Способ очистки фильтрационной зоны горизонтальной скважины с аномально низким пластовым давлением

Изобретение относится к нефтедобывающей промышленности и может найти применение при очистке фильтрационной зоны горизонтальной скважины с аномально низким пластовым давлением. Способ включает спуск в скважину гибкой трубы (ГТ) в район уровня жидкости, прокачку через нее воздухоазотной смеси до полного замещения скважинной жидкости газом, последовательный спуск гибкой трубы до забоя и закачивание через нее в скважину одновременно промывочной жидкости с воздухоазотной смесью. При этом после спуска ГТ на 20 м ниже уровня жидкости в скважине через гибкую трубу одновременно с воздухоазотной смесью прокачивают промывочную жидкость до выхода и циркуляции из скважины. Далее ГТ спускают до начала фильтра и при стабильном выходе жидкости из скважины продолжают спуск до забоя скважины с постоянной скоростью 0,015-0,5 м/с и поддержанием стабильного выхода промывочной жидкости с воздухоазотной смесью из скважины. После чего приостанавливают процесс закачки и приподнимают ГТ на первоначальную глубину спуска. Повторяют операции по промывке скважины и подъема ГТ до окончания выноса механических примесей на поверхность. Техническим результатом является повышение эффективности очистки фильтрационной зоны скважины и исключение аварийных ситуаций за счет отсутствия неподвижных труб в скважине. 1 ил.

 

Изобретение относится к нефтедобывающей промышленности и может найти применение при очистке фильтрационной зоны горизонтальной скважины с аномально низким пластовым давлением.

Известен способ обработки и освоения скважины (Заявка РФ №97103442, МПК Е21В 43/22, опубл, Бюл. №8 от 20.03.1999), включающий закачку в скважину аэрированного раствора поверхностно-активного вещества в воде и освоение скважины. Перед закачкой в скважину поверхностно-активного вещества в воде его аэрацию осуществляют с кратностью 3,1-4,4 при пластовых условиях, а его закачку в призабойную зону ведут циклически, чередуя с закачкой неаэрированной жидкости под давлением не ниже разницы между величинами 1,3-Рпл, где Рпл - пластовое давление. Аэрация водного раствора поверхностно-активного вещества (ПАВ) позволяет снизить гидростатическое давление находящегося в скважине столба жидкости, что ускоряет процесс освоения скважины.

Недостатком данного способа является то, что его использование предлагалось на вертикальных скважинах и аэрация столба жидкости могла производиться не ниже глубины спуска концевой муфты насосно-компрессорных труб (НКТ), что в свою очередь ухудшает вынос глинистого материала бурового раствора по всей толщине вскрытого перфорацией продуктивного пласта.

Наиболее близким по технической сущности и достигаемому результату является способ обработки фильтрационной зоны горизонтальной скважины с аномально низким пластовым давлением (патент RU №2435952, МПК Е21В 43/25, опубл. Бюл. №34 от 10.12.2011,) согласно которому производится спуск в скважину колонны насосно-компрессорных труб - НКТ до глубины начала фильтра в горизонтальной части ствола, спуск в колонну НКТ гибкой трубы, через которую производят закачку жидкости и газа в скважину. Перед спуском гибкой трубы определяют уровень скважинной жидкости в скважине. После спуска гибкой трубы под уровень жидкости до выхода ее из колонны НКТ через гибкую трубу прокачивают газ в виде воздухоазотной смеси до полного замещения в колонне НКТ скважинной жидкости газом. Далее гибкую трубу спускают до выхода не более одного метра из колонны НКТ, после чего гибкую трубу спускают до забоя с поинтервальными остановками через 50-100 м с закачкой жидкости в виде водного раствора поверхностно-активного вещества - ПАВ с воздухоазотной смесью до окончания выноса механических примесей на поверхность в каждом интервале.

Недостатком является то, что данный способ предусматривает высокие затраты на спуск-подъем НКТ и высокая вероятность прихвата неподвижной колонны труб в процессе промывки горизонтальной скважины вследствие образования обильного шламонакопления за колонной НКТ в интервале его спуска.

Техническим задачами предлагаемого изобретения являются снижение материальных затрат за счет исключения дополнительных операций для спуска и подъема НКТ, исключения аварийных ситуаций, связанных с возможностью прихвата НКТ, а также повышение эффективности очитки фильтрационной зоны горизонтальной скважины промывочной жидкостью, создающее низкое гидростатическое давление на пласт и обеспечивающий высокий вынос механических примесей и глинистого раствора газированным промывочным раствором.

Технические задачи решаются способом очистки фильтрационной зоны горизонтальной скважины с аномально низким пластовым давлением, включающим спуск в скважину гибкой трубы - ГТ в район уровня жидкости, прокачка через нее воздухоазотной смеси до полного замещения скважинной жидкости газом, последовательный спуск гибкой трубы до забоя и закачивание через нее в скважину одновременно промывочной жидкости с воздухоазотной смесью.

Новым является то, что после спуска ГТ на 20 м ниже уровня жидкости в скважине через гибкую трубу одновременно с воздухоазотной смесью прокачивают промывочную жидкость до выхода и циркуляции из скважины, далее ГТ спускают до начала фильтра и при стабильном выходе жидкости из скважины, продолжают спуск до забоя скважины с постоянной скоростью 0,015-0,5 м/с и поддержанием стабильного выхода промывочной жидкости с воздухоазотной смесью из скважины, после чего приостанавливают процесс закачки и приподнимают ГТ на первоначальную глубину спуска, повторяют операции по промывке скважины и подъема ГТ до окончания выноса механических примесей на поверхность.

На чертеже представлена схема реализации способа в горизонтальной скважине в разрезе нефтяного пласта.

Способ реализуется следующим образом.

В эксплуатационную колонну 1 на начало зоны фильтра 2 горизонтального ствола скважины, размещенного в продуктивном пласте 3, спускают ГТ 4 на глубину на 20 м ниже уровня 5 находящейся в скважине жидкости. К линии ГТ 4 подключают насосный агрегат (на чертеже не показан) и два компрессора (на чертеже не показаны), и с одновременной закачкой промывочной жидкости (например, пресная вода с температурой от 5 до 80°С, технологическая жидкость плотностью 1000-1180 кг/м3, технологическая жидкость плотностью 1000-1180 кг/м с добавлением ПАВ и т.п.) и азота или азота с воздухом производят спуск ГТ 4 до глубины начала зоны фильтра 2. При стабильном выходе жидкости спуском ГТ 4 и с постоянной подачей той же газожидкостной смеси (в соотношение жидкости к газу в количестве от 0,004/0,996 до 0,020/0,980 об.ч.) проводят обработку фильтра 2 до забоя 6 горизонтальной скважины со скоростью 0, 015-0,5 м/с, которая позволяет максимально очистить фильтр 2 изнутри от механических примесей. После чего производят остановку процесса закачки и подъем ГТ 4 до глубины на 20 м ниже уровня 5 находящейся в скважине жидкости. Проводят процесс промывки при помощи ГТ 4 аналогичным образом, как описано выше, несколько раз до отсутствия механических примесей в излитой на поверхность жидкости. После чего ГТ 4 извлекают на поверхность.

Пример конкретного выполнения.

На скважине залежи сверхвязкой нефти после бурения проведена очистка горизонтального ствола скважины диаметром 168 мм с длиной фильтра 729 м в следующей последовательности:

- произвели спуск ГТ 4 диаметром 44 мм до глубины 80 м - на 20 м ниже уровня жидкости 5;

- в линию ГТ подключили насосный агрегат, с одновременной закачкой промывочной жидкости с расходом 2-4 м3/час и закачкой азота и воздуха от двух компрессоров с расходом 480-600 м3/час спустили ГТ 4 до глубины 526 м (глубина начала фильтровой части). При стабильном выходе жидкости на глубину 526 м допустили ГТ 4 с постоянной подачей этой газожидкостной смеси и произвели обработку фильтра 2 до забоя 6 горизонтальной скважины со скоростью 0,02 м/с. Остановили процесс закачки, приподняли ГТ 4 до глубины 80 м и повторили процесс промывки аналогичным способом. Очистку произвели 5 раз до прекращения выноса механических частиц и глинистого раствора на поверхность.

В результате по отношению к наиболее близкому аналогу материальные затраты снизились примерно на 40%, полностью исключились аварийные ситуации, связанные с прихватом спущенных неподвижных труб, в 2,5 раза ускорился процесс очистки фильтра в горизонтальной скважине.

Предложенный способ очистки фильтрационной зоны горизонтальной скважины с аномально низким пластовым давлением позволяет снизить материальные затраты и исключить аварийные ситуации за счет отсутствия неподвижных труб в скважине, а также повысилась эффективность очистки фильтрационной зоны горизонтальной скважины промывочной жидкостью, создающей низкое гидростатическое давление на пласт и обеспечивающей высокий вынос механических примесей и глинистого раствора газированным промывочным раствором.

Способ очистки фильтрационной зоны горизонтальной скважины с аномально низким пластовым давлением, включающий спуск в скважину гибкой трубы (ГТ) в район уровня жидкости, прокачку через нее воздухоазотной смеси до полного замещения скважинной жидкости газом, последовательный спуск гибкой трубы до забоя и закачивание через нее в скважину одновременно промывочной жидкости с воздухоазотной смесью, отличающийся тем, что после спуска ГТ на 20 м ниже уровня жидкости в скважине через гибкую трубу одновременно с воздухоазотной смесью прокачивают промывочную жидкость до выхода и циркуляции из скважины, далее ГТ спускают до начала фильтра и при стабильном выходе жидкости из скважины продолжают спуск до забоя скважины с постоянной скоростью 0,015-0,5 м/с и поддержанием стабильного выхода промывочной жидкости с воздухоазотной смесью из скважины, после чего приостанавливают процесс закачки и приподнимают ГТ на первоначальную глубину спуска, повторяют операции по промывке скважины и подъема ГТ до окончания выноса механических примесей на поверхность.



 

Похожие патенты:

Группа изобретений относится к нефтегазодобывающей отрасли, в частности к ингибированию образования нежелательных отложений на скважинном оборудовании. Система содержит блок регулирующий, помещенный в скважине в зоне расположения насосного оборудования и соединенный через канал связи с первым входом/выходом блока управления, ко второму входу которого подключен выход блока идентификации состояния скважинного насосного оборудования, а третий вход/выход которого соединен с первым входом/выходом блока формирования эталонной модели воздействия, ко второму входу которого подключен выход блока идентификации состояния флюида.

Изобретение относится к нефтегазодобывающей отрасли, в частности к предотвращению выпадения парафинов в скважинах с аномально низкими температурами. Способ включает подачу движущей текучей среды из средств для хранения в эжекторное устройство, имеющее сужающуюся часть для подвода движущей текучей среды, расширяющуюся часть для отвода движущей текучей среды и узкую часть с отверстием, расположенную между сужающейся частью и расширяющейся частью; удаление воды и водяного пара из межтрубного пространства нефтяной скважины, имеющей пакеры, с помощью эжекторного устройства, где поток движущей текучей среды через сужающуюся часть и расширяющуюся часть эжекторного устройства создает падение давления и повышает скорость движущей текучей среды, что создает разрежение в узкой части, сопровождающееся откачиванием воды и пара из межтрубного пространства нефтяной скважины, с устранением, таким образом, выпадения парафинов в нефтяных скважинах, имеющих пакер.
Изобретение относится к нефтяной промышленности и может быть использовано при ремонте скважин с применением установки с гибкой трубой (ГТ). При осуществлении способа определяют интервал промывки, верхнюю границу которого устанавливают на 10-20 м выше забоя скважины, а нижней границей промывки является забой скважины; спускают колонну гибких труб при одновременной закачке технологической жидкости от устья скважины до нижней границы интервала промывки.

Изобретение относится к нефтегазодобывающей отрасли и предназначено для обработки наружной поверхности бурильных труб от загрязнений при их подъеме из скважины. Устройство состоит из верхней и нижней частей, связанных друг с другом болтами, с размещенным между ними упругим эластичным элементом.

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано при капитальном и текущем ремонте скважин, связанном с очисткой их забоя от песчаных и проппантовых пробок.

Группа изобретений относится к области нефтегазодобывающей промышленности, преимущественно к добыче вязкой и сверхвязкой нефти, а также может быть использовано для интенсификации добычи нефти, осложненной вязкими составляющими и отложениями.

Группа изобретений относится к нефтедобывающей промышленности и может быть использована на нефтехранилищах светлых нефтепродуктов при устранении загрязнения подземных вод.

Изобретение относится к технологии предотвращения отложений асфальтеносмолопарафиновых веществ (АСПВ) на нефтепромысловом оборудовании. Способ включает спуск в скважину магнитного аппарата (МА) проточного типа, содержащего ферромагнитную трубу с рабочим каналом, установленный на ее внешней поверхности магнитный блок, по меньшей мере, из двух намагниченных постоянных кольцевых магнитов, образующих пару, главные поверхности которых обращены внутрь трубы, и диамагнитный кожух, охватывающий герметично магнитный блок, и проведение магнитной обработки потока пластовой жидкости, протекающей по рабочему каналу МА в постоянном магнитном поле.

Группа изобретений относится к области электронагрева индукционными токами и может быть использовано в устройствах для ликвидации и предотвращения формирования гидратопарафиновых и асфальтосмолистых образований в нефтегазовых скважинах и трубопроводах, а также для подогрева вязких продуктов.

Группа изобретений относится к удалению отложений на внутренних и наружных стенках труб. Установка (1) для обработки текучей среды содержит по меньшей мере один охлаждающий трубопровод (2), средства охлаждения, предназначенные для охлаждения текучей среды по меньшей мере в одном охлаждающем трубопроводе (2) на участке охлаждения до температуры, равной или близкой к температуре (Тмор) среды вокруг охлаждающего трубопровода (2), и по меньшей мере одну тележку (9), расположенную на внешнем периметре по меньшей мере одного охлаждающего трубопровода (2) или вблизи него.

Изобретение относится к технологии горизонтального бурения с промывкой для бестраншейной прокладки труб в стесненных условиях под дорогами и другими инженерными сооружениями.

Группа изобретений относится к цементированному карбиду для компонента, подвергаемого воздействию давления текучей среды. Согласно варианту 1 цементированный карбид содержит Со, Ni, TiC, Mo, WC и Cr3C2.
Изобретение относится к строительству морских нефтяных и газовых скважин, в частности, к способам обращения с отходами бурения и защиты морской среды от загрязнения.

Изобретение относится к области бурения и ремонта скважин, в частности к устройствам для сообщения внутренней полости технологической колонны труб с затрубным пространством при проведении спускоподъемных операций для заполнения колонны скважинной жидкостью и опорожнения, а именно к переливным клапанам бурильной колонны.

Изобретение относится к операциям бурения ствола скважины, а конкретнее к мониторингу скважинных шламов в возвращающихся буровых растворах, определению размера и распределению по форме частиц, присутствующих в скважинных шламах.
Изобретение относится к нефтяной промышленности и может быть использовано при ремонте скважин с применением установки с гибкой трубой (ГТ). При осуществлении способа определяют интервал промывки, верхнюю границу которого устанавливают на 10-20 м выше забоя скважины, а нижней границей промывки является забой скважины; спускают колонну гибких труб при одновременной закачке технологической жидкости от устья скважины до нижней границы интервала промывки.

Описаны система и способ приготовления флюида для обработки приствольной зоны, включающий загрузку пакетов, содержащих покрытую оболочкой добавку, в зону хранения пакетов первого контейнера; пропускание пакетов в измельчитель пакетов; разрушение оболочек пакетов для вскрытия добавки; пропускание незащищенной оболочкой добавки в смеситель; пропускание водного раствора из второго контейнера в смеситель и смешивание незащищенной оболочкой добавки с водным раствором для получения флюида для обработки приствольной зоны.

Группа изобретений относится к смазкам, применяемым в скважинных флюидах. Технический результат – улучшение смазывания металлических поверхностей с целью снижения трения, скручивающих и осевых нагрузок.

Группа изобретений относится к обработке подземного пласта и, в том числе, его гидроразрыва, исключающей нарушение свойств пласта и предусматривающей использование потоков разбавленной жидкости и высоконагруженной жидкости.

Изобретение относится к устройствам для бурения нефтяных и газовых скважин, а именно к циркуляционным переводникам бурильной колонны. Циркуляционный переводник бурильной колонны содержит корпус, поршень с радиальными отверстиями и центральным каналом, внутри которого размещено седло, пружину, поджимающую поршень, а также содержит два закрепленных в корпусе циркуляционных порта с расходными отверстиями, активационные и деактивационные шары.

Группа изобретений относится к хвостовому переходнику, имеющему усиленную зону промывочного отверстия. Технический результат – уменьшение локализованных концентраций напряжения в стенке переходника. Устройство для бурения горной породы содержит хвостовой переходник. Хвостовой переходник содержит удлиненный корпус, имеющий первый конец, подлежащий установке к поршню, и второй конец, подлежащий установке к бурильной колонне. При этом корпус имеет аксиально проходящий внутренний канал для обеспечения прохода промывочной текучей среды в бурильную колонну через второй конец. Переходник содержит одно промывочное отверстие или два диаметрально расположенных промывочных отверстия, проходящих радиально через корпус во внутренний канал. Площадь сечения корпуса в аксиально усиленной зоне промывочного отверстия равна или больше площади сечения корпуса на аксиальном местоположении внутреннего канала аксиально за усиленной зоной. 2 н. и 13 з.п. ф-лы, 3 ил.
Наверх