Способ улучшения фазовой стабильности сигнала радара с синтезированной апертурой



Способ улучшения фазовой стабильности сигнала радара с синтезированной апертурой
Способ улучшения фазовой стабильности сигнала радара с синтезированной апертурой
Способ улучшения фазовой стабильности сигнала радара с синтезированной апертурой
Способ улучшения фазовой стабильности сигнала радара с синтезированной апертурой
Способ улучшения фазовой стабильности сигнала радара с синтезированной апертурой
Способ улучшения фазовой стабильности сигнала радара с синтезированной апертурой

Владельцы патента RU 2679556:

Федеральное государственное унитарное предприятие "Ростовский-на-Дону научно-исследовательский институт радиосвязи" (ФГУП "РНИИРС") (RU)

Изобретение относится к радиолокации и может быть использовано для улучшения фокусировки на цели и получения изображения исследуемого объекта с помощью радара, в частности радара с синтезированной апертурой. Техническим результатом является увеличение динамического диапазона сигналов радара, в частности радара с синтезированной апертурой. Для достижения указанного результата после измерения времени распространения сигнала в свободном пространстве устанавливают ширину полосы пропускания петли фильтра ФАПЧ генератора СВЧ-сигнала, соответствующую максимальной стабильности сигнала радара для конкретного образца СВЧ-генератора сигнала радара. 2 ил., 1 табл.

 

Изобретение относится к радиолокации и может быть использовано для улучшения фокусировки на цели и получения изображения исследуемого объекта с помощью радара, в частности радара с синтезированной апертурой.

Разрешение и четкость изображения исследуемого объекта, формируемая с помощью радара, определяются во многом стабильностью фазы и частоты сканируюбщего сигнала во времени [1 - Wehner D. High resolution radar // Artech House, Norwood, MA, 1987.]. Существует определенный предел достижимой стабильности каждого конкретного генератора, и при этом по-прежнему требуется ее улучшение для обеспечения требуемых характеристик радара. Поэтому ведется поиск способов улучшения стабильности сигнала радара.

Известен способ [2 - Патент US 4924229, Phase correction system for automatic focusing of synthetic aperture radar] коррекции фазы для автофокусировки радара с синтезированной апертурой, опубликованный в 1990 г., в котором учитывают градиент измеренной фазы при обработке сигнала и, используя адаптивную фильтрацию сигнала, улучшают разрешение по расстоянию.

Недостатком данного способа является то, что он применим только в том случае, если известен характер движения объекта.

Известен способ [3 - Патент RU 2291464, Способ измерения угла места целей при наличии отражений принимаемого эхосигнала от земной поверхности и импульсная наземная трехкоординатная радиолокационная станция для его реализации], опубликованный в 2012 г., в котором для уточнения расстояния до объекта используют маяки или информацию о расположении опорного объекта.

Недостатком данного способа является ограниченность области применения, поскольку не в каждой системе могут быть известны опорные объекты и их координаты.

Известен способ автофокусировки [4 - Патент US 6181270, Reference-based autofocusing method for IFSAR and other applications], опубликованный в 2001 г., в котором используют два частично коррелирующих канала (используется в так называемых бистатических радарах) - один канал используется как опорный, второй канал используется для частичного устранения фазовой ошибки на основе данных о корреляции между двумя сигналами.

Недостатком данного способа является необходимость наличия второго частично коррелирующего сигнала.

Известен способ [5 - Патент ЕР 1959270, Improved synthetic aperture radar technique], опубликованный в 2008 г., в котором используют две радарные установки для обеспечения уверенной работы бистатического радара, причем один канал (более высокочастотный и широкополосный) обеспечивает четкое изображение, другой канал при менее четкой картинке обладает лучшими фазовыми шумами и затем два изображения совмещаются.

Недостатком указанного способа является увеличение практически в два раза стоимости системы за счет введения второй радарной установки.

Известен способ снижения фазовых шумов [6 - Патент US 5661439, Method and apparatus for cancelling phase noise], опубликованный в 1997 г., который является наиболее близким по технической сущности к заявляемому способу и принят за прототип, в котором вводят дополнительный канал распространения выходного сигнала генератора и устанавливают линию задержки, затем сравнивают фазы сигналов, прошедших по основному и дополнительному каналам и формируют соответствующее управляющее напряжение на его составной части, в качестве которой может быть использован генератор, управляемый напряжением, или фазовращатель.

Недостатком указанного способа является сложность реализации генератора на практике, который бы обеспечивал работу системы в широком диапазоне частот и температур, а также не учитываются особенности работы радара, и повышение стабильности сигнала радара обеспечивается только за счет уменьшения фазовых шумов в ближней зоне.

Задачей, на решение которой направлено предлагаемое изобретение, является улучшение фазовой стабильности сигнала радара.

Для решения указанной задачи предлагается способ улучшения фазовой стабильности сигнала радара с синтезированной апертурой, при котором делят выходной сигнал генератора по мощности на два и вводят дополнительный канал распространения выходного сигнала генератора, в котором устанавливают линию задержки, затем сравнивают фазы сигналов, прошедших по основному и дополнительному каналу, и формируют соответствующий управляющий сигнал на генераторе, управляемом напряжением, или фазовращателе.

Согласно изобретению, предварительно определяют зависимость относительной спектральной плотности мощности фазовых шумов синтезатора частот радара от выходного тока фазового детектора (ФД) схемы фазовой автоподстройки частоты (ФАПЧ), вычисляют значение выходного тока фазового детектора в зависимости от времени распространения сигнала в свободном пространстве, который соответствует максимальной фазовой стабильности сигнала радара, фиксируют время начала импульса радара по выходу основного канала, излучают сигнал по дополнительному канала в сторону цели радара, устанавливают выходной ток фазового детектора, который обеспечивает максимальную фазовую стабильность сканирующего сигнала радара, а его значение вычисляют по измеренной разности во времени распространения сигнала радара по основному и дополнительному каналу.

Техническим результатом является увеличение динамического диапазона сигналов радара, в частности, радара с синтезированной апертурой.

Таким образом, предлагаемый способ имеет следующие общие и отличительные признаки в последовательности его реализации от способа-прототипа, сравнение которых приведено в таблице 1.

Таким образом, предлагаемый способ имеет значительные отличия от прототипа.

Сочетание отличительных признаков и свойства предлагаемого способа из литературы неизвестно, поэтому он соответствует критериям новизны и изобретательского уровня.

На фигуре 1 изображена структурная схема устройства, реализующего предлагаемый способ.

На фигуре 2 изображен качественный график возможного варианта реализации распределения относительной спектральной плотности мощности фазовых шумов синтезатора частот радара s(ƒ) и функции sin2(πƒτ) в зависимости от частоты отстройки ƒ.

При реализации предложенного способа выполняется следующая последовательность действий:

- предварительно определяют зависимость относительной спектральной плотности мощности фазовых шумов синтезатора частот радара от выходного тока фазового детектора схемы фазовой автоподстройки частоты - 1;

- вычисляют значение выходного тока фазового детектора синтезатора, соответствующий максимальной фазовой стабильности сигнала радара, в зависимости от времени распространения сигнала в свободном пространстве, - 2;

- делят выходной сигнал генератора по мощности на два и вводят дополнительный канал распространения выходного сигнала генератора - 3;

- фиксируют время начала импульса радара по выходу основного канала - 4;

- излучают сигнал по дополнительному каналу в сторону цели радара - 5;

- устанавливают в дополнительном канале линию задержки относительно основного канала, в качестве линии задержки используют среду распространения сигнала радара до цели и обратно - 6;

- сравнивают время распространения по основному и дополнительному каналу - 7;

- формируют соответствующий управляющий сигнал на исполнительном устройстве - 8;

- устанавливают выходной ток фазового детектора, значение которого вычислено для измеренной разности во времени распространения сигнала по основному и дополнительному каналу - 9.

На структурной схеме, фигура 1, обозначено: 1 - генератор (Г) сигналов радара; 2 - делитель мощности сигнала (Д); 3 - среда распространения сигнала (CP) с временем задержки τ2; 4 - приемник радара (ПР); 5 - решающее устройство (РУ); 6 - фазовый детектор (ФД); 7 - фильтр ФАПЧ (Ф); 8 - опорный генератор (ОГ); 9 - синтезатор частот радара (СЧ);.

Функциональные блоки соединены следующим образом: первый выход Г 1 соединен с первым входом ФД 6, а второй выход со входом Д 2; первый выход Д 2 соединен с первым входом ПР 4, а второй выход со входом CP 3; выход CP 3 соединен со вторым входом ПР 4. Выход ПР 4 соединен со входом РУ 5, выход которого соединен с управляющим входом ФД 6, выход которого подключается ко входу Ф 7, а выход Ф 7 подключается к управляющему входу Г 1. Второй вход ФД 6 соединен с выходом ОГ 8.

Устройство, реализующее предлагаемый способ, работает следующим образом.

Генератором сигналов радара 1 формируют выходной сигнал радара, который поступает на делитель мощности сигнала 2 и по основному каналу на приемник радара 4 через время τ1, сигнал по дополнительному каналу излучается в среду распространения сигнала 3, отражается от цели и возвращается обратно, затем принимается приемником радара 4 через время τ2.

После приема сигналов, прошедших по обоим каналам, в решающем устройстве 5 вычисляют разность во времени распространения сигналов в свободном пространстве τ21=τ. Далее в решающем устройстве 5, по вычисленной заранее зависимости, определяют выходной ток фазового детектора 6, соответствующий максимальной фазовой стабильности сигнала радара, а именно минимальному значению [1] для различных τ, который изменяет требуемым образом полосу пропускания фильтра ФАПЧ 7 синтезатора частот радара 8.

В частном случае, на фигуре 2, представлен один из вариантов реализации предлагаемого способа. Функция sin2(πƒτ) масштабируется по частоте в зависимости от значения τ. Для обеспечения минимального значения σ(τ) необходимо соответствующим образом изменить функцию S(ƒ) таким образом, чтобы ее локальный минимум совпадал приблизительно с максимумом sin2(πƒτ), что достигается изменением полосы пропускания фильтра ФАПЧ 7. В предлагаемом способе используется изменение ширины полосы ФАПЧ изменением тока фазового детектора. В отличие от прототипа, предложенный способ обеспечивает более стабильную работу в диапазоне рабочих температур и повышение стабильности сигнала радара, которое достигается за счет адаптации параметров генератора к условиям работы радара, в частности широкополосного радара с синтезированной апертурой. Изготовлен макет, испытания которого подтвердили реализуемость предлагаемого способа.

Описанная выше возможность реализации данного способа на основе генератора с ФАПЧ в составе радиолокационного комплекса обеспечивает ему критерий «промышленная применимость».

Способ улучшения фазовой стабильности сигнала радара с синтезированной апертурой, при котором делят выходной сигнал генератора по мощности на два и вводят дополнительный канал распространения выходного сигнала генератора, в котором устанавливают линию задержки, и формируют соответствующий управляющий сигнал на генераторе, управляемом напряжением, или фазовращателе, отличающийся тем, что предварительно определяют зависимость относительной спектральной плотности мощности фазовых шумов синтезатора частот радара от выходного тока фазового детектора схемы фазовой автоподстройки частоты, вычисляют значение выходного тока фазового детектора в зависимости от времени распространения сигнала в свободном пространстве, который соответствует максимальной фазовой стабильности сигнала радара, фиксируют время начала импульса радара по выходу основного канала, излучают сигнал по дополнительному каналу в сторону цели радара, сравнивают время распространения по основному и дополнительному каналам, устанавливают выходной ток фазового детектора, который обеспечивает максимальную фазовую стабильность сканирующего сигнала радара, а его значение вычисляют по измеренной разности во времени распространения сигнала радара по основному и дополнительному каналам.



 

Похожие патенты:

Изобретение относится к радиосвязи и может быть применено в системах связи с использованием абсолютного точного времени. Технический результат - повышение точности тактовой и цикловой синхронизации.

Группа изобретений относится к вычислительной технике и может быть использована для приема колебательного сигнала и вывода выходного сигнала на частоте, имеющей частотное отношение к колебательному сигналу, определяемое с помощью коэффициента разделения.

Изобретение относится к синтезаторам на основе петли фазовой автоподстройки частоты (ФАПЧ). Технический результат заключается в уменьшении уровня побочных дискретных составляющих выходного радиочастотного сигнала при одновременном сохранении достаточного низкого уровня фазовых шумов.
Изобретение относится к области связи. Технический результат – обеспечение возможности автоматического изменения режима работы средств связи в любое время из передающего пункта, с одновременной синхронизацией на передающем и приемном пункте.

Изобретение относится к радиотехнике и может быть использовано в аппаратуре различного назначения и измерительной технике. Способ достижения необходимого значения стабильности частоты генератора периодического сигнала при использовании генераторов периодического (в том числе синусоидального) сигнала с тем же значением номинальной частоты, но с меньшими значениями стабильности, заключается в том, что для достижения необходимого значения используется следующий рекуррентный подход.

Генератор шкалы времени относится к устройствам синхронизации сигналов по частоте, сдвигу фазы и шкале времени. Техническим результатом является повышение точности синхронизации шкалы времени.

Группа изобретений относится к запоминающим устройствам и может быть использована для управления синхронизацией для записи в запоминающие устройства в несогласованной архитектуре.

Предлагаемые устройства относятся к радиолокационным и гидролокационным системам с импульсным сжатием многофазных кодов. Технический результат заключается в повышении качества сжатия сигналов, производится подавление боковых лепестков, возникающих в процессе сжатия, при котором обеспечивается увеличение числа многофазных кодов длины N, для всех значений временных сдвигов (отсчетов), исключая двух ±N, в которых относительный уровень боковых лепестков находится в диапазоне от -20 lgN -6 до -20 lgN -8 dB за счет использования симметрично усеченных кодов, образованных последовательным удалением равного числа первых и последних символов кодов большей длины.

Изобретение относится к радиолокации и гидролокации. Технический результат – обеспечение подавления боковых лепестков для кода P3 нечетной длины.

Изобретение относится к радиотехнике. Технический результат изобретения заключается в повышении быстродействия и возможности работы с опорным сигналом любой скважности, период которого кратен периоду тактов, а также возможность подстройки частоты тактов по фронтам принимаемых данных.

Изобретение относится к радиолокационным методам и предназначено для извлечения из доплеровских портретов воздушной цели (ВЦ) признака идентификации в виде пространственного размера ВЦ, оцененного по частотной протяженности доплеровского портрета (ДпП).

Изобретение относится к радиолокации и может быть использовано для любых летательных аппаратов, имеющих на борту радиолокационную систему обзора подстилающей поверхности.
Изобретение относится к радиолокации и предназначено для решения широкого круга задач, используемых на пилотируемых и беспилотных летательных аппаратах (БЛА). Достигаемый технический результат - снижение массы и габаритов бортовой радиолокационной системы в целом, а также улучшение аэродинамических характеристик для возможности их использования в БЛА.
Изобретение относится к радиолокации и предназначено для решения широкого круга задач, используемых на пилотируемых и беспилотных летательных аппаратах (БЛА). Достигаемый технический результат - снижение массы и габаритов бортовой радиолокационной системы в целом, а также улучшение аэродинамических характеристик для возможности их использования в БЛА.

Изобретение относится к радиолокации поверхности Земли с космических аппаратов и может быть использовано для оперативной оценки из космоса судовой обстановки с определением местоположения и скорости кораблей, не прибегая к более сложному (интерференционному) методу.

Изобретение относится к радиолокации поверхности Земли с космических аппаратов и может быть использовано для оперативной оценки из космоса судовой обстановки с определением местоположения и скорости кораблей, не прибегая к более сложному (интерференционному) методу.

Настоящее изобретение относится к способам построения радиолокационных изображений (РЛИ) подстилающей поверхности в ходе дистанционного зондирования земли (ДЗЗ) с помощью радаров с синтезированной апертурой (РСА).

Изобретение относится к пассивной радиолокации, а именно к радиотеплолокационным станциям (РТЛС) наблюдения за поверхностью и воздушной обстановкой. Технический результат изобретения - повышение разрешающей способности радиометрического изображения при сохранении информации о тепловых характеристиках наблюдаемых объектов в частотных диапазонах, соответствующих различным антеннам радиотеплолокационной станции (РТЛС).

Изобретение относится к системам радиовидения, обеспечивающим получение изображений объектов сцены, сравнимое по детальности с оптическим, и может быть использовано при синтезе апертуры в радиолокационных станциях (РЛС) с непрерывным линейно-частотно-модулированным сигналом.

Изобретение относится к области радиотехники. Технический результат заключается в обеспечении передачи данных декаметрового диапазона радиоволн.

Способ измерения дальности относится к области техники радиотехнический средств измерения расстояний и может быть использован, например, для измерения малых дальностей в локальных навигационных системах при управлении движением подводных объектов.

Изобретение относится к радиолокации и может быть использовано для улучшения фокусировки на цели и получения изображения исследуемого объекта с помощью радара, в частности радара с синтезированной апертурой. Техническим результатом является увеличение динамического диапазона сигналов радара, в частности радара с синтезированной апертурой. Для достижения указанного результата после измерения времени распространения сигнала в свободном пространстве устанавливают ширину полосы пропускания петли фильтра ФАПЧ генератора СВЧ-сигнала, соответствующую максимальной стабильности сигнала радара для конкретного образца СВЧ-генератора сигнала радара. 2 ил., 1 табл.

Наверх