Композит для 3d-печати медицинских изделий

Изобретение относится к композиционным материалам медицинского назначения, а именно к высокомолекулярным материалам с фосфорсодержащими неорганическими наполнителями, и может быть использовано для изготовления изделий медицинского назначения методом 3D-печати путем послойного нанесения расплава материала. Композит для 3D-печати медицинских изделий содержит полилактид, гидроксиапатит дисперсностью 20-100 нм, глицерин и сорбит при следующем соотношении компонентов, мас. %: полилактид 12,5-98,8; гидроксиапатит 1,0-75,0; глицерин 0,1-6,25; сорбит 0,1-6,25. Технический результат: увеличение прочности и улучшение биологических свойств медицинских изделий, изготовленных из композита предложенного состава. 1 табл.

 

Изобретение относится к композиционным материалам медицинского назначения, а именно к высокомолекулярным материалам с фосфорсодержащими неорганическими наполнителями и может быть использовано для изготовления изделий медицинского назначения методом 3D-печати путем послойного нанесения расплава материала.

Известен полимерный композит для 3D-печати медицинских изделий [RU 2631890 С1, МПК (2006.01) A61L 27/12, A61L 27/14, A61L 27/46, опубл. 28.09.2017], состоящий из «жесткой» и «мягкой» фаз на основе биоразлагаемых и биосовместимых полимерных композиций. «Жесткая» фаза представлена кристаллической фазой полимерной матрицы, химическими и физическими сшивками и биоактивным компонентом в виде гидроксиапатита с размером частиц от 100 до 1000 нм, а «мягкая» фаза представлена аморфной фазой полимерной матрицы и пластификатором в виде полиэтиленгликоля при следующем соотношении компонентов, мас. %:

полилактид 80-47
гидроксиапатит 15-35
полиэтиленгликоль 4,6-15
химический агент для сшивки 0,4-3,0.

Этот композит имеет низкое содержание гидроксиапатита, что ограничивает сферу его применения. Высокая дисперсность гидроксиапатита не обеспечивает необходимую пластичность композита для высокой точности печати. Предел прочности на растяжение образцов, полученных из этого композита, составляет 43 МПа, а предел прочности на сжатие составляет 96 МПа.

Предлагаемое изобретение позволяет увеличить прочность и улучшить биологические свойства медицинских изделий, изготовленных из композита предложенного состава.

Композит для 3D-печати медицинских изделий, также как в прототипе, содержит полилактид и гидроксиапатит дисперсностью 100 нм.

Согласно изобретению используют гидроксиапат с размером частиц 20-100 нм и дополнительно введены глицерин и сорбит при следующем соотношении компонентов мас. %:

полилактид 12,5-98,8
гидроксиапатит 1,0-75,0
глицерин 0,1-6,25
сорбит 0,1-6,25.

Технический результат достигается тем, что гидроксиапатит вводится в полимер в нанодисперсном состоянии совместно с глицерином и сорбитом, придавая расплаву композита высокую пластичность, что позволяет печатать изделия сложной формы с точными геометрическими размерами методом послойной 3D-печати. Использование наноразмерного гидроксиапатита позволяет увеличить его содержание в композите. Использование глицерина и сорбита позволяет увеличить содержание гидроксиапатита, обеспечивая однородность смешения его с полилактидом. Совокупность этих факторов позволяет повысить прочностные характеристики.

Композит обладает совокупностью прочностных характеристик: предел прочности на сжатие увеличен до 98 МПа, предел прочности на растяжение - до 51 МПа. Количество циклов нагружения до полного разрушения составляет 4500-5000 циклов.

Так как повышение содержания гидроксиапатита улучшает биологические свойства материала, предложенный состав композита по сравнению с прототипом обеспечивает улучшение биологических свойств (биосовместимость и приживаемость) медицинских изделий из него и сферу его применения [Akkouch A.; Zhang Z.; Rouabhia М.A novel collagen/hydroxyapatite/poly(lactide-co-ε-caprolactone) biodegradable and bioactive 3D porous scaffold for bone regeneration. Journal of Biomedical Materials Research Part A 2011, Vol. 96, Iss. 4. - pp. 693-704. DOI: 10.1002/jbm.a.33033].

Присутствие гидроксиапатита способствует приведению рН в диапазон нормальных значений (7,3-7,4), что важно при деградации полилактида, значительно снижающего рН, и благоприятно влияет на приживаемость материала композита [Agrawal С.М.; Athanasiou K.A. Technique to control рН in vicinity of biodegrading PLA-PGA implants. Journal of Biomedical Materials Research 1997, Vol. 38, Iss. 2, - pp. 105-114. DOI: 10.1002/(SICI)1097-4636(199722)38:2<105::AID-JBM4>3.0.CO;2-U].

В таблице 1 приведены составы композитов и их механические свойства.

Пример 1.

В заранее приготовленный раствор полилактида (98,8 мас. %) (Natural Works Ingeo 40-43d, NatureWorks LLC, USA) в трихлорметане с вязкостью 1,5-2 Па⋅с добавили глицерин (0,1 мас. %) и сорбит (0,1 мас. %) при постоянном перемешивании. Полученную массу поместили в ультразвуковую ванну (42 кГц) с механическим перемешивающим устройством и примешивали гидроксиапатит (1 мас. %), синтезированный по жидкофазному методу [Toropkov N.E.; Vereshchagin V.I.; Petrovskaya T.S.; Antonkin N.S. Influence of synthesis conditions on the crystallinity of hydroxyapatite obtained by chemical deposition. IOP Conference Series: Materials Science and Engineering 2016, Vol. 156, №1. - pp. 6-13, DOI: 10.1088/1757-899X/156/1/012038], малыми порциями до получения однородной массы. При продолжении перемешивания массу высушивали и доводили до значения вязкости 5-7 Па⋅с. Вязкость определяли с помощью вискозиметра. Массу выливали на фторопластовую подложку и высушивали в сушильном шкафу при температуре 75-80°С в течение 6-7 часов до полного прекращения потери массы. В результате масса превратилась в твердый композит.

Композит измельчили в роторной дробилке до частиц со средним размером 1-4 мм (гранулят). Полученный гранулят загрузили в бункер шестеренчатого питателя печатной головки 3D-принтера.

Образцы для испытания механических характеристик печатали и испытывали в соответствии со стандартами: ГОСТ 33519-2015, ГОСТ 32656-2014, ГОСТ Р 57143-2016. Испытания прочности образцов на сжатие и разрыв проводили на испытательной машине Instron 5985, на циклическую усталость - Instron 8801.

Примеры 2 и 3 готовили аналогичным образом, меняя содержание гидроксиапатита, полилактида, глицерина и сорбита. Как видно из таблицы 1 механические свойства композитов, предложенных составов, превосходят свойства прототипа.

Композит для 3D-печати медицинских изделий, содержащий полилактид и гидроксиапатит дисперсностью 100 нм, отличающийся тем, что содержит гидроксиапатит с размером частиц 20-99 нм, глицерин и сорбит при следующем соотношении компонентов, мас. %:

полилактид 12,5-98,8
гидроксиапатит 1,0-75,0
глицерин 0,1-6,25
сорбит 0,1-6,25



 

Похожие патенты:

Изобретение относится к области медицины, а именно к кальцийфосфатному цементу для заполнения костных дефектов. Кальцийфосфатный цемент для заполнения костных дефектов, состоящий из порошка, содержащего трикальцийфосфат, гидроксиапатит и цементной жидкости, содержащей фосфат магния, фосфорную кислоту, карбонат калия и воду, при определенном соотношении компонентов.

Группа изобретений относится к медицине, конкретно к способу получения костного регенеративного материала, который включает в себя: приведение костного материала, содержащего гидроксиапатит и органические вещества, в контакт с экстракционной жидкостью, что дает первую жидкую фазу, содержащую упомянутые органические вещества и, возможно, примеси, экстрагированные из упомянутого костного материала, и вторую твердую гидроксиапатитную фазу, содержащую упомянутый гидроксиапатит; и разделение упомянутой жидкой фазы и упомянутой твердой гидроксиапатитной фазы.

Группа изобретений относится к медицине, конкретно к композиции частиц, приспособленной для формирования цемента-заменителя костного трансплантата при смешивании с водным раствором, содержащей: i) порошок полугидрата сульфата кальция, причем полугидрат сульфата кальция присутствует в концентрации по меньшей мере приблизительно 50 массовых процентов от общей массы композиции частиц; ii) порошок моногидрата первичного кислого фосфата кальция; iii) порошок непористого β-трикальция фосфата и iv) порошок пористого β-трикальция фосфата.

Группа изобретений относится к медицине, конкретно к композиции частиц, приспособленной для формирования цемента-заменителя костного трансплантата при смешивании с водным раствором, содержащей: i) порошок полугидрата сульфата кальция, причем полугидрат сульфата кальция присутствует в концентрации по меньшей мере приблизительно 50 мас.% от общей массы композиции частиц; ii) порошок непористого β-трикальция фосфата и iii) порошок пористого β-трикальция фосфата.

Изобретение относится к медицине. Описан способ лечения пациента с дегенеративными костями.

Изобретение касается частиц биоактивного стекла для регенерации костей, имеющих форму сфер или сжатых сфер и имеющих бимодальное распределение размера частиц, включающее частицы между 90 мкм и 180 мкм и частицы между 355 мкм и 500 мкм, где биоактивное стекло представляет собой 45S5 стекло.

Изобретение относится к медицине. Описан способ получения композитных порошков из двухкомпонентных смесей гидроксиапатита и волластонита, которые являются биологически совместимыми с костной тканью человека, при этом смешивают водные растворы гидроксида кальция, ортофосфорной кислоты и пятиводного силиката натрия, отношение концентраций реагентов Ca/P задают равным 1.67, a Ca/Si=1.00, количества Са(ОН)2, H3PO4 и Na2SiO3 рассчитывают исходя из значений Са/Р и Ca/Si и выбранной пропорции гидроксиапатит/волластонит в порошке требуемой массы, pH поддерживают на уровне 12.00±0.05, после осаждения полученную твердую фазу выдерживают под маточным раствором в течение 24 часов при температуре 22-25°C, отфильтровывают, промывают дистиллированной водой, высушивают при 90°C до постоянной массы и прокаливают при 1000°C в течение 2 часов.

Изобретение относится к области медицины, а именно к керамическим и цементным материалам, и раскрывает способ получения биоцемента на основе карбоната кальция для заполнения костных дефектов.

Группа изобретений относится к медицине. Описан биорезорбируемый материал, включающий гидроксиапатит и монооксид титана состава TiOx, где х = 0.99, 1.09, 1.23, в количестве 10 – 20 мас.% от общего.

Изобретение относится к области медицины и созданию новых материалов биомедицинского назначения. Способ биомиметического синтеза Sr-содержащего карбонатгидроксилапатита, модифицированного брушитом, приближенного к неорганическому матриксу кости, из модельного раствора синовиальной жидкости человека, включает получение неорганического вещества в искусственно созданной среде, для приготовления которой используют дистиллированную воду, CaCl2 - 0,6715 г/л, Na2HPO4⋅12H2O - 7,4822 г/л, NaCl - 2,8798 г/л, NaHCO3 - 2,0160 г/л, MgCl2⋅6H2O - 0,4764 г/л, Na2SO4 - 1,6188 г/л, KCl - 0,3427 г/л и SrCl2⋅6H2O в количестве, обеспечивающем концентрацию ионов Sr - 0, 6715 г/л.
Наверх