Способ закрытия капилляров фотонно-кристаллических волноводов с полой сердцевиной

Изобретение относится к фотонно-кристаллическим волноводам с большим периодом решётки с селективно закрытыми капиллярами внешних оболочек и открытой полой сердцевиной. Способ закрытия капилляров фотонно-кристаллического волновода с полой сердцевиной заключаюется в заполнении капилляров на торцевой поверхности волновода светоотверждаемым клеевым составом и отверждении клеевого состава под воздействием ультрафиолетового излучения. Заполнение капилляров осуществляют с помощью шаблона, выполненного в форме кольца из оптически прозрачного материала. Внешний диаметр кольца шаблона соответствует внешнему диаметру торцевой поверхности волновода. Внутренний диаметр кольца шаблона соответствует внешнему диаметру полой сердцевины. Клеевой состав наносят на шаблон. Шаблон фиксируют на торцевой поверхности волновода под давлением, не допускающим физического разрушения волновода. При воздействии ультрафиолетового излучения осуществляют вращение волновода в вертикальной плоскости в течение времени, необходимого для полного отверждения клеевого состава. Снятие шаблона осуществляют после полного отверждения клеевого состава. Технический результат, достигаемый изобретением, заключается в упрощении процедуры закрытия капилляров на торцевой поверхности фотонно-кристаллических волноводов, в сокращении времени обработки образцов, повышении процента выхода качественных образцов и в обеспечении устойчивости образцов при дальнейшей модификации. 3 з.п. ф-лы, 1 ил.

 

Изобретение относится к области микро- и нанотехнологий и может быть использовано для получения образцов фотонно-кристаллических волноводов с полой сердцевиной, в частности фотонно-кристаллических волноводов с большим периодом решётки (ФКВ БПР) с селективно закрытыми капиллярами внешних оболочек и открытой полой сердцевиной, в частности - для изготовления конструктивных элементов сенсоров с возможностью последующей модификации полой сердцевины с помощью полимеров, белков, нано- и микрочастиц.

Известен способ селективной запайки внешних оболочек фотонно-кристаллического волновода с полой сердцевиной (см. патент РФ № 2617650, МПК С03В23/18, опуб. 25.04.2017), включающий нагрев вращающегося образца волновода, при этом вращение образца осуществляют вокруг горизонтальной оси с угловой скоростью от 1 до 800 об-1, образец нагревают до температуры, не более чем на 70°С превышающей температуру начала размягчения материала образца, нагрев осуществляют в течение не более 4 с, после чего образец охлаждают направленным газовым потоком.

Однако, применение данного способа к ФКВ БПР, которые характеризуются большим, до нескольких миллиметров, диаметром, связано с трудностью выбора режима обработки, который обеспечивает необходимую равномерность распределения размягчённого микрообъёма стекла на торце волновода. и не обеспечивает сохранения первоначального диаметра полой сердцевины ФКВ БПР.

Известен также способ селективной запайки внешних оболочек фотонно-кристаллического волновода с полой сердцевиной (см. патент РФ № 2629133, МПК G02В6/255, опуб. 24.08.2017), включающий нагрев узконаправленным источником теплового воздействия, при этом осуществляют вращение узконаправленного источника теплового воздействия вокруг оси волновода с угловой скоростью от 1 до 500 об-1, образец нагревают до температуры, не более чем на 80°С превышающей температуру начала размягчения материала образца, нагрев осуществляют в течение не более 4 секунд, после чего образец охлаждают направленным газовым потоком.

Однако, использование данного способа для ФКВ БПР, которые характеризуются относительно большим, до нескольких миллиметров, внешним диаметром и применение в данном способе вращающегося узконаправленного источника теплового воздействия не позволяет получать необходимую равномерность нагрева стекла и не обеспечивает необходимое качество закрытия капилляров внешних оболочек ФКВ БПР.

Наиболее близким к заявляемому является способ закрытия капилляров внешних оболочек фотонно-кристаллических волноводов (см. Selective filling оf photonic crystal fibres Kristian Nielsen, Danny Noordegraaf, Thorkild Sørensen, Anders Bjarklev and Theis P Hansen, Journal of Optics A: Pure and Applied Optics. – 2005. - Volume 7. - Number 8.- pp. L13-L20), заключающийся в заполнении полостей волокна водой, впрыскивании внутрь полостей клея, отверждение клея под воздействием ультрафиолетового излучения (УФ), разламывании волокна на уровне, меньшим уровня отверждённого клея в полой сердцевине волокна. Так как уровень проникновения клея в полую сердцевину волокна под действием капиллярных сил является большим, чем соответствующий уровень проникновения клея в отверстия внешних оболочек вследствие их значительно меньшего диаметра, то результатом первой стадии данного способа является преимущественное заполнение отверждённым клеевым составом полой сердцевины волокна. На второй стадии происходит заполнение отверстий внешних оболочек волокна УФ отверждаемым клеем до уровня выше, чем уровень блокирующего отверждённого клея в полой сердцевине волокна. После этого проводится УФ отверждения клея впрыснутого во внешние оболочки волокна. На третьей стадии проводят раскалывание волокна по уровню, находящемуся между уровнем УФ отверждённого клея в отверстиях внешних оболочек волокна и полого центрального канала. После этого волокно готово к заполнению исключительно полого центрального канала жидкостями или газами.

Недостатком способа является необходимость проведения как минимум трёх длительных по времени и технически сложных операций, связанных с заполнением волновода клеевым составом и последующего контролируемого разламывания волновода на необходимом уровне, что вызывает значительное увеличение времени обработки.

Технической проблемой заявляемого изобретения является обеспечение минимального нарушения оптических характеристик фотонно-кристаллического волновода с полой сердцевиной с большим периодом решётки за счёт получения качественных и однородных капилляров внешних оболочек.

Технический результат заявляемого изобретения заключается в упрощении процедуры закрытия капилляров внешних оболочек на торцевой поверхности ФКВ с БПР, сокращении времени, повышении процента выхода качественных образцов и обеспечении устойчивости образцов при дальнейшей их модификации.

Техническая проблема заявляемого изобретения решается тем, что в способе закрытия капилляров фотонно-кристаллического волновода с полой сердцевиной, заключающемся в заполнении капилляров на торцевой поверхности волновода светоотверждаемым клеевым составом, отверждении клеевого состава под воздействием ультрафиолетового излучения, согласно изобретению, заполнение капилляров осуществляют с помощью шаблона, выполненного в форме кольца из оптически прозрачного материала с внешним диаметром, соответствующим внешнему диаметру торцевой поверхности волновода и внутренним диаметром, соответствующим внешнему диаметру полой сердцевины, при этом клеевой состав наносят на шаблон, который фиксируют на торцевой поверхности волновода под давлением, не допускающим физического разрушения волновода, затем при воздействии ультрафиолетового излучения осуществляют вращение волновода в вертикальной плоскости в течение времени, необходимого для полного отверждения клеевого состава, а снятие шаблона осуществляют после полного отверждения клеевого состава.

В качестве оптически прозрачного материала шаблона может быть использовано либо кварцевое стекло, либо оптически прозрачные плёнки. Давление, при котором фиксируют шаблон, выбирают из интервала от 0.1 до 100 Мпа. Вращение волновода осуществляют со скоростью от 5 до 300 об/мин.

В известных авторам источниках патентной и научно-технической информации не описано способа закрытия капилляров фотонно-криталлических волноводов с полой сердцевиной, в том числе с большим периодом решётки, позволяющего просто и быстро осуществлять качественное закрытие капилляров, обеспечивая при этом минимальные нарушения оптических характеристик волновода за счёт использования специального шаблона с нанесённым на его поверхность светоотверждаемым клеевым составом. При этом, используют шаблон, выполненный в форме кольца с внешним диаметром, соответствующим внешнему диаметру торцевой поверхности волновода и внутренним диаметром, соответствующим внешнему диаметру полой сердцевины. Шаблон выполняют из оптически прозрачного материала, в частности он может быть выполнен из кварцевого стекла или плёночного материала.

Сказанное позволяет сделать вывод о наличии в заявляемом изобретении критерия «изобретательский уровень».

Изобретение иллюстрируется чертежом, где представлен поперечный разрез ФКВ с БПР.

Структуру ФКВ с БПР можно представить в виде ампулы микрообъёма с изолированными друг от друга отдельными микроампулами круглого или любого другого сечения (см. ил.). При этом, внешний диаметр данного типа микроструктурного оптического волновода может достигать размера в несколько миллиметров, а минимальный диаметр капилляров внешних оболочек волновода имеет размер не менее 25 микрометров, что позволяет использовать для реализации предложенного способа стандартные позиционирующие и визуализирующие устройства. При разработке на основе ФКВ БПР конструктивных элементов сенсоров, в которых внутренняя поверхность используемого волновода должна быть покрыта различными активными группами, а также любыми органическими и неорганическими веществами для ковалентного и нековалентного связывания целевых для определения молекул, важной является решение проблемы селективного закрытия капилляров внешних оболочек на торцевой поверхности волновода.

Способ осуществляется следующим образом.

Для получения образцов ФКВ БПР, с селективно закрытыми капиллярами внешних оболочек на торцевой поверхности волновода используют шаблон из оптически прозрачного плёночного материала, который представляет собой кольцо с внешним диаметром, соответствующим внешнему диаметру торцевой поверхности волновода и внутренним диаметром, соответствующим внешнему диаметру полой сердцевины, при этом шаблон предварительно фиксируют на горизонтальной поверхности в устройстве, например, на основе оптической 3D микро подвижки, позволяющим осуществлять его прецизионное совмещение с образцом ФКВ БПР. На шаблон наносят светоотверждаемый клеевой состав, например, LOCA UV Glue.

Образец подводят к шаблону с необходимым давлением (от 0.1 до 100 Мпа), не допускающим физического разрушения ФКВ БПР.

Шаблон фиксируют на торцевой поверхности образца ФКВ БПР под действием клеевого состава, после чего образец отводят от поверхности предварительной фиксации шаблона и происходит застывание светоотверждаемого клеевого состава под воздействием источника света и при вращении образца со скоростью от 1 до 500 оборотов в минуту. После отверждения клеевого состава шаблон механически удаляют с торцевой поверхности ФКВ БПР.

При этом, для каждого типа волновода выбирают индивидуальные размеры используемого шаблона и тип светоотверждаемого клеевого состава, обеспечивающие необходимую прочность материала шаблона и вязкость светоотверждаемого клеевого состава, обеспечивающую минимально необходимую глубину проникновения светоотверждаемого клеевого состава внутрь капилляров внешних оболочек ФКВ БПР.

Селективное закрытие капилляров внешних оболочек на торцевой поверхности образца ФКВ БПР достигается за счёт проникновения светоотверждаемого клеевого состава с поверхности шаблона на торцевой поверхности образца ФКВ БПР, при этом шаблон не допускает проникновения клеевого состава в центральный канал ФКВ БПР.

Пример 1.

Для получения ФКВ БПР, изготовленного из кварцевого стекла с селективно закрытыми на торцевой поверхности капиллярами внешних оболочек с помощью светоотверждаемого клеевого состава, с внешним диаметром ФКВ БПР 560 мкм, диаметром центральной полости 240 мкм и диаметрами капилляров внешних оболочек 90,45,25 и 10 микрометров образец подвергают следующей обработке.

1. Очистка торцевой поверхности волновода с помощью продувки аргоном, придание ей ортогональной по отношению к длине волновода поверхности, и заполнение капилляров внешних оболочек на торцевой поверхности волновода светоотверждаемым клеевым составом LOCA UV Glue.

2. Клеевой состав вводят в капилляры внешних оболочек ФКВ БПР с поверхности шаблона в виде кольца с внешним диаметром 560 мкм и внутренним диаметром 240 мкм. Нанесение шаблона на торцевую поверхность ФКВ БПР проводят под давлением , не более 0,8 Мпа в устройстве на основе оптической ЗD микро подвижки, позволяющим осуществлять прецизионное позиционирование образца относительно шаблона с нанесённым светоотверждаемым клеевым составом и вращение образца МОВ БПР со скоростью 60 оборотов в минуту до момента полного затвердевания светоотверждаемого клеевого состава под воздействием источника УФ излучения, после чего проводят механическое снятие шаблона с торцевой поверхности ФКВ БПР.

Полученные спектры пропускания для образцов ФКВ БПР с селективно закрытыми капиллярами внешних оболочек, полученные описанным способом, полностью идентичны спектрам пропускания исходных ФКВ БПР, что свидетельствует о полном сохранении оптических характеристик ФКВ БПР. Процент выхода качественных образцов составил не менее 90%, время на обработку одного образца составило в среднем 12 минут, что более чем в пять раза лучше, чем показатели при проведении селективного закрытия капилляров внешних оболочек ФКВ БПР по методу прототипа.

1. Способ закрытия капилляров фотонно-кристаллического волновода с полой сердцевиной, заключающийся в заполнении капилляров на торцевой поверхности волновода светоотверждаемым клеевым составом, отверждении клеевого состава под воздействием ультрафиолетового излучения, отличающийся тем, что заполнение капилляров осуществляют с помощью шаблона, выполненного в форме кольца из оптически прозрачного материала с внешним диаметром, соответствующим внешнему диаметру торцевой поверхности волновода, и внутренним диаметром, соответствующим внешнему диаметру полой сердцевины, при этом клеевой состав наносят на шаблон, который фиксируют на торцевой поверхности волновода под давлением, не допускающим физического разрушения волновода, затем при воздействии ультрафиолетового излучения осуществляют вращение волновода в вертикальной плоскости в течение времени, необходимого для полного отверждения клеевого состава, а снятие шаблона осуществляют после полного отверждения клеевого состава.

2. Способ по п.1, отличающийся тем, что в качестве оптически прозрачного материала используют либо кварцевое стекло, либо плёночный материал.

3. Способ по п.1, отличающийся тем, что шаблон фиксируют под давлением от 0.1 до 100 МПа.

4. Способ по п.1, отличающийся тем, что вращение волновода осуществляют со скоростью от 5 до 300 об/мин.



 

Похожие патенты:

Группа изобретений относится к устройствам оптической связи. Оптический разъем, кабель и устройство оптической связи содержит коллиматорную линзу для излучения путем преобразования светового сигнала из тракта передачи света или источника света в коллимированный свет.

Группа изобретений относится к оптическим разъемам. Оптический разъем содержит линзу, выполненную с возможностью преобразования светового сигнала из оптического передающего тракта или от источника света в световой сигнал с заданным углом расхождения и излучения преобразованного светового сигнала; и корпус, к которому прикреплена линза и который соединен с разъемом на стороне приема светового сигнала.

Изобретение относится к области оптических волокон. Сохраняющее состояние поляризации оптическое волокно малого диаметра включает кварцевое оптическое волокно, вокруг внешней оболочки которого расположен слой внутреннего покрытия и слой внешнего покрытия, а во внутренней оболочке кварцевого оптического волокна находится сердцевина и кварцевая оболочка, между которыми находятся зоны напряжения; между слоями внутреннего и внешнего покрытия находится слой буферного покрытия.

Группа изобретений относится к устройствам для передачи данных. Оптическое устройство передачи содержит порт оптического соединительного устройства, первое устройство излучения света и второе устройство излучения света.

Изобретение относится к волоконной оптике, а именно к технологии изготовления протяженных светоизлучающих волоконных световодов. Светоизлучающий волоконный световод на основе кварцевого стекла содержит сердцевину с расположенными внутри нее рассеивающими центрами и отражающую оболочку, а также светорассеивающий полимерный наружный слой, находящийся в прямом контакте с отражающей оболочкой и изготовленный с возможностью перехвата рассеянного света, выходящего из сердцевины под малыми углами, в котором стеклообразные материалы изготовлены модифицированным методом химического парофазного осаждения из особо чистых материалов.

Изобретение относится к области волоконной оптики и касается способа формирования волоконной брэгговской решетки (ВБР) с фазовым сдвигом. Способ включает в себя воздействие на оптическое волокно, с записанной в нем волоконной брэгговской дифракционной структурой, электрической дуги сварочного аппарата.

Изобретение относится к волоконно-оптической измерительной технике и может быть использовано для измерения перемещения во взрывоопасных и жестких условиях производства и эксплуатации.
Группа изобретений относится к интерфейсу для осуществления оптической связи с использованием массива оптических волокон. Оптический соединитель, кабель и устройство оптической связи содержат: линзу, выполненную с возможностью собирать входящий световой сигнал на пути передачи света или блоке детектирования света; корпус, который удерживает несколько линз и путь передачи света или блок детектирования света и который соединен с оптическим соединителем передающей световой сигнал стороны.

Группа изобретений относится к оптическим сетям доступа. Описаны оптический кабель и способ для его реализации.

Изобретение относится к боковому остеклению транспортного средства. Боковое остекление транспортного средства содержит прозрачный экран визуализации, подложку-световод, источник света и средство вывода света, излучаемого источником света.

Изобретение относится к области оптических волокон. Сохраняющее состояние поляризации оптическое волокно малого диаметра включает кварцевое оптическое волокно, вокруг внешней оболочки которого расположен слой внутреннего покрытия и слой внешнего покрытия, а во внутренней оболочке кварцевого оптического волокна находится сердцевина и кварцевая оболочка, между которыми находятся зоны напряжения; между слоями внутреннего и внешнего покрытия находится слой буферного покрытия.
Изобретение относится к волоконной оптике. Волокно включает сердцевину и светоотражающую оболочку из кварцевого стекла с нанесенным на нее оловянным покрытием.

Изобретение относится к волоконной оптике, а именно к технологии изготовления протяженных светоизлучающих волоконных световодов. Светоизлучающий волоконный световод на основе кварцевого стекла содержит сердцевину с расположенными внутри нее рассеивающими центрами и отражающую оболочку, а также светорассеивающий полимерный наружный слой, находящийся в прямом контакте с отражающей оболочкой и изготовленный с возможностью перехвата рассеянного света, выходящего из сердцевины под малыми углами, в котором стеклообразные материалы изготовлены модифицированным методом химического парофазного осаждения из особо чистых материалов.

Изобретение относится к волоконной оптике, а именно к технологии изготовления протяженных светоизлучающих волоконных световодов. Светоизлучающий волоконный световод на основе кварцевого стекла содержит сердцевину с расположенными внутри нее рассеивающими центрами и отражающую оболочку, а также светорассеивающий полимерный наружный слой, находящийся в прямом контакте с отражающей оболочкой и изготовленный с возможностью перехвата рассеянного света, выходящего из сердцевины под малыми углами, в котором стеклообразные материалы изготовлены модифицированным методом химического парофазного осаждения из особо чистых материалов.

Изобретение относится к области волоконной оптики и касается способа формирования волоконной брэгговской решетки (ВБР) с фазовым сдвигом. Способ включает в себя воздействие на оптическое волокно, с записанной в нем волоконной брэгговской дифракционной структурой, электрической дуги сварочного аппарата.

Группа изобретений относится к активным волоконным световодам с полностью волоконными вводом излучения накачки в первую оболочку. Волоконный световод-конус для усиления оптического излучения содержит сердцевину из кварцевого стекла, легированного ионами редкоземельных элементов и дополнительными легирующими добавками (например, Ge, Al, Р, F, В), взятыми вместе или по отдельности, при этом диаметр сердцевины увеличивается по длине световода.

Изобретение относится к области оптических измерений, а именно к энергетической фотометрии, и может быть использовано в составе эталонной техники для метрологического обеспечения высокоточной поверки средств измерений средней мощности коллимированного лазерного излучения.

Изобретение относится к области оптических измерений, а именно к энергетической фотометрии, и может быть использовано в составе эталонной техники для метрологического обеспечения высокоточной поверки средств измерений средней мощности коллимированного лазерного излучения.

Изобретение относится к волоконной оптике, в частности к технологии изготовления кварцевых волоконных световодов с сердцевиной из фоторефрактивного стекла для изготовления волоконных брегговских решеток (ВБР).

Изобретение относится к оптическим волокнам. Оптическое волокно содержит сердцевину, при этом упомянутая сердцевина имеет внешний радиус r1, оболочку, окружающую упомянутую сердцевину, причем упомянутая оболочка имеет внешний радиус r4; первичное покрытие, окружающее упомянутую оболочку, причем упомянутое первичное покрытие имеет внешний радиус r5, упомянутое первичное покрытие имеет модуль упругости in situ не выше 0,50 МПа; и вторичное покрытие, окружающее упомянутое первичное покрытие, причем упомянутое вторичное покрытие имеет внешний радиус r6.

Изобретение относится к области оптических волокон. Сохраняющее состояние поляризации оптическое волокно малого диаметра включает кварцевое оптическое волокно, вокруг внешней оболочки которого расположен слой внутреннего покрытия и слой внешнего покрытия, а во внутренней оболочке кварцевого оптического волокна находится сердцевина и кварцевая оболочка, между которыми находятся зоны напряжения; между слоями внутреннего и внешнего покрытия находится слой буферного покрытия.

Изобретение относится к фотонно-кристаллическим волноводам с большим периодом решётки с селективно закрытыми капиллярами внешних оболочек и открытой полой сердцевиной. Способ закрытия капилляров фотонно-кристаллического волновода с полой сердцевиной заключаюется в заполнении капилляров на торцевой поверхности волновода светоотверждаемым клеевым составом и отверждении клеевого состава под воздействием ультрафиолетового излучения. Заполнение капилляров осуществляют с помощью шаблона, выполненного в форме кольца из оптически прозрачного материала. Внешний диаметр кольца шаблона соответствует внешнему диаметру торцевой поверхности волновода. Внутренний диаметр кольца шаблона соответствует внешнему диаметру полой сердцевины. Клеевой состав наносят на шаблон. Шаблон фиксируют на торцевой поверхности волновода под давлением, не допускающим физического разрушения волновода. При воздействии ультрафиолетового излучения осуществляют вращение волновода в вертикальной плоскости в течение времени, необходимого для полного отверждения клеевого состава. Снятие шаблона осуществляют после полного отверждения клеевого состава. Технический результат, достигаемый изобретением, заключается в упрощении процедуры закрытия капилляров на торцевой поверхности фотонно-кристаллических волноводов, в сокращении времени обработки образцов, повышении процента выхода качественных образцов и в обеспечении устойчивости образцов при дальнейшей модификации. 3 з.п. ф-лы, 1 ил.

Наверх