Способ производства конструкционного проката из низколегированной стали

 

Изобретение относится к области металлургии, конкретнее к прокатному производству, и может быть использовано при производстве проката на непрерывных широкополосных станах горячей прокатки, который применяют для изготовления лонжеронов грузовых автомобилей, а также для производства высоконагруженных конструкций.

Известен способ производства листов из низколегированной стали (Патент РФ №2191833, МПК C21D 8/02, опубл. 27.10.2002 г.), включающий нагрев слябов под прокатку, многопроходную горячую прокатку, последующий нагрев, закалку и отпуск, в котором обжатие в последнем проходе устанавливают не менее 15% при температуре конца прокатки не выше 950°С, а нагрев под прокатку осуществляют до 1200-1300°С, при этом закалку листов производят с температурой не более 940°С и не менее 920°С, а отпуск осуществляют путем нагрева листов до 590-640°С при удельном времени нагрева 1,05-2,1 мин/мм толщины листа, после чего проводят их охлаждение со средней скоростью 1-4°С/с, сталь марки 14ХГ2САФД при этом имеет следующий химический состав, мас. %:

углерод 0,12-0,18
марганец 1,4-1,9
кремний 0,4-0,7
хром 0,5-0,8
медь 0,3-0,6
никель не более 0,3
алюминий 0.03-0,07
ванадий 0,08-0,16
азот 0,01-0,02
сера не более 0,02
фосфор не более 0,035
железо остальное.

Недостатком описанного способа является низкая пластичность получаемого проката, что резко ограничивает область его применения, в ряде случаев применение такого металлопроката просто невозможно, так как будет приводить при изготовлении деталей к образованию трещин.

Наиболее близким к предложенному является способ производства штрипсов из низколегированной стали, включающий получение сляба, нагрев сляба, черновую и многопроходную чистовую прокатку до заданной толщины в регламентированном температурном диапазоне, охлаждение водой до температуры смотки, при котором сляб получают из стали, содержащей, мас. %:

углерод 0,22-0,28
кремний 0,15-0,35
марганец 1,0-1,4
алюминий 0,02-0,05
кальций не более 0,02
титан не более 0,03
хром не более 0,40
медь не более 0,40
сера не более 0,010
фосфор не более 0,015
азот не более 0,012
железо остальное,

при этом многопроходную чистовую прокатку ведут в диапазоне температур от 960-1050°С до 820-890°С, при содержании углерода в стали 0,22-0,24% штрипсы толщиной 3,5-5,0 мм охлаждают водой до температуры смотки 600-650°С, а при толщине более 5,0 мм - до температуры смотки 580-640°С, при содержании в стали углерода более 0,24 мас. % штрипсы толщиной 3,5-5,0 мм охлаждают водой до температуры смотки (Патент РФ №2341565, МПК C21D 8/02, С22С 38/20, опубл. 20.05.2008 г.).

Недостатком данного способа является полосчатая структура с плотными перлитными слоями, способствующая образованию торцевых трещин при производстве лонжеронов.

Задача предлагаемого изобретения - разработать технологию получения проката для изготовления из него деталей операцией вырубки без образования на них торцевых трещин и исключения дополнительных затрат на их доработку.

Поставленная задача решается тем, что в способе производства коррозионностойкого проката из низколегированной стали толщиной 4-10 мм, включающем нагрев, черновую прокатку до промежуточной толщины, чистовую прокатку с регламентированной температурой конца прокатки, сталь имеет следующее соотношение компонентов, мас. %:

углерод 0,16-0,22
марганец 1,40-1,65
кремний 0,25-0,55
хром 0,10-0,40
никель 0,03-0,40
медь 0,05-0,40
ниобий 0,01-0,06
ванадий 0,10-0,16
фосфор не более 0,020
сера не более 0,006
алюминий 0,01-0,06
кислород не более 0,003
железо и неизбежные примеси остальное,

деформацию завершают при температуре 870-940°C с последующим ускоренным охлаждением до температуры смотки в два этапа: первый этап со скоростью 15÷50°С/с до температуры 550÷650°С, второй этап со скоростью 6÷15°С/с до температуры 450÷550°С, после чего проводят двойной нагрев проката: сначала до температуры Ас3+(20÷40)°C с последующим охлаждением на воздухе, затем до температуры Ас1±30°C с последующим охлаждением на воздухе, при этом готовый прокат обладает следующими прочностными характеристиками σт≥490 МПа, σв≥570 МПа, ударной вязкостью KCU-40 не менее 40 Дж/см2.

Сущность предлагаемого способа состоит в том, чтобы получить равномерную мелкозернистую структуру с раздробленной сорбитообразной морфологией перлитных колоний по всему сечению, благоприятную для производства деталей.

Содержание углерода в стали предложенного состава определяет ее прочностные свойства. Снижение содержания углерода менее 0,16% приводит к падению прочности ниже допустимого уровня. Увеличение содержания углерода сверх 0,22% ухудшает пластичность стали.

Марганец введен для повышения прочности стали, связывания примесной серы в сульфиды. При содержании марганца менее 1,4% снижается прочность стали, что приводит к увеличению отбраковки. Повышение концентрации марганца сверх 1,65% ухудшает пластичность стали.

Кремний раскисляет и упрочняет сталь, повышает ее упругие свойства. При содержании кремния менее 0,25% прочность стали недостаточна. Увеличение содержания кремния более 0,55% приводит к возрастанию количества силикатных неметаллических включений, охрупчивает сталь, ухудшает ее пластичность.

Хром, никель, медь упрочняют твердый раствор, повышают устойчивость переохлажденного аустенита. При содержании более 0,40% каждого приводит к снижению вязко-пластичных характеристик, что может привести к разрушению деталей в процессе изготовления и эксплуатации. При снижении содержания хрома менее 0,10%, никеля менее 0,03% и меди менее 0,05% снижается прочность металлопроката ниже допустимого уровня.

Ниобий, ванадий образуют мелкодисперсные частицы (карбонитриды), которые измельчают зерно и упрочняют сталь. При содержании ниобия более 0,06% и ванадия более 0,16% приводит к хладноломкости стали ниже допустимого уровня. При снижении содержания ниобия менее 0,01% и ванадия менее 0,10% снижается прочность металлопроката ниже допустимого уровня.

Фосфор и сера являются вредными примесями, при их содержании более 0,020% и 0,006% соответственно существенно снижается пластичность металла, повышается красноломкость, что может привести к разрушению проката в процессе горячей прокатке и поломкам оборудования.

Алюминий введен в сталь как раскислитель. При содержании алюминия менее 0,01% снижается пластичность стали, сталь становится склонной к старению. Увеличение содержания алюминия более 0,06% приводит к ухудшению комплекса механических свойств.

При содержании кислорода более 0,003% повышается уровень загрязненности стали по строчкам хрупкоразрушенных оксидов и не обеспечивается требуемый уровень ударной вязкости.

Горячая прокатка с температурами конца прокатки 870-940°C с последующим ускоренным охлаждением до температуры смотки в два этапа: первый этап со скоростью 15÷50°С/с до температуры 550÷650°C, второй этап со скоростью 6÷15°С/с до температуры 450÷550°С обеспечивает получение однородных механических свойств по длине полосы. Окончание завершения деформации ниже 870°С, в двухфазной области, приводит к значительной разнозернистости структуры, что влечет за собой нестабильность механических свойств в горячекатаном состоянии. Повышение температуры конца горячей прокатки свыше 940°С приводит к укрупнению зерна и понижению прочностных свойств горячекатаного проката. Смотка полос ниже 450°С приводит к образованию в прокате закалочных структур и как следствие этому к образованию торцевых трещин при изготовлении деталей. При температуре смотки выше 650°С пластичность стали повышается, однако это приводит к снижению ее прочности ниже допустимого уровня. При скорости охлаждения на первом этапе ниже 15°С/с будет увеличиваться балл структурной полосчатости в металлопрокате, негативно сказывающийся на значения ударной вязкости ниже требуемого уровня. При скорости охлаждения на первом этапе выше 50°С/с и выше 15°С/с на втором этапе приводит к образованию закалочных структур и образованию торцевых трещин. При скорости охлаждения на втором этапе ниже 6°С/с приводит к разупрочнению металлопроката ниже требуемого уровня.

Нагрев проката до температуры выше Ас3+40°С приводит к увеличению размера отдельных зерен аустенита, рост которых не заторможен избыточными карбидными частицами. Это предопределяет образование разнозернистости и увеличивает разброс механических свойств, особенно ударной вязкости.

Нагрев проката до температуры, ниже, чем температура Ас3+20°С, значительно удлиняет время выдержки для образования структуры аустенита, что экономически нецелесообразно.

Повышение температуры второго нагрева выше (Ас1+30)°С не обеспечивает получение сорбитообразного раздробленного перлита, так как при этом происходит полное растворение карбидов и образование гомогенного аустенита, распадающегося при последующем охлаждении с образованием пластинчатого перлита.

Понижение температуры второго нагрева ниже (Ас1-30)°С приведет к тому, что фазовое превращение при нагреве будет проходить не до конца, и для стабилизации процесса потребуется более длительная выдержка, требующая больших энергозатрат.

Полосу из стали марки 20ГЮТ с химическим составом (таблица 1) прокатывали на стане горячей прокатки при температуре деформации 890°С, ускоренно охлаждали до температуры смотки в два этапа: на первом этапе до температуры 620°С со скоростью 35°С/с, на втором этапе до температуры 510°С со скоростью 10°С/с, далее дважды подвергали нормализации в проходной печи с роликовым подом в начале при температуре 890°С, затем при температуре 690°C.

В таблице 2 приведены качественные параметры горячекатаной полосы, произведенной по предлагаемому способу, а также представлены данные по горячекатаной полосе, произведенной по известному способу. Результаты испытаний показали, что в прокате, полученному по предложенному способу (варианты №1, 2, 5, 6 таблица 2), достигается сочетание наиболее высоких прочностных и пластических свойств. При этом готовый прокат обладает следующими прочностными характеристиками σт≥490 МПа, σв≥570 МПа, ударной вязкостью KCU-40 не менее 40 Дж/см2.

В случаях отсутствия двойного нагрева (варианты №3 и №4), а также при использовании способа-прототипа не обеспечивается заданный комплекс механических свойств.

Предлагаемый способ позволяет при значительно меньших затратах времени, а значит, и энергоносителей получить полосу с микроструктурой, более благоприятной для последующей операции вырубки без образования на них торцевых трещин. Прокат может использоваться в машиностроении, обладает хорошими технологическими характеристиками. При операции вырубки деталей исключено образование торцевых трещин, что в свою очередь не приводит к дополнительным затратам на доработку деталей.

Способ производства коррозионно-стойкого проката из низколегированной стали толщиной 4-10 мм, включающий нагрев, черновую прокатку до промежуточной толщины, чистовую прокатку с регламентированной температурой конца прокатки, отличающийся тем, что сталь имеет следующее соотношение компонентов, мас. %:

углерод 0,16-0,22
марганец 1,40-1,65
кремний 0,25-0,55
хром 0,10-0,40
никель 0,03-0,40
медь 0,05-0,40
ниобий 0,01-0,06
ванадий 0,10-0,16
фосфор не более 0,020
сера не более 0,006
алюминий 0,01-0,06
кислород не более 0,003
железо и
неизбежные примеси остальное

деформацию завершают при температуре 870-940°С с последующим ускоренным охлаждением до температуры смотки в два этапа, причем первый этап проводят со скоростью 15÷50°С/с до температуры 550÷650°С, а второй этап - со скоростью 6÷15°С/с до температуры 450÷550°С, после чего проводят двойной нагрев проката, при этом осуществляют нагрев сначала до температуры Ас3+(20÷40)°С с последующим охлаждением на воздухе, затем - до температуры Ас1±30°С с последующим охлаждением на воздухе, при этом производят готовый прокат, обладающий прочностными характеристиками σт≥490 МПа, σв≥570 МПа и ударной вязкостью KCU-40 не менее 40 Дж/см2.



 

Похожие патенты:

Изобретение относится к способу изготовления листовой стали, полученной из стали, имеющей химический состав, содержащий в массовых процентах: 0,1≤С≤0,4, 4,5≤Mn≤5,5, 1≤Si≤3, 0,2≤Mo≤0,5, остальное представляет собой Fe и неизбежные примеси, а также к листовой стали.

Изобретение относится к получению листов из текстурированной электротехнической стали со сниженными потерями в железе за счет модификации магнитного домена термическим напряжением.

Рельс // 2676374
Изобретение относится к области металлургии, а именно к высокопрочному рельсу, используемому на грузовых железных дорогах. Рельс изготовлен из стали следующего состава, мас.%: C: от 0,75 до 1,20, Si: от 0,10 до 2,00, Mn: от 0,10 до 2,00, Cr: от 0 до 2,00, Mo: от 0 до 0,50, Co: от 0 до 1,00, B: от 0 до 0,0050, Cu: от 0 до 1,00, Ni: от 0 до 1,00, V: от 0 до 0,50, Nb: от 0 до 0,050, Ti: от 0 до 0,0500, Mg: от 0 до 0,0200, Ca: от 0 до 0,0200, REM: от 0 до 0,0500, Zr: от 0 до 0,0200, N: от 0 до 0,0200, Al: от 0 до 1,00, P: 0,0250 или менее, S: 0,0250 или менее, Fe и примеси – остальное.

Изобретение относится к получению полосы из высокомарганцевой стали с антикоррозионным покрытием, обеспечивающим повышение свариваемости полос из высокомарганцевой стали следующего состава (в мас.

Изобретение относится к металлургии, в частности, к износостойким высокомарганцовистым сталям для трубопроводов. Композицию, содержащую от примерно 5 до примерно 40 мас.% марганца, от примерно 0,01 до примерно 3,0 мас.% углерода и остальное составляет железо, нагревают по меньшей мере до 1050°С, после чего охлаждают и деформируют при температуре от 700 до 1050°С, и проводят закалку или ускоренное охлаждение, или воздушное охлаждение композиции.

Изобретение относится к области металлургии, а именно к производству горячекатаного стального продукта, представляющего собой горячекатаную полосовую или толстолистовую сталь.

Изобретение относится к области металлургии. Для снижения потерь в железе при изготовлении листа текстурированной электротехнической стали из Si-содержащего стального сляба горячей прокаткой, холодной прокаткой, первичным рекристаллизационным отжигом, окончательным отжигом и формированием покрытия, создающего растяжение, лист подвергают выдержке при температуре Т в интервале 250-600°С в течение 1-10 с в процессе нагрева первичного рекристаллизационного отжига и затем нагревают до температуры Т до 700°С со скоростью не менее 80°С/с и от 700°С до температуры выдержки при скорости не более 15°С/с, при которой кислородный потенциал от 700°С до температуры выдержки составляет 0,2-0,4 и кислородный потенциал в процессе выдержки составляет 0,3-0,5, и доля площади зерна вторичной рекристаллизации составляет не менее 90%, когда угол отклонения α от идеальной ориентации {110}<001> составляет менее 6,5°, и доля площади составляет не менее 75%, когда угол отклонения β составляет менее 2,5°, и средняя длина [L] в направлении прокатки составляет не более 20 мм, и среднее значение [β] угла β(°) составляет 15,63×[β]+[L]<44,06.

Изобретение относится к области металлургии. Для уменьшения потерь в железе получение листа из нетекстурированной электротехнический стали осуществляют горячей прокаткой сляба, содержащего в мас.%: C не более 0,005, Si 1,5-6,0, Mn 0,05-2,0 и P 0,03-0,15, при необходимости отжигом горячекатаного листа в зоне горячих состояний, при необходимости холодной прокаткой, окончательным отжигом и формированием изоляционного покрытия, при этом охлаждение от 700 до 500°С при окончательном отжиге проводят в окислительной атмосфере с кислородным потенциалом PH2O/PH2 не менее 0,001 в течение 1-300 с, в результате чего P сегрегируется на поверхности стального листа после окончательного отжига с обеспечением увеличения кристаллического зерна и снятия напряжений.

Изобретение относится к области металлургии. Способ изготовления листа из текстурированной электротехнической стали с использованием технологии без ингибитора включает конечную холодную прокатку с общим обжатием холодной прокатки, равным 85% или более, и обжатием прокатки за проход 32% или более.

Изобретение относится к области металлургии, а именно к способу изготовления детали, имеющей бейнитную микроструктуру с минимальной прочностью на разрыв 800 МПа и используемой в автомобильной промышленности.

Изобретение относится к листовой стали для конструкционного трубного изделия в виде трубки или трубы. Листовая сталь содержит, мас.%: С от 0,060 до 0,100, Si от 0,01 до 0,50, Mn от 1,50 до 2,50, Al 0,080 и менее, Мо от 0,10 до 0,50, Ti от 0,005 до 0,025, Nb от 0,005 до 0,080, N от 0,001 до 0,010, O 0,0050 и менее, Р 0,010 и менее, S 0,0010 и менее, Fe и неизбежные примеси остальное.

Изобретение относится к области металлургии. Для быстрого определения доли ферритной фазы в стальной полосе (2) в режиме онлайн способ содержит следующие этапы: измерение ширины w1 и температуры T1 стальной полосы (2), причем стальная полоса (2) во время измерений имеет долю ферритной фазы, нагрев или охлаждение стальной полосы (2), причем в стальной полосе (2) при нагреве по меньшей мере частично происходит фазовое превращение из ферритного состояния в аустенитное состояние и при охлаждении по меньшей мере частично происходит фазовое превращение из аустенитного состояния в ферритное состояние , измерение ширины w и температуры T по меньшей мере частично превращенной стальной полосы (2) и определение доли ферритной фазы по формуле (I), причем Т0 является эталонной температурой типично 20°С и и являются линейными коэффициентами теплового расширения феррита и аустенита.

Изобретение относится к металлургии, в частности к производству листового проката из углеродистых сталей, предназначенных для изготовления износостойких деталей в машиностроении, вагоностроении.

Изобретение относится к способу изготовления листовой стали, полученной из стали, имеющей химический состав, содержащий в массовых процентах: 0,1≤С≤0,4, 4,5≤Mn≤5,5, 1≤Si≤3, 0,2≤Mo≤0,5, остальное представляет собой Fe и неизбежные примеси, а также к листовой стали.

Изобретение относится к способу изготовления листовой стали, полученной из стали, имеющей химический состав, содержащий в массовых процентах: 0,1≤С≤0,4, 4,5≤Mn≤5,5, 1≤Si≤3, 0,2≤Mo≤0,5, остальное представляет собой Fe и неизбежные примеси, а также к листовой стали.

Изобретение относится к области металлургии, а именно к высокопрочной толстолистовой стали, имеющей толщину 38 мм или более, для изготовления конструкционных труб. Сталь имеет химический состав, содержащий в мас.%: С: от 0,030 до 0,100, Si: от 0,01 до 0,50, Mn: от 1,50 до 2,50, Al: 0,080 и менее, Мо: от 0,05 до 0,50, Ti: от 0,005 до 0,025, Nb: от 0,005 до 0,080, N: от 0,001 до 0,010, O: 0,0050 и менее, Р: 0,010 и менее, S: 0,0010 и менее, Fe и неизбежные примеси - остальное.

Изобретение относится к области металлургии, в частности к производству листового проката из конструкционных сталей северного исполнения. Для повышения хладостойкости и трещиностойкости при сохранении достаточного уровня прочностных и пластических свойств в прокате выплавляют сталь, содержащую, мас.%: углерод 0,09-0,13, марганец 1,40-1,60, кремний 0,50-0,70, алюминий 0,025-0,090, хром 0,03-0,10, никель (0,02-0,10, медь 0,03-0,10, молибден 0,002-0,050, титан 0,004-0,025, ниобий 0,001-0,01, ванадий 0,003-0,010, азот 0,001-0,008, сера 0,001-0,005, фосфор 0,003-0,016, кальций 0,0001-0,01, железо – остальное, при этом по первому варианту способа предварительную деформацию с регламентированными обжатиями проводят при температуре 950-1100°С, а окончательную деформацию осуществляют при температуре 880-760°С, далее листовой прокат замедленно охлаждают в штабеле и на воздухе до температуры окружающей среды.

Изобретение относится к области металлургии, а именно к изготовлению отожженного холоднокатаного стального листа с прочностью более 900 МПа, пределом текучести более 700 МПа и однородным удлинением более 12%, используемого для изготовления деталей транспортных средств.

Изобретение относится к области металлургии, конкретнее к прокатному производству, и может быть использовано для получения рулонного проката для изготовления нефтепроводных труб группы Кс по ГОСТ 52203-04 без дополнительной термообработки.

Изобретение относится к области металлургии. Для получения листового проката категории прочности 345 с соотношением предела текучести к временному сопротивлению не более 0,75, используемого при строительстве резервуаров для хранения нефтепродуктов, выплавляют сталь, содержащую, мас.
Изобретение относится к сельскохозяйственному машиностроению, в частности к изготовлению рабочих органов почвообрабатывающих орудий. Способ упрочнения лезвий рабочих органов почвообрабатывающих орудий включает нагрев поверхности тыльной стороны лезвия электрической дугой обратной полярности при перемещении электрода по криволинейной траектории, образованной линейным перемещением параллельно острой кромки лезвия и вращением вокруг вертикальной оси, при этом рабочий орган выполнен из высокопрочного чугуна, нагрев поверхности тыльной стороны лезвия осуществляют постоянным током с помощью вольфрамового электрода, причем диаметр вращения электрода вокруг вертикальной оси задают равным ширине лезвия, за один оборот электрода вокруг вертикальной оси линейное перемещение составит 3 мм, частота вращения ω выражается зависимостью ω=k⋅30 мин1, где k=1,5 при толщине лезвия 2,0 ≤ δ ≤ 3,0 мм, k=1,0 при толщине лезвия 3,1 ≤ δ ≤ 5,0 мм, k=0,8 при толщине лезвия 5,1 ≤ δ ≤ 7,0 мм.
Наверх