждающего сигнала 202 верхней полосы.

[0039] Фиг. 3 представляет собой схему, иллюстрирующую конкретный вариант осуществления интерполяции информации подкадра. Схема на Фиг. 3 иллюстрирует конкретный способ определения информации подкадра для N-го Кадра 304. N-му Кадру 304 предшествует в последовательности кадров N-1-й Кадр 302, и за ним следует в последовательности кадров N+1-й Кадр 306. LSP вычисляется для каждого кадра. Например, N-1-я LSP 310 вычисляется для N-1-го Кадра 302, N-я LSP 312 вычисляется для N-го Кадра 304, и N+1-я LSP 314 вычисляется для N+1-го Кадра 306. LSP могут представлять спектральную эволюцию сигнала SHB 124, 502 на Фиг. 1, 2, или 5-7.

[0040] Множество LSP подкадра для N-го Кадра 304 могут быть определены путем интерполяции с использованием значений LSP предшествующего кадра (например, N-1-го Кадра 302) и текущего кадра (например, N-го Кадра 304). Например, весовые коэффициенты могут быть применены к значениям предшествующей LSP (например, N-1-й LSP 310) и к значениям текущей LSP (например, N-й LSP 312). В примере, проиллюстрированном на Фиг. 3, вычисляются LSP для четырех подкадров (включая первый подкадр 320, второй подкадр 322, третий подкадр 324 и четвертый подкадр 326). Четыре LSP 320-326 подкадров могут быть вычислены с использованием равного взвешивания или неравного взвешивания.

[0041] LSP (320-326) подкадров могут использоваться для выполнения синтеза LP без обновлений памяти фильтра, чтобы оценить первый смоделированный сигнал 208 верхней полосы. Первый смоделированный сигнал 208 верхней полосы затем используется для оценки энергии Ei' 212 подкадра. Средство 154 оценки энергии может предоставлять оценки энергии подкадра для первого смоделированного сигнала 208 верхней полосы и для сигнала 124 верхней полосы модулю 156 масштабирования, который может определить коэффициенты 230 масштабирования подкадр-за-подкадром. Коэффициенты масштабирования могут использоваться для регулирования уровня энергии возбуждающего сигнала 202 верхней полосы, чтобы сгенерировать возбуждающий сигнал 240 верхней полосы, который может использоваться модулем 158 кодирования и анализа LP для генерирования второго смоделированного (или синтезированного) сигнала 246 верхней полосы. Второй смоделированный сигнал 246 верхней полосы может использоваться для генерирования информации об усилении (такой как параметры 250 усиления и/или усиление 254 кадра). Например, второй смоделированный сигнал 246 верхней полосы может быть предоставлен средству 164 оценки усиления, которое может определить параметры 250 усиления и усиление 254 кадра.

[0042] Фиг. 4 представляет собой схему, иллюстрирующую другой конкретный вариант осуществления интерполяции информации подкадра. Схема на Фиг. 4 иллюстрирует конкретный способ определения информации подкадра для N-го Кадра 404. N-му Кадру 404 предшествует в последовательности кадров N-1-й Кадр 402, и за ним следует в последовательности кадров N+1-й Кадр 406. Две LSP вычисляются для каждого кадра. Например, LSP_1 408 и LSP_2 410 вычисляются для N-1-го Кадра 402, LSP_1 412 и LSP_2 414 вычисляются для N-го Кадра 404, и LSP_1 416 и LSP_2 418 вычисляется для N+1-го Кадра 406. LSP могут представлять спектральную эволюцию сигнала SHB 124, 502 на Фиг. 1, 2, или 5-7.

[0043] Множество LSP подкадра для N-го Кадра 404 могут быть определены путем интерполяции с использованием одного или более из значений LSP предшествующего кадра (например, LSP_1 408 и/или LSP_2 410 N-1-го Кадра 402) и одного или более из значений LSP текущего кадра (например, N-го Кадра 404). Тогда как окна LSP (например, пунктирные линии 412, 414 асимметричные окна LSP для кадра N 404), показанные на Фиг. 4 предназначены для иллюстративных целей, возможно отрегулировать окна анализа LS так, что перекрытие внутри или между кадрами (с заглядыванием вперед) может улучшить спектральную эволюцию оцененных LSP от кадра-к-кадру или подкадра-к-подкадру. Например, весовые коэффициенты могут быть применены к значениям предшествующей LSP (например, LSP_2 410) и к значениям LSP текущего кадра (например, LSP_1 412 и/или LSP_2 414). В примере, проиллюстрированном на Фиг. 4, вычисляются LSP для четырех подкадров (включая первый подкадр 420, второй подкадр 422, третий подкадр 424 и четвертый подкадр 426). Четыре LSP 420-426 подкадров могут быть вычислены с использованием равного взвешивания или неравного взвешивания.

[0044] LSP (420-426) подкадров могут использоваться для выполнения синтеза LP без обновлений памяти фильтра, чтобы оценить первый смоделированный сигнал 208 верхней полосы. Первый смоделированный сигнал 208 верхней полосы затем используется для оценки энергии Ei' 212 подкадра. Средство 154 оценки энергии может предоставлять оценки энергии подкадра для первого смоделированного сигнала 208 верхней полосы и для сигнала 124 верхней полосы модулю 156 масштабирования, который может определить коэффициенты 230 масштабирования подкадр-за-подкадром. Коэффициенты масштабирования могут использоваться для регулирования уровня энергии возбуждающего сигнала 202 верхней полосы, чтобы сгенерировать возбуждающий сигнал 240 верхней полосы, который может использоваться модулем 158 кодирования и анализа LP для генерирования второго смоделированного (или синтезированного) сигнала 246 верхней полосы. Второй смоделированный сигнал 246 верхней полосы может использоваться для генерирования информации об усилении (такой как параметры 250 усиления и/или усиление 254 кадра). Например, второй смоделированный сигнал 246 верхней полосы может быть предоставлен средству 164 оценки усиления, которое может определить параметры 250 усиления и усиление 254 кадра.

[0045] Фиг. 5-7 представляют собой схемы, которые совместно иллюстрируют другой конкретный вариант осуществления модуля анализа верхней полосы, такого как модуль 150 анализа верхней полосы на Фиг. 1. Модуль анализа верхней полосы выполнен с возможностью приема сигнала 502 верхней полосы в средстве 504 оценки энергии. Средство 504 оценки энергии может оценивать энергию каждого подкадра сигнала верхнего уровня. Оцененная энергия 506, Ei, каждого подкадра сигнала 502 верхней полосы может быть предоставлена квантователю 508, который может сгенерировать индексы 510 энергии верхней полосы.

[0046] Сигнал 502 верхней полосы также может быть принят в оконном модуле 520. Оконный модуль 520 может генерировать коэффициенты линейного предсказания (LPC) для каждой пары кадров сигнала 502 верхней полосы. Например, оконный модуль 520 может генерировать первый LPC 522 (например, LPC_1). Оконный модуль 520 может также генерировать второй LPC 524 (например, LPC_2). Первый LPC 522 и второй LPC 524 каждый могут быть преобразованы в LSP с использованием модулей 526 и 528 преобразования LSP. Например, первый LPC 522 может быть преобразован в первую LSP 530 (например, LSP_1), а второй LPC 524 может быть преобразован во вторую LSP 532 (например, LSP_2). Первая и вторая LSP 530, 532 могут быть предоставлены кодеру 538, который может закодировать LSP 530, 532, чтобы сформировать индексы 540 LSP верхней полосы.

[0047] Первая и вторая LSP 530, 532 и третья LSP 534 (например, LSP_2old) могут быть предоставлены интерполятору 536. Третья LSP 534 может соответствовать ранее обработанному кадру, например, N-1-му Кадру 302 на Фиг. 3 (когда определяются подкадры N-го кадра 304). Интерполятор 536 может сначала использовать первую, вторую и третью LSP 530, 532 и 534, чтобы сгенерировать интерполированные LSP 542, 544, 546 и 548 подкадра. Например, интерполятор 536 может применить взвешивания к LSP 530, 532 и 534, чтобы определить LSP 542, 544, 546 и 548 подкадра.

[0048] LSP 542, 544, 546 и 548 подкадра могут быть предоставлены модулю 550 преобразования LSP-в-LPC, чтобы определить LPC подкадра и параметры 552, 554, 556 и 558 фильтра.

[0049] Как также проиллюстрировано на Фиг. 5, возбуждающий сигнал 560 верхней полосы (например, возбуждающий сигнал верхней полосы, определенный генератором 152 возбуждения верхней полосы на Фиг. 1 на основе возбуждающего сигнала 144 нижней полосы) может быть предоставлен подкадровому модулю 562. Подкадровый модуль 562 может разобрать возбуждающий сигнал 560 верхней полосы на подкадры 570, 572, 574 и 576 (например, четыре подкадра на кадр возбуждающего сигнала 560 верхней полосы).

[0050] Как показано на Фиг. 6, параметры 552, 554, 556 и 558 фильтра из модуля 550 преобразования LSP-в-LPC и подкадры 570, 572, 574 и 576 возбуждающего сигнала 560 верхней полосы могут быть предоставлены соответствующим полюсным фильтрам 612, 614, 616, 618. Каждый из полюсных фильтров 612, 614, 616, 618 может генерировать подкадры 622, 624, 626, 628 первого смоделированного (или синтезированного) сигнала (HBi', где i представляет собой индекс конкретного подкадра) верхней полосы соответствующего подкадра 570, 572, 574, 576 возбуждающего сигнала 560 верхней полосы. В конкретном варианте осуществления, в целях определения коэффициентов масштабирования, таких как коэффициенты 672, 674, 676 и 678 масштабирования, параметры 552, 554, 556 и 558 фильтра могут быть без памяти. То есть, чтобы сгенерировать первый подкадр 622 первого смоделированного сигнала верхней полосы, выполняется синтез LP, 1/A1(z) c его параметрами 522 фильтра (т.е., памятью фильтра или состояниями фильтра) сброшенными в ноль.

[0051] Подкадры 622, 624, 626, 628 первого смоделированного сигнала верхней полосы могут быть предоставлены средствам 632, 634, 636 и 638 оценки энергии. Средства 632, 634, 636 и 638 оценки энергии могут генерировать оценки 642, 644, 646, 648 (Ei', где i представляет собой индекс конкретного подкадра) подкадров 622, 624, 626, 628 первого смоделированного сигнала верхней полосы.

[0052] Оценки 652, 654, 656 и 658 энергии сигнала 502 верхней полосы на Фиг. 5 могут быть объединены с (например, разделены посредством) оценками 642, 644, 646, 648 энергии подкадров 622, 624, 626, 628 первых смоделированных сигналов верхней полосы, чтобы сформировать коэффициенты 672, 674, 676 и 678 масштабирования. В конкретном варианте осуществления каждый коэффициент масштабирования представляет собой отношение энергии подкадра сигнала, Ei, верхней полосы к энергии соответствующего подкадра 622, 624, 626, 628 первого смоделированного сигнала Ei' верхней полосы. Например, первый коэффициент 672 масштабирования (SF1) может быть определен как отношение Ei 652, деленное на Ei' 642. Таким образом, первый коэффициент 672 масштабирования численно представляет взаимосвязь между энергией первого подкадра сигнала 502 верхней полосы на Фиг. 5 и первого подкадра 622 первого смоделированного сигнала верхней полосы, определенного на основе возбуждающего сигнала 560 верхней полосы.

[0053] Как показано на Фиг. 7, каждый подкадр 570, 572, 574, 576 возбуждающего сигнала 560 верхней полосы может быть объединен (например, умножен) на соответствующий коэффициент 672, 674, 676 и 678 масштабирования, чтобы сгенерировать подкадр 702, 704, 706 и 708 масштабированного возбуждающего сигнала (řHBi, где i представляет собой индекс конкретного подкадра) верхней полосы. Например, первый подкадр 570 возбуждающего сигнала 560 верхней полосы может быть умножен на первый коэффициент 672 масштабирования, чтобы сгенерировать первый подкадр 702 масштабированного возбуждающего сигнала верхней полосы.

[0054] Подкадры 702, 704, 706 и 708 масштабированного возбуждающего сигнала верхней полосы могут быть применены к полюсным фильтрам 712, 714, 716, 718 (например, синтезирующим фильтрам), чтобы определить подкадры 742, 744, 746, 748 второго смоделированного (или синтезированного) сигнала верхней полосы. Например, первый подкадр 702 масштабированного возбуждающего сигнала верхней полосы может быть применен к первому полюсному фильтру 712 вместе с первыми параметрами 722 фильтра, чтобы определить первый подкадр 742 второго смоделированного сигнала верхней полосы. Параметры 722, 724, 726 и 728 фильтра, примененные к полюсным фильтрам 712, 714, 716, 718, могут включать в себя информацию, относящуюся к ранее обработанным кадрам (или подкадрам). Например, каждый полюсный фильтр 712, 714, 716 может выводить информацию 732, 734, 736 обновления состояния фильтра, которая предоставляется другому из полюсных фильтров 714, 716, 718. Обновление 738 состояния фильтра из полюсного фильтра 718 может использоваться в следующем кадре (т.е., первом подкадре), чтобы обновить память фильтра.

[0055] Подкадры 742, 744, 746, 748 второго смоделированного сигнала верхней полосы могут быть объединены, в кадровом модуле 750, чтобы сгенерировать кадр 752 второго смоделированного сигнала верхней полосы. Кадр 752 второго смоделированного сигнала верхней полосы может быть применен к средству 754 оценки формы усиления вместе с сигналом 502 верхней полосы, чтобы определить параметры 756 усиления. Параметры 756 усиления, кадр 752 второго смоделированного сигнала верхней полосы и сигнал 502 верхней полосы могут быть применены к средству 758 оценки кадра усиления, чтобы определить усиление 760 кадра. Параметры 756 усиления и усиление 760 кадра вместе формируют информацию об усилении. Информация об усилении может иметь уменьшенный динамический диапазон относительно информации об усилении, определенной без применения коэффициентов 672, 674, 676, 678 масштабирования, поскольку коэффициенты 672, 674, 676, 678 масштабирования учитывают некоторые из разностей энергии между сигналом 502 верхней полосы и сигналом, смоделированным с использованием возбуждающего сигнала 560 верхней полосы.

[0056] Фиг. 8 представляет собой блок-схему, иллюстрирующую конкретный вариант осуществления способа обработки аудиосигнала, обозначенного 800. Способ 800 может быть выполнен в модуле анализа верхней полосы, таком как модуль 150 анализа верхней полосы на Фиг. 1. Способ 800 содержит этап, на котором на 802 определяют первый смоделированный сигнал верхней полосы на основе возбуждающего сигнала нижней полосы аудиосигнала. Аудиосигнал включает в себя часть верхней полосы и часть нижней полосы. Например, первый смоделированный сигнал верхней полосы может соответствовать первому смоделированному сигналу 208 верхней полосы на Фиг. 2 или набору подкадров 622, 624, 626, 628 первого смоделированного сигнала верхней полосы на Фиг. 6. Первый смоделированный сигнал верхней полосы может быть определен с использованием анализа линейного предсказания путем применения возбуждающего сигнала верхней полосы к полюсному фильтру с параметрами фильтра без памяти. Например, возбуждающий сигнал 202 верхней полосы может быть применен к полюсному синтезирующему фильтру 206 LP на Фиг. 2. В этом примере параметры 204 фильтра, примененные к полюсному синтезирующему фильтру 206 LP, являются параметрами без памяти. То есть, параметры 204 фильтра относятся к конкретному кадру или подкадру возбуждающего сигнала 202 верхней полосы, который обрабатывается, и не включают в себя информацию, относящуюся к ранее обработанным кадрам или подкадрам. В другом примере подкадры 570, 572, 574 и 576 возбуждающего сигнала 560 верхней полосы на Фиг. 5 и 6 могут быть применены к соответствующим полюсным фильтрам 612, 614, 616, 618. В этом примере параметры 552, 554, 556, 558 фильтра, примененные к каждому из полюсных фильтров 612, 614, 616, 618, являются параметрами без памяти.

[0057] Способ 800 также содержит этап, на котором на 804 определяют коэффициенты масштабирования на основе энергии подкадров первого смоделированного сигнала верхней полосы и энергии соответствующих подкадров части верхней полосы аудиосигнала. Например, коэффициенты 230 масштабирования на Фиг. 2 могут быть определены путем деления оцененной энергии 224 подкадра сигнала 124 верхней полосы на оцененную энергию 212 подкадра соответствующего подкадра первого смоделированного сигнала 208 верхней полосы. В другом примере коэффициенты 672, 674, 676, 678 масштабирования на Фиг. 6 могут быть определены путем деления оцененной энергии 652, 654, 656, 658 подкадра сигнала 502 верхней полосы на оцененную энергию 642, 644, 646, 648 соответствующего подкадра 622, 624, 626, 628 первого смоделированного сигнала верхней полосы.

[0058] Способ 800 содержит этап, на котором на 806 применяют коэффициенты масштабирования к смоделированному возбуждающему сигналу верхней полосы для определения масштабированного возбуждающего сигнала верхней полосы. Например, коэффициент 230 масштабирования на Фиг. 2 может быть применен к возбуждающему сигналу 202 верхней полосы на основе подкадр-за-подкадром, чтобы сгенерировать масштабированный возбуждающий сигнал верхней полосы. В другом примере коэффициенты 672, 674, 676, 678 масштабирования на Фиг. 6 могут быть применены к соответствующим подкадрам 570, 572, 574, 576 возбуждающего сигнала 560 верхней полосы, чтобы сгенерировать подкадры 702, 704, 706, 708 масштабированного возбуждающего сигнала верхней полосы. В конкретном варианте осуществления первый набор из одного или более коэффициентов масштабирования может быть определен на 804, а второй набор из одного или более коэффициентов масштабирования может быть применен к смоделированному возбуждающему сигналу верхней полосы на 806. Второй набор из одного или более коэффициентов масштабирования может быть определен на основе первого набора из одного или более коэффициентов масштабирования. Например, усиления, связанные с несколькими подкадрами, используемыми для определения первого набора из одного или более коэффициентов масштабирования, могут быть усреднены, чтобы определить второй набор из одного или более коэффициентов масштабирования. В настоящем примере второй набор из одного или более коэффициентов масштабирования может включать в себя меньше коэффициентов масштабирования, чем включает в себя первый набор из одного или более коэффициентов масштабирования.

[0059] Способ 800 содержит этап, на котором на 808 определяют второй смоделированный сигнал верхней полосы на основе масштабированного возбуждающего сигнала верхней полосы. Чтобы проиллюстрировать это, может быть выполнен анализ линейного предсказания масштабированного возбуждающего сигнала верхней полосы. Например, масштабированный возбуждающий сигнал 240 верхней полосы на Фиг. 2 может быть применен к полюсному фильтру 244 с параметрами 242 фильтра, чтобы определить второй смоделированный (например, синтезированный) сигнал 246 верхней полосы. Параметры 242 фильтра могут включать в себя память (например, могут быть обновлены на основе ранее обработанных кадров или подкадров). В другом примере подкадры 702, 704, 706, 708 масштабированного возбуждающего сигнала верхней полосы на Фиг. 7 могут быть применены к полюсным фильтрам 712, 714, 716, 718 вместе с параметрами 722, 724, 726, 728 фильтра, чтобы определить подкадры 742, 744, 746, 748 второго смоделированного (например, синтезированного) сигнала верхней полосы. Параметры 722, 724, 726, 728 фильтра могут включать в себя память (например, могут быть обновлены на основе ранее обработанных кадров или подкадров).

[0060] Способ 800 содержит этап, на котором на 810 определяют параметры усиления на основе второго смоделированного сигнала верхней полосы и части верхней полосы аудиосигнала. Например, второй смоделированный сигнал 246 верхней полосы и сигнал 124 верхней полосы могут быть предоставлены средству 248 оценки формы усиления на Фиг. 2. Средство 248 оценки формы усиления может определить параметры 250 усиления. Кроме того, второй смоделированный сигнал 246 верхней полосы, сигнал 124 верхней полосы и параметры 250 усиления могут быть предоставлены средству 252 оценки кадра усиления, которое может определить усиление 254 кадра. В другом примере подкадры 742, 744, 746 и 748 второго смоделированного сигнала верхней полосы могут быть использованы, чтобы сформировать кадр 752 второго смоделированного сигнала верхней полосы. Кадр 752 второго смоделированного сигнала верхней полосы и соответствующий кадр сигнала 502 верхней полосы могут быть предоставлены средству 754 оценки формы усиления на Фиг. 7. Средство 754 оценки формы усиления может определить параметры 756 усиления. Кроме того, кадр 752 второго смоделированного сигнала верхней полосы, соответствующий кадр сигнала 502 верхней полосы и параметры 756 усиления могут быть предоставлены средству 758 оценки кадра усиления, которое может определить усиление 760 кадра. Усиление кадра и параметры усиления могут быть включены в дополнительную информацию верхней полосы, такую как дополнительная информация 172 верхней полосы на Фиг. 1, которая включена в битовый поток 192, используемый для кодирования аудиосигнала, такого как аудиосигнал 102.

[0061] Фиг. 1-8, таким образом, иллюстрируют примеры, включающие в себя системы и способы, которые выполняют кодирование аудиосигнала способом, который использует коэффициенты масштабирования, чтобы учитывать различия в энергии между частью верхней полосы аудиосигнала, такого как сигнал 124 верхней полосы на Фиг.1., и смоделированной или синтезированной версии сигнала верхней полосы, который основан на возбуждающем сигнале нижней полосы, например, возбуждающем сигнале 144 нижней полосы. Использование коэффициентов масштабирования для учета различий в энергии может улучшить вычисление информации об усилении, например, путем уменьшения динамического диапазона информации об усилении. Системы и способы на Фиг. 1-8 могут быть интегрированы и/или выполнены посредством одного или более электронных устройств, таких как мобильный телефон, блок ручной системы персональной связи (PCS), устройство связи, музыкальный проигрыватель, видеопроигрыватель, блок развлечений, телевизионная приставка, устройство навигации, устройство с поддержкой системы глобального позиционирования (GPS), PDA, компьютер, переносной блок данных (такой как карманный персональный компьютер), блок данных с фиксированным местоположением (такой как оборудование считывания показаний счетчика) или любое другое устройство, которое выполняет функции кодирования и/или декодирования аудиосигнала.

[0062] Как показано на Фиг. 9, изображена структурная схема конкретного иллюстративного варианта осуществления беспроводного устройства связи и в целом обозначена 900. Устройство 900 включает в себя по меньшей мере один процессор, соединенный с памятью 932. Например, в варианте осуществления, проиллюстрированном на Фиг. 9, устройство 900 включает в себя первый процессор 910 (например, центральный процессор (CPU)) и второй процессор 912 (например, DSP, и т.д.). В других вариантах осуществления устройство 900 может включать в себя только один процессор или может включать в себя более, чем два процессора. Память 932 может включать в себя инструкции 960, выполняемые по меньшей мере одним из процессоров 910, 912, чтобы выполнять способы и процессы, раскрытые в материалах настоящей заявки, например, способ 700 на Фиг. 8 или один или более процессов, описанных со ссылкой на Фиг. 1-7.

[0063] Например, инструкции 960 могут включать в себя или соответствовать модулю 976 анализа нижней полосы и модулю 978 анализа верхней полосы. В конкретном варианте осуществления модуль 976 анализа нижней полосы соответствует модулю 130 анализа нижней полосы на Фиг. 1, а модуль 978 анализа верхней полосы соответствует модулю 150 анализа верхней полосы на Фиг. 1. В дополнение или альтернативно модуль 978 анализа верхней полосы может соответствовать или включать в себя комбинацию компонентов Фиг. 2 или 5-7.

[0064] В различных вариантах осуществления модуль 976 анализа нижней полосы, модуль 978 анализа верхней полосы или оба могут быть реализованы с помощью специальных аппаратных средств (например, схемы), с помощью процессора (например, процессора 912), выполняющего инструкции 960 или инструкции 961 в памяти 980, чтобы выполнить одну или более задач, или их комбинации. В качестве примера, память 932 или память 980 могут включать в себя или соответствовать устройству памяти, такому как оперативное запоминающее устройство (ОЗУ, RAM), магниторезистивное оперативное запоминающее устройство (МОЗУ, MRAM), МОЗУ с передачей вращения (STT-MRAM), флеш-память, постоянное запоминающее устройство (ПЗУ, ROM), программируемое постоянное запоминающее устройство (ППЗУ, PROM), стираемое программируемое постоянное запоминающее устройство (СППЗУ, EPROM), электрически стираемое программируемое постоянное запоминающее устройство (ЭСППЗУ, EEPROM), регистры, жесткий диск, съемный диск или постоянное запоминающее устройство на компакт-дисках (CD-ROM). Устройство памяти может включать в себя инструкции (например, инструкции 960 или инструкции 961), которые при выполнении компьютером (например, процессором 910 и/или процессором 912) могут приводить к тому, что компьютер определяет коэффициенты масштабирования на основе энергии подкадров первого смоделированного сигнала верхней полосы и энергии соответствующих подкадров части верхней полосы аудиосигнала, применяет коэффициенты масштабирования к смоделированному возбуждающему сигналу верхней полосы, чтобы определить масштабированный возбуждающий сигнал верхней полосы, определяет второй смоделированный сигнал верхней полосы на основе масштабированного возбуждающего сигнала верхней полосы, и определяет параметры усиления на основе второго смоделированного сигнала верхней полосы и части верхней полосы аудиосигнала. В качестве примера, память 932 или память 980 может быть невременным компьютерно-читаемым носителем, который включает в себя инструкции, которые при выполнении компьютером (например, процессором 910 и/или процессором 912) приводят к тому, что компьютер выполняет по меньшей мере часть способа 800 на Фиг. 8.

[0065] Фиг. 9 также показывает контроллер 926 дисплея, который соединен с процессором 910 и с дисплеем 928. КОДЕК 934 может быть соединен с процессором 912, как показано, с процессором 910 или обоими. Динамик 936 и микрофон 938 могут быть соединены с КОДЕКом 934. Например, микрофон 938 может генерировать входной аудиосигнал 102 на Фиг. 1, а процессор 912 может генерировать выходной битовый поток 192 для передачи приемнику на основе входного аудиосигнала 102. В качестве другого примера, динамик 936 может использоваться для вывода сигнала, восстановленного из выходного битового потока 192 на Фиг. 1, где выходной битовый поток 192 принят из передатчика. Фиг. 9 также указывает, что беспроводной контроллер 940 может быть соединен с процессором 910, с процессором 912 или обоими, и с антенной 942. В конкретном варианте осуществления, КОДЕК 934 представляет собой аналоговый компонент аудио-обработки внешнего интерфейса. Например, КОДЕКС 934 может выполнять аналоговую регулировку усиления и установку параметров для сигналов, принятых от микрофона 938, и сигналов, переданных в динамик 936. КОДЕК 934 может также включать в себя аналогово-цифровые (A/D) и цифро-аналоговые (D/A) преобразователи. В конкретном варианте осуществления КОДЕК 934 также включает в себя один или более модуляторов и фильтров обработки сигнала. КОДЕК 934 может включать в себя память для буферизации входных данных, принятых от микрофона 938, и для буферизации выходных данных, которые должны быть предоставлены громкоговорителю 936.

[0066] В конкретном варианте осуществления процессор 910, процессор 912, контроллер 926 дисплея, память 932, КОДЕК 934 и контроллер 940 беспроводной связи включены в состав устройства 922 системы-в-корпусе или системы-на-чипе. В конкретном варианте осуществления устройство 930 ввода, такое как сенсорный экран и/или клавиатура, и источник 944 питания соединены с устройством 922 системы-на-чипе. Кроме того, в конкретном варианте осуществления, как проиллюстрировано на Фиг. 9, дисплей 928, устройство 930 ввода, динамик 936, микрофон 938, антенна 942 и источник 944 питания являются внешними по отношению к устройству 922 системы-на-чипе. Однако, каждое из дисплея 928, устройства 930 ввода, громкоговорителя 936, микрофона 938, антенны 942 и источника 944 питания может быть соединено с компонентом устройства 922 системы-на-чипе, например, интерфейсом или контроллером.

[0067] В сочетании с описанными вариантами осуществления, раскрыт аппарат, который включает в себя средство для определения первого смоделированного сигнала верхней полосы на основе возбуждающего сигнала нижней полосы аудиосигнала, где аудиосигнал включает в себя часть верхней полосы и часть нижней полосы. Например, модуль 150 анализа верхней полосы (или его компонент, такой как модуль 158 кодирования и анализа LP) может определять первый смоделированный сигнал верхней полосы на основе возбуждающего сигнала 144 нижней полосы аудиосигнала 102. В качестве другого примера, первый синтезирующий фильтр, такой как полюсный синтезирующий фильтр 206 LP на Фиг. 2, может определять первый смоделированный сигнал 208 верхней полосы на основе возбуждающего сигнала 202 верхней полосы. Возбуждающий сигнал 202 верхней полосы может быть определен с помощью генератора 152 возбуждения верхней полосы на Фиг. 1 на основе возбуждающего сигнала 144 нижней полосы аудиосигнала. В качестве еще одного другого примера, набор первых синтезирующих фильтров, таких как полюсные фильтры 612, 614, 616, 618 на Фиг. 6, может определять подкадры 622, 624, 626, 628 первого смоделированного сигнала верхней полосы на основе подкадров 570, 572, 574, 576 возбуждающего сигнала верхней полосы. В качестве еще одного другого примера, процессор 910 на Фиг. 9, процессор 912 или компонент одного из процессоров 910, 912 (такой как модуль 978 анализа верхней полосы или инструкции 961) может определять первый смоделированный сигнал верхней полосы на основе возбуждающего сигнала нижней полосы.

[0068] Аппарат также включает в себя средство для определения коэффициентов масштабирования на основе энергии подкадров первого смоделированного сигнала верхней полосы и энергии соответствующих подкадров части верхней полосы аудиосигнала. Например, средство 154 оценки энергии и модуль 156 масштабирования на Фиг. 1 могут определять коэффициенты масштабирования. В другом примере коэффициенты 230 масштабирования могут быть определены на основе оцененной энергии 212 и 224 подкадра на Фиг. 2. В еще одном другом примере коэффициенты 672, 674, 676, 678 масштабирования могут быть определены на основе оцененной энергии 642, 644, 646, 648 и оцененной энергии 652, 654, 656, 658, соответственно, на Фиг. 6. В качестве еще одного примера, процессор 910 на Фиг. 9, процессор 912 или компонент одного из процессоров 910, 912 (такой как модуль 978 анализа верхней полосы или инструкции 961) может определять коэффициенты масштабирования.

[0069] Аппарат также включает в себя средство для применения коэффициентов масштабирования к смоделированному возбуждающему сигналу верхней полосы для определения масштабированного возбуждающего сигнала верхней полосы. Например, модуль 156 масштабирования на Фиг. 1 может применять коэффициенты масштабирования к смоделированному возбуждающему сигналу верхней полосы для определения масштабированного возбуждающего сигнала верхней полосы. В другом примере объединитель (например, умножитель) может применять коэффициенты 230 масштабирования к смоделированному возбуждающему сигналу 202 верхней полосы для определения масштабированного возбуждающего сигнала 240 верхней полосы на Фиг. 2. В еще одном другом примере объединители (например, умножители) могут применять коэффициенты 672, 674, 676, 678 масштабирования к соответствующим подкадрам 570, 572, 574, 576 возбуждающего сигнала верхней полосы для определения подкадров 702, 704, 706, 708 масштабированного возбуждающего сигнала верхней полосы на Фиг. 7. В качестве еще одного другого примера, процессор 910 на Фиг. 9, процессор 912 или компонент одного из процессоров 910, 912 (такой как модуль 978 анализа верхней полосы или инструкции 961) может применять коэффициенты масштабирования к смоделированному возбуждающему сигналу верхней полосы, чтобы определить масштабированный возбуждающий сигнал верхней полосы.

[0070] Устройство также включает в себя средство для определения второго смоделированного сигнала верхней полосы на основе масштабированного возбуждающего сигнала верхней полосы. Например, модуль 150 анализа верхней полосы (или его компонент, такой как модуль 158 кодирования и анализа LP) может определять второй смоделированный сигнал верхней полосы на основе масштабированного возбуждающего сигнала верхней полосы. В качестве другого примера, второй синтезирующий фильтр, такой как полюсный фильтр 244 на Фиг. 2, может определять второй смоделированный сигнал 246 верхней полосы на основе масштабированного возбуждающего сигнала 240 верхней полосы. В качестве еще одного другого примера, набор вторых синтезирующих фильтров, таких как полюсные фильтры 712, 714, 716, 718 на Фиг. 7, может определять подкадры 742, 744, 746, 748 второго смоделированного сигнала верхней полосы на основе подкадров 702, 704, 706, 708 возбуждающего сигнала верхней полосы. В качестве еще одного другого примера, процессор 910 на Фиг. 9, процессор 912 или компонент одного из процессоров 910, 912 (такой как модуль 978 анализа верхней полосы или инструкции 961) может определять второй смоделированный сигнал верхней полосы на основе масштабированного возбуждающего сигнала верхней полосы.

[0071] Аппарат также включает в себя средство для определения параметров усиления на основе второго смоделированного сигнала верхней полосы и части верхней полосы аудиосигнала. Например, средство 164 оценки усиления может определять параметры усиления. В другом примере средство 248 оценки формы усиления, средство 252 оценки кадра усиления или оба могут определять информацию об усилении, такую как параметры 250 усиления и усиление 254 кадра. В еще одном другом примере средство 754 оценки формы усиления, средство 758 оценки кадра усиления или оба могут определять информацию об усилении, такую как параметры 756 усиления и усиление 760 кадра. В качестве еще одного другого примера, процессор 910 на Фиг. 9, процессор 912 или компонент одного из процессоров 910, 912 (такой как модуль 978 анализа верхней полосы или инструкции 961) может определять параметры усиления на основе второго смоделированного сигнала верхней полосы и части верхней полосы аудиосигнала.

[0072] Специалистам в данной области техники должно быть понятно, что различные иллюстративные логические блоки, конфигурации, модули, схемы и шаги алгоритмов, описанные в связи с вариантами осуществления, раскрытыми в материалах настоящей заявки, могут быть реализованы в виде электронных аппаратных средств, компьютерного программного обеспечения, выполняемого устройством обработки, таким как аппаратный процессор, или комбинацией обоих. Различные иллюстративные компоненты, блоки, конфигурации, модули, схемы и этапы были описаны выше в целом исходя из их функциональных возможностей. Реализованы ли такие функциональные возможности в виде аппаратных средств или выполняемы программными средствами, зависит от конкретного применения и проектных ограничений, накладываемых на всю систему. Квалифицированные специалисты могут реализовать описанные функциональные возможности различными способами для каждого конкретного применения, но такие решения реализации не должны интерпретироваться как служащие причиной выхода из объема настоящего раскрытия.

[0073] Шаги способа или алгоритма, описанные в связи с вариантами осуществления, раскрытыми в материалах настоящей заявки, могу быть воплощены непосредственно в аппаратных средствах, в программном модуле, выполняемом процессором, или в комбинации этих двух. Программный модуль может находиться в запоминающем устройстве, таком как RAM, MRAM, STT-MRAM, флеш-память, ROM, PROM, EPROM, EEPROM, регистры, жесткий диск, съемный диск или CD-ROM. Примерный запоминающее устройство соединено с процессором, так что процессор может считывать информацию с и записывать информацию на запоминающее устройство. В альтернативном варианте запоминающее устройство может быть неотъемлемой частью процессора. Процессор и носитель данных могут находиться в ASIC. ASIC может находиться в вычислительном устройстве или пользовательском терминале. В альтернативном варианте процессор и носитель данных могут находиться в качестве дискретных компонентов в вычислительном устройстве или пользовательском терминале.

[0074] Предшествующее описание раскрытых вариантов осуществления приведено, чтобы дать любому специалисту в данной области техники возможность изготовить или использовать раскрытые варианты осуществления. Различные модификации в отношении этих вариантов осуществления легко станут очевидны специалистам в данной области техники, а принципы, определенные в материалах настоящей заявки, могут применяться к другим вариантам осуществления без отступления от объема раскрытия. Таким образом, не подразумевается, что настоящее раскрытие ограничено вариантами осуществления, показанными в материалах настоящей заявки, но оно должно быть согласовано в самом широком возможном объеме в соответствии с принципами и новыми отличительными признаками, как определено в следующей формуле изобретения.

1. Способ обработки сигнала, содержащий этапы, на которых:

определяют первый смоделированный сигнал верхней полосы на основе возбуждающего сигнала нижней полосы аудиосигнала, при этом аудиосигнал включает в себя часть верхней полосы и часть нижней полосы;

определяют первый набор из одного или более коэффициентов масштабирования на основе энергии подкадров первого смоделированного сигнала верхней полосы и энергии соответствующих подкадров части верхней полосы аудиосигнала;

применяют второй набор из одного или более коэффициентов масштабирования, основанный на по меньшей мере одном среди первого набора из упомянутого одного или более коэффициентов масштабирования, к смоделированному возбуждающему сигналу верхней полосы, чтобы определить масштабированный возбуждающий сигнал верхней полосы;

определяют второй смоделированный сигнал верхней полосы на основе масштабированного возбуждающего сигнала верхней полосы;

определяют параметры усиления на основе второго смоделированного сигнала верхней полосы и части верхней полосы аудиосигнала; и

выводят поток данных на основе упомянутых определенных параметров усиления.

2. Способ по п.1, в котором конкретный подкадр первого смоделированного сигнала верхней полосы определяется путем применения синтезирующего фильтра к конкретному подкадру смоделированного возбуждающего сигнала верхней полосы.

3. Способ по п. 2, в котором синтезирующий фильтр использует параметры фильтра, соответствующие конкретному подкадру смоделированного возбуждающего сигнала верхней полосы.

4. Способ по п.1, в котором конкретный подкадр второго смоделированного сигнала верхней полосы определяется путем применения синтезирующего фильтра к конкретному подкадру масштабированного возбуждающего сигнала верхней полосы, который соответствует конкретному подкадру второго смоделированного сигнала верхней полосы.

5. Способ по п. 1, дополнительно содержащий этап, на котором оценивают энергию одного или более из подкадров первого смоделированного сигнала верхней полосы, причем первый смоделированный сигнал верхней полосы синтезирован на основе полюсных синтезирующих фильтров, причем полюсные синтезирующие фильтры имеют коэффициенты фильтра, которые интерполированы на основе взвешенной суммы: одной или более линейных спектральных пар, связанных с текущим кадром, и одной или более линейных спектральных пар, связанных с предшествующим кадром.

6. Способ по п. 1, в котором определение коэффициента масштабирования подкадра содержит этап, на котором:

определяют энергию конкретного подкадра части верхней полосы аудиосигнала;

определяют энергию соответствующего подкадра первого смоделированного сигнала верхней полосы;

делят энергию конкретного подкадра части верхней полосы аудиосигнала на энергию соответствующего подкадра первого смоделированного сигнала верхней полосы; и

квантуют и передают коэффициент масштабирования подкадра.

7. Способ по п. 1, в котором параметры усиления включают в себя форму усиления и кадр усиления, и причем способ дополнительно содержит этап, на котором определяют смоделированный возбуждающий сигнал верхней полосы путем объединения преобразованного возбуждающего сигнала нижней полосы со сформированным сигналом шума.

8. Способ по п. 1, дополнительно содержащий этап, на котором определяют дополнительную информацию верхней полосы, при этом дополнительная информация верхней полосы включает в себя данные, представляющие линейные спектральные пары верхней полосы, данные, представляющие параметры усиления, данные, представляющие коэффициент масштабирования, или их комбинацию.

9. Способ по п. 1, в котором определение первого смоделированного сигнала верхней полосы, определение первого набора из одного или более коэффициентов масштабирования, применение второго набора из одного или более коэффициентов масштабирования, определение второго смоделированного сигнала верхней полосы, определение параметров усиления и вывод потока данных выполняют в устройстве, которое содержит мобильное устройство связи или стационарный блок связи.

10. Аппарат для обработки сигнала, содержащий:

первый синтезирующий фильтр, выполненный с возможностью определения первого смоделированного сигнала верхней полосы на основе возбуждающего сигнала нижней полосы аудиосигнала, при этом аудиосигнал включает в себя часть верхней полосы и часть нижней полосы;

модуль масштабирования, выполненный с возможностью определения коэффициентов масштабирования на основе энергии подкадров первого смоделированного сигнала верхней полосы и энергии соответствующих подкадров части верхней полосы аудиосигнала и применения коэффициентов масштабирования к смоделированному возбуждающему сигналу верхней полосы для определения масштабированного возбуждающего сигнала верхней полосы;

второй синтезирующий фильтр, выполненный с возможностью определения второго смоделированного сигнала верхней полосы на основе масштабированного возбуждающего сигнала верхней полосы;

средство оценки усиления, выполненное с возможностью определения параметров усиления на основе второго смоделированного сигнала верхней полосы и части верхней полосы аудиосигнала; и

мультиплексор, выполненный с возможностью вывода потока данных на основе упомянутых определенных параметров усиления.

11. Аппарат по п. 10, в котором первый синтезирующий фильтр выполнен с возможностью определять конкретный подкадр первого смоделированного сигнала верхней полосы путем применения синтезирующего фильтра к конкретному подкадру смоделированного возбуждающего сигнала верхней полосы, причем синтезирующий фильтр выполнен с возможностью использовать параметры фильтра, соответствующие конкретному подкадру смоделированного возбуждающего сигнала верхней полосы, причем память фильтра или состояния фильтра сбрасываются в ноль перед применением синтезирующего фильтра к конкретному подкадру смоделированного возбуждающего сигнала верхней полосы и причем параметры фильтра не включают в себя информацию, относящуюся к подкадрам, предшествующим конкретному подкадру смоделированного возбуждающего сигнала верхней полосы.

12. Аппарат по п. 10, в котором второй синтезирующий фильтр выполнен с возможностью определять конкретный подкадр второго смоделированного сигнала верхней полосы путем применения синтезирующего фильтра к конкретному подкадру масштабированного возбуждающего сигнала верхней полосы, который соответствует конкретному подкадру второго смоделированного сигнала верхней полосы, причем синтезирующий фильтр выполнен с возможностью использовать память фильтра или обновляет состояния фильтра на основе конкретного подкадра масштабированного возбуждающего сигнала верхней полосы и одного или более из предшествующих подкадров и причем память фильтра или состояния фильтра не сбрасываются в ноль и переносятся из предыдущего кадра или подкадра перед применением синтезирующего фильтра к конкретному подкадру масштабированного возбуждающего сигнала верхней полосы.

13. Аппарат по п. 10, дополнительно содержащий модуль анализа нижней полосы, выполненный с возможностью определения битового потока нижней полосы, при этом битовый поток нижней полосы включает в себя данные кода линейного предсказания, представляющие часть нижней полосы аудиосигнала.

14. Аппарат по п. 10, в котором модуль масштабирования содержит:

первое средство оценки энергии, выполненное с возможностью определения энергии конкретного подкадра части верхней полосы аудиосигнала;

второе средство оценки энергии, выполненное с возможностью определения энергии соответствующего подкадра первого смоделированного сигнала верхней полосы; и

объединитель, выполненный с возможностью определения отношения энергии конкретного подкадра части верхней полосы аудиосигнала к энергии соответствующего подкадра первого смоделированного сигнала верхней полосы.

15. Аппарат по п. 10, в котором параметры усиления включают в себя форму усиления и кадр усиления, и причем аппарат дополнительно содержит:

генератор возбуждения верхней полосы, выполненный с возможностью определения смоделированного возбуждающего сигнала верхней полосы путем объединения преобразованного возбуждающего сигнала нижней полосы со сформированным сигналом шума;

кодер нижней полосы, выполненный с возможностью определения возбуждающего сигнала нижней полосы на основе кодирования с линейным предсказанием части нижней полосы аудиосигнала; и

модуль анализа верхней полосы, выполненный с возможностью определения дополнительной информации верхней полосы, при этом дополнительная информация верхней полосы включает в себя: данные, представляющие линейные спектральные пары верхней полосы, данные, представляющие параметры усиления, и данные, представляющие коэффициент масштабирования.

16. Аппарат по п. 10, в котором поток данных включает в себя битовый поток нижней полосы и дополнительную информацию верхней полосы, причем битовый поток нижней полосы представляет часть нижней полосы аудиосигнала.

17. Аппарат по п. 10, дополнительно содержащий:

антенну;

передатчик;

приемник;

процессор;

декодер и

кодер, содержащий упомянутые первый синтезирующий фильтр, модуль масштабирования, второй синтезирующий фильтр, средство оценки усиления и мультиплексор.

18. Устройство для обработки сигнала, содержащее:

средство для определения первого смоделированного сигнала верхней полосы на основе возбуждающего сигнала нижней полосы аудиосигнала, при этом аудиосигнал включает в себя часть верхней полосы и часть нижней полосы;

средство для определения коэффициентов масштабирования на основе энергии подкадров первого смоделированного сигнала верхней полосы и энергии соответствующих подкадров части верхней полосы аудиосигнала;

средство для применения коэффициентов масштабирования к смоделированному возбуждающему сигналу верхней полосы для определения масштабированного возбуждающего сигнала верхней полосы;

средство для определения второго смоделированного сигнала верхней полосы на основе масштабированного возбуждающего сигнала верхней полосы;

средство для определения параметров усиления на основе второго смоделированного сигнала верхней полосы и части верхней полосы аудиосигнала; и

средство для вывода потока данных в ответ на средство для определения параметров усиления.

19. Устройство по п. 18, в котором средство для определения первого смоделированного сигнала верхней полосы определяет конкретный подкадр первого смоделированного сигнала верхней полосы путем применения синтезирующего фильтра к конкретному подкадру смоделированного возбуждающего сигнала верхней полосы, причем синтезирующий фильтр использует параметры фильтра, соответствующие конкретному подкадру смоделированного возбуждающего сигнала верхней полосы, причем память фильтра или состояния фильтра сбрасываются в ноль перед применением синтезирующего фильтра к конкретному подкадру смоделированного возбуждающего сигнала верхней полосы, так что параметры фильтра не включают в себя информацию, относящуюся в подкадрам, предшествующим конкретному подкадру смоделированного возбуждающего сигнала верхней полосы, причем средство для определения второго смоделированного сигнала верхней полосы определяет конкретный подкадр второго смоделированного сигнала верхней полосы путем применения второго синтезирующего фильтра к конкретному подкадру масштабированного возбуждающего сигнала верхней полосы, который соответствует конкретному подкадру второго смоделированного сигнала верхней полосы, причем второй синтезирующий фильтр использует память фильтра или обновляет состояния фильтра на основе конкретного подкадра масштабированного возбуждающего сигнала верхней полосы и одного или более из предшествующих подкадров и причем память фильтра или состояния фильтра не сбрасываются в ноль и переносятся из предыдущего кадра или подкадра перед применением второго синтезирующего фильтра к конкретному подкадру масштабированного возбуждающего сигнала верхней полосы.

20. Компьютерно-читаемый носитель, хранящий инструкции, которые выполняются процессором для предписания процессору выполнять операции, содержащие:

определение первого смоделированного сигнала верхней полосы на основе возбуждающего сигнала нижней полосы аудиосигнала, при этом аудиосигнал включает в себя часть верхней полосы и часть нижней полосы;

определение коэффициентов масштабирования на основе энергии подкадров первого смоделированного сигнала верхней полосы и энергии соответствующих подкадров части верхней полосы аудиосигнала;

применение коэффициентов масштабирования к смоделированному возбуждающему сигналу верхней полосы для определения масштабированного возбуждающего сигнала верхней полосы;

определение второго смоделированного сигнала верхней полосы на основе масштабированного возбуждающего сигнала верхней полосы;

определение параметров усиления на основе второго смоделированного сигнала верхней полосы и части верхней полосы аудиосигнала; и

вывод потока данных на основе упомянутых определенных параметров усиления.

21. Компьютерно-читаемый носитель по п. 20, в котором конкретный подкадр первого смоделированного сигнала верхней полосы определяется путем применения синтезирующего фильтра к конкретному подкадру смоделированного возбуждающего сигнала верхней полосы, причем синтезирующий фильтр использует параметры, соответствующие конкретному подкадру смоделированного возбуждающего сигнала верхней полосы, и причем память фильтра или состояния фильтра сбрасываются в ноль перед применением синтезирующего фильтра к конкретному подкадру смоделированного возбуждающего сигнала верхней полосы.



 

Похожие патенты:

Изобретение относится к средствам для обработки аудиосигнала. Технический результат заключается в повышении эффективности обработки аудиосигнала.

Изобретение относится к средствам для декодирования аудиопредставления звукового поля. Технический результат заключается в повышении качества локализации звука.

Изобретение относится к обработке потока данных элементов аудиовизуального контента и, в частности, аудиовизуального контента транспортного потока MPEG-2. Техническим результатом является обеспечение улучшенного и более гибкого потока данных для аудиовизуального контента.

Изобретение относится к средствам для кодирования и декодирования аудио. Технический результат заключается в повышении эффективности кодирования.

Изобретение относится к средствам для кодирования и декодирования аудиосигнала. Технический результат заключается в создании усовершенствованной концепции кодирования/декодирования аудиоданных, позволяющей уменьшить скорость передачи дополнительной информации для схемы направленного декодирования.

Изобретение относится к средствам для обработки аудиосигнала с использованием горизонтальной фазовой коррекции. Технический результат заключается в повышении эффективности обработки аудиосигнала.

Изобретение относится к средствам для обработки аудиосигнала с использованием вертикальной фазовой коррекции. Технический результат заключается в повышении эффективности обработки аудиосигнала.

Изобретение относится к средствам для кодирования аудиосигнала. Технический результат заключается в повышении эффективности кодирования аудиоданных.
Изобретение относится к средствам для разборчивости речи. Технический результат заключается в повышение разборчивости речи.

Изобретение относится к средствам для кодирования и декодирования речи. Технический результат заключается в уменьшении опережающего и запаздывающего эха.

Изобретение относится к средствам для обработки аудиосигнала. Технический результат заключается в повышении эффективности обработки аудиосигнала.

Изобретение относится к средствам передискретизации сигнала звуковой частоты при кодировании или декодировании сигнала звуковой частоты. Технический результат заключается в повышении эффективности передискретизации.

Изобретение относится к средствам для кодирования и декодирования аудио. Технический результат заключается в сокращении количества битов, необходимых для кодирования спектра, при сохранении качества звука.

Изобретение относится к средствам для кодирования и декодирования аудио. Технический результат заключается в повышении эффективности кодирования.

Изобретение относится к области декодирования аудиоинформации. Технический результат – обеспечение улучшенного маскирования ошибки аудиоинформации.

Изобретение относится к средствам для кодирования и декодирования. Технический результат заключается в повышении эффективности кодирования.

Изобретение относится к области обработки аудиосигналов. Технический результат заключается в повышении эффективности обработки аудиосигналов.

Изобретение относится к средствам для обработки кодированного аудиосигнала, включающего в себя множество микшированных с понижением сигналов, связанных с множеством входных звуковых объектов и параметрами объектов.

Изобретение относится к средствам кодирования и декодирования аудио. Технический результат заключается в повышении эффективности кодирования аудио.

Изобретение относится к средствам для кодирования и декодирования аудио. Технический результат заключается в повышении эффективности кодирования.

Изобретение относится к вычислительной технике. Технический результат заключается в улучшении обработки мультимедийного сигнала, содержащего метаданные или управляющие данные. Кодер для кодирования вторичных мультимедийных данных, содержащих метаданные или управляющие данные для первичных мультимедийных данных, содержит модуль группировки для группировки потока битов вторичных мультимедийных данных, чтобы формировать сгруппированные вторичные мультимедийные данные, представляющие слова данных; формирователь опорных сигналов для формирования опорного шаблона, указывающего опорную амплитуду или предварительно определенный момент времени в первичных мультимедийных данных; и компоновщик потоков, содержащий фильтр формирования импульсов, чтобы подвергать фильтрации нижних частот слова данных или опорный шаблон, чтобы получать импульсы данных, содержащие длину более чем в одну выборку предварительно определенной частоты дискретизации, при этом кодер сконфигурирован с возможностью выводить поток цифровых слов в качестве вторичных мультимедийных данных. 8 н. и 34 з.п. ф-лы, 27 ил.

Изобретение относится к средствам для обработки сигналов. Технический результат заключается в повышении эффективности обработки сигнала за счет уменьшения динамического диапазона информации об усилении, предоставленной кодеру. Определяют первый смоделированный сигнал верхней полосы на основе возбуждающего сигнала нижней полосы аудиосигнала, при этом аудиосигнал включает в себя часть верхней полосы и часть нижней полосы. Определяют первый набор из коэффициентов масштабирования на основе энергии подкадров первого смоделированного сигнала верхней полосы и энергии соответствующих подкадров части верхней полосы аудиосигнала. Применяют второй набор из коэффициентов масштабирования, основанный на по меньшей мере одном среди первого набора из упомянутых коэффициентов масштабирования, к смоделированному возбуждающему сигналу верхней полосы, чтобы определить масштабированный возбуждающий сигнал верхней полосы. Определяют второй смоделированный сигнал верхней полосы на основе масштабированного возбуждающего сигнала верхней полосы. Определяют параметры усиления на основе второго смоделированного сигнала верхней полосы и части верхней полосы аудиосигнала. 4 н. и 17 з.п. ф-лы, 9 ил.

Наверх