Способ получения структурных изображений в эндоскопической оптической когерентной томографии



Способ получения структурных изображений в эндоскопической оптической когерентной томографии
Способ получения структурных изображений в эндоскопической оптической когерентной томографии
Способ получения структурных изображений в эндоскопической оптической когерентной томографии
Способ получения структурных изображений в эндоскопической оптической когерентной томографии
Способ получения структурных изображений в эндоскопической оптической когерентной томографии
Способ получения структурных изображений в эндоскопической оптической когерентной томографии
A61B6/00 - Приборы для радиодиагностики, например комбинированные с оборудованием для радиотерапии (рентгеноконтрастные препараты A61K 49/04; препараты, содержащие радиоактивные вещества A61K 51/00; радиотерапия как таковая A61N 5/00; приборы для измерения интенсивности излучения, применяемые в ядерной медицине, например измерение радиоактивности живого организма G01T 1/161; аппараты для получения рентгеновских снимков G03B 42/02; способы фотографирования в рентгеновских лучах G03C 5/16; облучающие приборы G21K; рентгеновские приборы и их схемы H05G 1/00)

Владельцы патента RU 2679947:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Тамбовский государственный технический университет" (ФГБОУ ВО "ТГТУ") (RU)

Изобретение относится к медицинской технике, а именно к средствам усиления или восстановления изображений в эндоскопической оптической когерентной томографии. Способ получения структурных изображений в эндоскопической оптической когерентной томографии включает получение группы А-сканов, характеризующих структуру исследуемого биологического объекта или его части в предопределенном направлении, предварительное снижение шумов для группы А-сканов, преобразование группы А-сканов в один или группу В-сканов, при этом предварительно снижают шумы для группы А-сканов посредством порогового ограничения с заданным порогом интенсивности интерференционного сигнала и полосовой фильтрации с заданными верхней и нижней частотами среза полосового фильтра, после преобразования группы А-сканов в один или группу В-сканов проводят фильтрацию одного или группы В-сканов посредством свертки с заданным ядром свертки, затем выполняют морфологическую обработку получившихся после фильтрации одного или группы В-сканов путем последовательного выполнения для них операции морфологической эрозии и операции морфологического расширения, при этом количество итераций для операции морфологической эрозии и маски для каждой итерации этой операции подбирают так, чтобы обеспечить обнуление при выполнении операции морфологической эрозии значений всех или части пикселей, соответствующих спекл-шумам, а количество итераций и маски для каждой итерации операции морфологического расширения подбираются так, чтобы обеспечить заполнение всех или части обнуленных при выполнении операции морфологической эрозии пикселей, затем выполняют сглаживание полученных в результате морфологической обработки одного или группы В-сканов медианным фильтром с заданным рангом и один или группу сглаженных медианным фильтром В-сканов визуализируют посредством пользовательского интерфейса. Использование изобретения позволяет повысить качество структурных изображений в эндоскопической оптической когерентной томографии за счет снижения уровня спекл-шумов с учетом их морфологических особенностей. 4 ил.

 

Предлагаемое изобретение относится к области усиления или восстановления изображений из побитового в побитовое изображение для создания подобного изображения с использованием при этом фильтрации помех, и может быть использовано в медицине и ветеринарии при осуществлении измерений для диагностических целей, а также в физике для исследования или анализа материалов с помощью оптических средств (т.е. с использованием инфракрасных, видимых или ультрафиолетовых лучей).

Эндоскопическая оптическая когерентная томография базируется на принципах низкокогерентной интерферометрии. В не зависимости от того в частотной или во области работает эндоскопический оптический когерентный томограф структурное изображение (В-скан) исследуемого биологического объекта или его части строится на основе распределений интенсивности светового поля на детекторе томографа (А-сканов), которые являются результатом интерференции волн опорного плеча и плеча образца. Такой подход обеспечивает значительную глубину когерентного зондирования и высокое пространственное разрешение получаемых структурных изображений, однако детектируемый сигнал содержит в себе спекл-шумы (результат взаимной интерференции волн, обратно отраженных от исследуемого биологического объекта или его части). На структурных изображениях спекл-шумы проявляются в виде пятнистости (спекл-структуры), не имеющей отношения к оптической структуре исследуемого биологического объекта или его части. Учитывая, что характеризующие

качество структурных изображений глубина когерентного зондирования и пространственное разрешение у современных эндоскопических оптических когерентных томографов находятся на уровнях близких к своим физическим пределам, целесообразным является повышение качества структурных изображений за счет снижения уровня шумов, наиболее существенными из которых являются вышеуказанные спекл-шумы.

По патенту WO 2015195048 А1, МПК G06T 5/00, A61B 3/10, опубл. 23.12.2015 г. известен способ уменьшения спекл-шумов на структурных изображениях в оптической когерентной томографии, включающий в себя: получение множества структурных изображений поперечного сечения исследуемого объекта с помощью оптического когерентного томографа, причем каждое структурное изображение содержит множество полос сканирования (А-сканов), а сканирование в глубину основано на измерении накопленной отраженной волной временной задержки, формирование набора выровненных структурных изображений поперечного сечения исследуемого объекта посредством выравнивания структурных изображений поперечного сечения исследуемого объекта с помощью определения относительных сдвигов для каждого поперечного сечения в направлении сканирования в глубину и в направлении перпендикулярном этому направлению, формирование набора выровненных отдельных участков для выровненных структурных изображений поперечного сечения исследуемого объекта посредством выравнивания отдельных участков выровненных структурных изображений поперечного сечения исследуемого объекта с помощью относительных сдвигов каждого такого участка в глубину, причем каждый отдельный участок содержит по меньшей мере одну полосу сканирования, формирование матрицы результирующего изображения из набора выровненных отдельных участков для выровненных структурных изображений поперечного сечения исследуемого объекта, получение структурного изображения в оптической когерентной томографии с уменьшенными спекл-шумами посредством заполнения недостающих элементов матрицы результирующего изображения наиболее вероятными значениями. Известны варианты способа уменьшения спекл-шумов на структурных изображениях в оптической когерентной томографии в которых: заполнение недостающих элементов матрицы результирующего изображения включает в себя разложение этой матрицы на матрицу спекл-шумов и матрицу фильтрованного изображения; заполнение недостающих элементов матрицы результирующего изображения включает в себя разложение этой матрицы на разреженную матрицу, матрицу спекл-шумов и матрицу фильтрованного изображения; производится дополнительная фильтрация шумов перед формированием набора выровненных структурных изображений поперечного сечения исследуемого объекта; структурное изображение в оптической когерентной томографии с уменьшенными спекл-шумами дополнительно обрабатывается с помощью фильтра анизотропной диффузии; используется адаптивный фильтр Винера. Техническим результатом способа является получение структурных изображений в оптической когерентной томографии с уменьшенным уровнем спекл-шумов.

Недостатком данного способа является невысокое качество структурных изображений с уменьшенными спекл-шумами в оптической когерентной томографии вызванное тем, что при фильтрации спекл-шумов не учитываются их морфологические (геометрические) особенности, и как следствие из этого, снижение уровня спекл-шумов происходит одновременно с существенным снижением уровня полезного сигнала.

По патенту US 20060100527 А1, МПК A61B 6/00, опубл. 11.05.2006 г. известен способ удаления спекл-шумов в оптической когерентной томографии, включающий в себя: получение состоящего из множества точек структурного изображения в оптической когерентной томографии, вычисление для каждой из множества упомянутых выше точек энергетической функции, которая определяет величину дисперсии интенсивности изображения для множества направлений относительно ее среднего значения, выбор направления Q0(x, y), которое минимизирует энергетическую функцию для заданного пикселя с координатами x и у, определение среднего значения для интенсивности изображения в выбранном направлении и последующее определение на его основе интенсивности результирующего изображения в точке с координатами x и y. Известны варианты способа удаления спекл-шумов в оптической когерентной томографии в которых: состоящее из множества точек структурное изображение в оптической когерентной томографии является двухмерным; состоящее из множества точек структурное изображение в оптической когерентной томографии является трехмерным; вычисление энергетической функции для каждой из множества точек структурного изображения в оптической когерентной томографии производится для множества ядер свертки, соответствующих всем направлениям, либо части направлений; множества ядер свертки включают в себя подмножества ядер свертки; вычисление энергетической функции выполняется только для отдельных областей структурного изображения в оптической когерентной томографии; дополнительно производится оценка однородности значений интенсивностей изображения для множества точек или отдельной области структурного изображения в оптической когерентной томографии; энергетическая функция подвергается пороговому ограничению; оценка однородности значений интенсивностей изображения для множества точек производится посредством кросс-корреляционной функции. Техническим результатом способа является формирование структурных изображений на основе когерентных сигналов с удалением спекл-шумов.

Недостатком данного способа является невысокое качество структурных изображений с удаленными спекл-шумами в оптической когерентной томографии вызванное тем, что при удалении спекл-шумов не учитываются их морфологические особенности, и как следствие из этого, удаление спекл-шумов сопровождается существенным снижением уровня полезного сигнала.

По патенту CN 102800064 В, МПК G06T 5/00, опубл. 04.02.2015 г. известен способ снижения спекл-шумов на структурных изображениях в оптической когерентной томографии посредством адаптивной реверсивной (двухсторонней) фильтрации, включающий в себя: представление исходного структурного изображения I(х,y) в оптической когерентной томографии как произведения двух моделей I(х,у)=S(x,y)⋅N(x,у), где х и у - координаты пикселей на структурном изображении в оптической когерентной томографии, N(x,y) - модель спекл-шумов на структурном изображении, S(x,y) - модель структурного изображения без спекл-шумов; вычисление для модели спекл-шумов на структурном изображении N(x,у) пространственной функции F в соответствии с критерием Рэлея:

,

где k - константа, σ - стандартное отклонение, N0 - модель спекл-шумов на структурном изображении представленная в логарифмической форме N0=ln(N(x,y))=ln(I(x,y)-lnS(x,y)); определение на основе пространственной функции F весового коэффициента W[k, i] к адаптивному реверсивному фильтру:

и

,

где W0[k, i] - весовой коэффициент к модифицированному адаптивному реверсивному фильтру, - скорректированный для серой шкалы весовой коэффициент, Wd[k, i] - исходный пространственный весовой коэффициент, [k, i] - коэффициент преобразования, Х[k] - входное изображение, σr - стандартное отклонение по интенсивности, σd - стандартное отклонение по пространству; снижение спекл-шумов на структурных изображениях в оптической когерентной томографии на основе адаптивной реверсивной фильтрации с весовым коэффициентом W[k, i]. Техническими результатами способа являются алгоритмы получения структурных изображений в оптической когерентной томографии со сниженным посредством адаптивной реверсивной фильтрации уровнем спекл-шумов.

Недостатком данного способа является невысокое качество структурных изображений с уменьшенным уровнем спекл-шумов в оптической когерентной томографии вызванное тем, что при моделировании спекл-шумов не учитываются их морфологические особенности, и как следствие из этого, адаптивная реверсивная фильтрация спекл-шумов сопровождается существенным снижением уровня полезного сигнала.

Ближайшим аналогом (прототипом) разработанного способа является способ снижения спекл-шумов на структурных изображениях в оптической когерентной томографии (патент WO 2016080914 А1, МПК G06T 5/00, опубл. 26.05.2016 г.) включающий в себя: получение множества (группы) А-сканов, характеризующих структуру исследуемого биологического объекта или его части в предопределенном направлении, группировку множества А-сканов в один или множество В-сканов (структурных изображений), определение для каждого А-скана окружающей его окрестности, выравнивание А-скана в заранее определенном направлении, рассчитанном для этого А-скана и других А-сканов находящихся в окружающей его окрестности, формирование из выровненных в заранее определенном направлении А-сканов первой матрицы структурного изображения, причем соответствующие столбцы этой матрицы являются выровненными А-сканами, вычисление второй матрицы структурного изображения, которая сводит к минимуму целевую функцию разности между первой матрицей структурного изображения и второй матрицей структурного изображения, причем вторая матрица структурного изображения имеет ограничения по сложности. Известны варианты способа снижения спекл-шумов на структурных изображениях в оптической когерентной томографии в которых: ограничение по сложности для второй матрицы структурного изображения представляет собой ограничение ее ранга; ограничение по сложности для второй матрицы структурного изображения состоит в том, что при разложении второй матрицы структурного изображения в виде суммы матрицы низкого ранга и разреженной матрицы, матрица низкого ранга имеет ранг ниже первого заданного значения, а разреженная матрица имеет количество ненулевых элементов меньше второго заданного значения; производится предварительное снижение шумов для множества А-сканов перед их группировкой в один или множество В-сканов; для снижения шумов используется фильтр анизотропной диффузии; формирование из выровненных в заранее определенном направлении А-сканов первой матрицы структурного изображения производится посредством определения первой и второй групп А-сканов, поиска коэффициента пространственного сдвига для второй группы А-сканов, смещения второй группы А-сканов с учетом коэффициента пространственного сдвига; при формировании из выровненных в заранее определенном направлении А-сканов первой матрицы структурного используется алгоритм сопоставления блоков. Техническим результатом способа является компьютеризированное улучшение структурных изображениях в оптической когерентной томографии посредством снижения спекл-шумов.

Недостатком данного способа является невысокое качество структурных изображений со сниженным уровнем спекл-шумов в оптической когерентной томографии вызванное тем, что при снижении уровня спекл-шумов не учитываются их морфологические особенности, и как следствие из этого, снижение уровня спекл-шумов происходит одновременно с существенным уменьшением уровня полезного сигнала.

Технической задачей способа является повышение качества структурных изображений в эндоскопической оптической когерентной томографии посредством снижения уровня спекл-шумов с учетом их морфологических особенностей, что позволяет избежать одновременного существенного снижения уровня полезного сигнала.

Поставленная техническая задача достигается тем, что способ получения структурных изображений в эндоскопической оптической когерентной томографии, также как и способ, который является ближайшим аналогом, включает получение группы А-сканов, характеризующих структуру исследуемого биологического объекта или его части в предопределенном направлении, предварительное снижение шумов для группы А-сканов, преобразование группы А-сканов в один или группу В-сканов.

Новым в разработанном способе получения структурных изображений в эндоскопической оптической когерентной томографии является то, что предварительно снижают шумы для группы А-сканов посредством порогового ограничения с заданным порогом интенсивности интерференционного сигнала и полосовой фильтрации с заданными верхней и нижней частотами среза полосового фильтра, после преобразования группы А-сканов в один или группу В-сканов проводят фильтрацию одного или группы В-сканов посредством свертки с заданным ядром свертки, затем выполняют морфологическую обработку получившихся после фильтрации одного или группы В-сканов путем последовательного выполнения для них операции морфологической эрозии и операции морфологического расширения, при этом количество итераций для операции морфологическая эрозия и маски для каждой итерации этой операции подбирают так, чтобы обеспечить обнуление при выполнении операции морфологической эрозии значений всех или части пикселей, соответствующих спекл-шумам, а количество итераций и маски для каждой итерации операции морфологического расширения подбираются так, чтобы обеспечить

заполнение всех или части обнуленных при выполнении операции морфологической эрозии пикселей, затем выполняют сглаживание полученных в результате морфологической обработки одного или группы В-сканов медианным фильтром с заданным рангом, и один или группу сглаженных медианным фильтром В-сканов визуализируют посредством пользовательского интерфейса.

На фиг. 1 в виде блок-схемы проиллюстрирована последовательность действий при получении структурных изображений в эндоскопической оптической когерентной томографии в соответствии с формулой изобретения. Рассмотрим подробнее сущность предложенного способа (фиг. 1) с использованием конкретных примеров.

Определяются значения управляющих параметров (порог интенсивности интерференционного сигнала, ядро свертки, количество итераций и маски для операции морфологическая эрозия, количество итераций и маски для операции морфологическое расширение и т.п.) и производится получение группы А-сканов, характеризующих структуру исследуемого биологического объекта или его части в предопределенном направлении. Значения управляющих параметров могут быть введены в ручном режиме, автоматически или считаны из файла. Группа А-сканов также может быть считана из файла, или например, получена с детекторов установки для эндоскопической оптической когерентной томографии с зондом прямого обзора на основе пьезо-волоконного сканирования.

Для удаления различных шумов (не только спекл-шумов, но и, например, фазовых шумов низкокогерентного источника излучения) группа А-сканов подвергается предварительной обработке. Эта обработка представляет собой пороговое ограничение с заданным порогом интенсивности интерференционного сигнала и полосовую фильтрацию (например, фильтром Баттерворта 5-го порядка) с заданными верхней частотой среза полосового фильтра и нижней частотой среза полосового фильтра. После предварительной обработки А-сканы преобразуются в один

или группу В-сканов, т.е. в двумерное или в трехмерное структурное изображение исследуемого биологического объекта или его части, полученное с помощью эндоскопической оптической когерентной томографии.

Поскольку спекл-шумы на структурных изображениях исследуемого биологического объекта или его части имеют характерную геометрию (мелкие замкнутые структуры с относительно одинаковой яркостью и сложной геометрией границ) весьма эффективной для их удаления будет морфологическая обработка. Для проведения такой обработки требуется достаточно сильно повысить контраст границ спекл-структур на структурном изображении. Для этого полученное двумерное или трехмерное структурное изображение исследуемого биологического объекта или его части подвергают фильтрации посредством свертки, т.е. обрабатывают с использованием ядра свертки, специально предназначенного для повышения контраста мелких деталей на изображении. Например, можно использовать матрицу конволюции (ядро свертки) следующего вида:

Следует отметить, что ядро свертки, как и конкретные значения других управляющих параметров во многом зависят от особенностей используемого для получения группы А-сканов устройства эндоскопической оптической когерентной томографии (пространственное разрешение получаемых структурных изображений, наличие/отсутствие и особенности аппаратной фильтрации детектируемых сигналов, частота дискретизации и т.п.).

Морфологическая обработка двумерного или трехмерного структурного изображения исследуемого биологического объекта с повышенным контрастом спекл-структур выполняется в два действия. Сначала производится операция морфологическая эрозия. При правильном подборе значений управляющих параметров она приводит к резкому уменьшению количества и площади спекл-структур на структурном изображении из-за того, что все объекты по размеру и морфологии сходные используемой при выполнении этой операции маской обнуляются (стираются). При необходимости операция морфологическая эрозия может производиться несколько раз, причем размер маски и ее структура при каждой итерации могут быть различными. Вторым действием морфологической обработки является операция морфологическое расширение. Эта операция напротив обеспечивает наращивание размера и площади структур на обрабатываемом изображении и в предложенном способе используется для заполнения всех или части обнуленных при выполнении операции морфологическая эрозия пикселей. В результате этой морфологической операции (в случае правильного подбора значений управляющих параметров) изображения реально существующих структур исследуемого биологического объекта или его части «расширяются» на структурном изображении за счет обнуленных пикселей, оставшихся после удаления спекл-структур. Операция морфологическое расширение также может выполняться циклически, причем с разными значениями управляющих параметров.

Очищенное от всех или части спекл-шумов двухмерное или трехмерное структурное изображения исследуемого биологического объекта сглаживается с использованием медианного фильтра, который (при правильно выбранном значении правого и левого ранга) обеспечивает существенное снижение аддитивного и импульсного шумов. Сглаженное изображение визуализируется посредством пользовательского интерфейса,

т.е. выводится конечному пользователю в удобной для него форме, например, в графическом формате на дисплее ноутбука.

Наиболее важной отличительной особенностью предлагаемого способа получения структурных изображений в эндоскопической оптической когерентной томографии является морфологическая обработка В-сканов. Геометрия спеклов на структурных изображениях исследуемого с помощью эндоскопической оптической когерентной томографии биологического объекта или его части во многом зависит от особенностей использованного для получения этих изображений устройства. Сканирование исследуемого биологического объекта или его части пучком излучения приводит к тому, что согласно теории дифракции каждая точка освещенной поверхности становится источником вторичных сферических волн. Эти волны интерферируют, причем если структура исследуемого биологического объекта или его части достаточно неоднородна, чтобы создать разность в длинах оптических путей для множества вторичных волн превышающую длину волны зондирующего излучения, то фаза волны изменяется более чем на 2π (ситуация 2π-неопределенности). Проинтерферировавшие вторичные сферические волны частично попадают на детектор устройства эндоскопической оптической когерентной томографии и после обработки сигнала отображаются на структурных изображениях, как спекл-структура. То есть существенное влияние на морфологические особенности и частоту возникновения спеклов оказывают характеристики излучения (длина волны, временная когерентность, поляризация излучения), особенности сканирования (геометрия зондирующего пучка, способ сканирования в плече образца) и детектирования (апертура детектора, его частота дискретизации). В связи с вышесказанным морфологические особенности спекл-шумов на разных структурных изображениях неподвижного объекта, полученных с помощью одного и тоже же устройства эндоскопической оптической когерентной томографии будут во многом схожими. Зная эти морфологические особенности (средний размер спеклов, наиболее вероятную

форму и т.п.) можно обнаружить и удалить (обнулить) спекл-шумы со структурных изображений исследуемого биологического объекта или его части посредством операции морфологическая эрозия с относительно небольшими потерями полезного сигнала. К тому же, с помощью операции морфологическое расширение можно заполнить обнуленные пиксели аппроксимированным полезным сигналом. То есть, морфологическая обработка структурных изображений в эндоскопической оптической когерентной томографии позволяет повысить их качество.

На фиг. 2. представлен увеличенный фрагмент спекл-структуры (а), наложившейся на реальную оптическую структуру фантома кожных покровов человека и результат (б) морфологической обработки этого фрагмента по предложенному способу, приведшей к частичному удалению этой спекл-структуры. Отметим что, изменив значения управляющих параметров, можно добиться более или менее выраженного эффекта.

Другой важной отличительной особенностью предложенного способа является фильтрация посредством свертки перед морфологической обработкой В-сканов. Такая фильтрация выполняется для повышения контраста границ спекл-структур на В-сканах с помощью обработки специально подобранным ядром свертки. В дальнейшем контрастные спекл-структуры более эффективно обнаруживаются и удаляются посредством операции морфологической эрозии, что способствует повышению качества структурных изображений в эндоскопической оптической когерентной томографии. Если, конечно, параметры маски операции морфологическая эрозия правильно подобраны и соответствуют наиболее вероятным форме и размерам спекл-структур для данного устройства эндоскопической оптической когерентной томографии.

Еще одной особенностью предложенного способа является многоуровневая фильтрация А-сканов и состоящих из них В-сканов. Использование порогового ограничения с заданным порогом интенсивности интерференционного сигнала и полосовой фильтрации с заданными верхней

частотой среза полосового фильтра и нижней частотой среза полосового фильтра позволяет осуществить предварительное снижение шумов для группы А-сканов. Применение медианного фильтра с заданным рангом обеспечивает сглаживание полученных в результате морфологической обработки одного или группы В-сканов. Вышеуказанная комбинация фильтров способствуют повышению качества структурных изображений в эндоскопической оптической когерентной томографии.

Таким образом, использование фильтрации посредством свертки для повышения контраста границ спекл-структур на В-сканах, морфологическая обработка В-сканов для удаления этих спекл-структур, а также многоуровневая фильтрация А-сканов и состоящих из них В-сканов для снижения шумов для группы А-сканов и сглаживания, полученных в результате морфологической обработки одного или группы В-сканов обеспечивают повышение качества структурных изображений в эндоскопической оптической когерентной томографии. На фиг. 3. и фиг. 4. представлены примеры структурных изображений в эндоскопической оптической когерентной томографии, полученных с помощью одного и того же устройства без (фиг. 3а, фиг. 4а) и с использованием (фиг. 3б, фиг. 4б) предложенного способа. Повышение качества структурных изображений в эндоскопической оптической когерентной томографии при использовании предложенного способа составило более 28%, что свидетельствует о выполнении поставленной технической задачи.

Предлагаемый способ получения структурных изображений в эндоскопической оптической когерентной томографии может быть использован в медицине и ветеринарии для визуализации внутренней структуры полостей и трактов организма (диагностика дыхательных путей, сердечно-сосудистой системы, желудочно-кишечного тракта, мочеполовой системы и т.п.), а также в физике для неразрушающего контроля над качеством микроэлектромеханических систем, интегральных схем, тонкопленочных и волокнистых структур и т.п., особенно, если они находятся внутри сложных изделий.

Способ получения структурных изображений в эндоскопической оптической когерентной томографии, включающий получение группы А-сканов, характеризующих структуру исследуемого биологического объекта или его части в предопределенном направлении, предварительное снижение шумов для группы А-сканов, преобразование группы А-сканов в один или группу В-сканов, отличающийся тем, что предварительно снижают шумы для группы А-сканов посредством порогового ограничения с заданным порогом интенсивности интерференционного сигнала и полосовой фильтрации с заданными верхней и нижней частотами среза полосового фильтра, после преобразования группы А-сканов в один или группу В-сканов проводят фильтрацию одного или группы В-сканов посредством свертки с заданным ядром свертки, затем выполняют морфологическую обработку получившихся после фильтрации одного или группы В-сканов путем последовательного выполнения для них операции морфологической эрозии и операции морфологического расширения, при этом количество итераций для операции морфологической эрозии и маски для каждой итерации этой операции подбирают так, чтобы обеспечить обнуление при выполнении операции морфологической эрозии значений всех или части пикселей, соответствующих спекл-шумам, а количество итераций и маски для каждой итерации операции морфологического расширения подбираются так, чтобы обеспечить заполнение всех или части обнуленных при выполнении операции морфологической эрозии пикселей, затем выполняют сглаживание полученных в результате морфологической обработки одного или группы В-сканов медианным фильтром с заданным рангом и один или группу сглаженных медианным фильтром В-сканов визуализируют посредством пользовательского интерфейса.



 

Похожие патенты:

Изобретение относится к проекционным экранам, снабженным средствами подавления спеклов. Способ понижения уровня спеклов на проекционном экране предполагает сообщение вибрации проекционному экрану в заданном спектре частот c широким распределением мощности, ослабление спеклов на проекционном экране до приемлемого уровня.

Изобретение относится к модуляции света методами управления интенсивностью и фазовыми характеристиками светового потока, и может найти применение для лазерных источников света общего назначения, в том числе для разрушения пространственной и временной когерентности, подавления спекла.

Способ вывода из осаждённого из газовой фазы алмаза электромагнитного излучения центров окраски, в котором у поверхности алмазного образца формируется собирающая излучение центров окраски оптическая система, состоящая из конуса с круглым основанием из оптического стекла, окружающего конус конического зеркала и собирающей линзы.

Осветительное устройство содержит массив источников света, излучающих конусы света с краями, которые пересекаются в плоскости пересечения, и линзовый блок для гомогенизации распределения интенсивности в дальней зоне.

Устройство для освещения внутренней стороны цилиндра светом содержит коллиматор, отражающий конус, установленный на оптической оси, коническое зеркало. Также устройство содержит устройство для преобразования лучей, которое выполнено на основе матриц цилиндрических линз, расположенных вокруг оптической оси, второе коническое зеркало, гомогенизатор в виде полой трубки с рифлёной поверхностью, тороидальную линзу или тороидальное зеркало, установленные на выходе устройства.

Изобретение относится к машине (1) для стереолитографии. Машина содержит: контейнер (2) для жидкого вещества (14), источник (3) заранее установленного излучения (3а), пригодного для отверждения жидкого вещества (14); оптический блок (4), пригодный для направления излучения (3а) к базовой поверхности (5) в жидком веществе (14); логический блок (6) управления, выполненный с возможностью управления оптическим блоком (4) и/или источником (3) для облучения заранее установленной части базовой поверхности (5).

Изобретение относится к оптическому приборостроению и лазерной технике. Мобильный оптический телескоп содержит выполненный с возможностью установки на транспортном средстве кузов-контейнер с агрегатным отсеком, в котором на платформе кузова-контейнера жестко закреплено основание со стойками, зеркальную систему, включающую профилированные зеркала, смонтированную на опорно-поворотном устройстве с взаимно ортогональными осями вращения, приводы вращения и излучатель.

Изобретение относится к лазерной технике и касается устройства ввода лазерного излучения в торец оптического элемента. Устройство содержит несколько источников лазерного излучения, каждый из которых оснащен котировочным средством, мишень, узел наблюдения и экран.

Изобретение относится к гигиене труда и может быть использовано для оценки лазерной безопасности при использовании лазерных устройств в создании лазерного шоу. .

Изобретение относится к компьютерной томографии и предназначено для выполнения комплекса лабораторных работ, связанных с визуализацией изображений в компьютерной томографии и изучением математического аппарата пошаговой компьютерной томографии.

Изобретение относится к области оптоэлектроники. Способ повышения точности синтеза топологии элементов заключается в использовании лазерного генератора изображений с круговым сканированием, содержащего оптический тракт для обеспечения доставки лазерного излучения к головке записи, оптическую заготовку с нанесенным фоточувствительным материалом; фокусировке пучка лазерного излучения на поверхности оптической заготовки с нанесенным фоточувствительным материалом; применении дополнительных двух комбинированных оптических датчиков, каждый из которых содержит измерительный диск с угловым и кольцевым растрами, датчик угловых перемещений измерительного растра и два датчика линейных перемещений, а также применении двухкоординатного оптического дефлектора, который устанавливают дополнительно в оптическом тракте таким образом, чтобы направления управляемых координат двухкоординатного оптического дефлектора совпадали с направлениями радиальных и угловых перемещений сфокусированного пучка лазерного излучения.

Способ заключается в том, что объект освещают широкополосным светом, формируют пучок излучения, переносящий изображение объекта, делят его на два идентичных пучка, один из которых пространственно фильтруют, формируя волну с известной формой волнового фронта, совмещают направления распространения волновых фронтов, осуществляют спектральную фильтрацию этих пучков и регистрируют двумерное спектральное интерференционное изображение.

Группа изобретений относится к медицинской технике, а именно к средствам диагностики дегенерации роговицы. Система содержит устройство для оптической когерентной томографии (ОКТ), выполненное с возможностью излучения первого светового пучка с первой длиной волны (λ1), спектрометр рассеяния Бриллюэна (BS), выполненный с возможностью излучения второго светового пучка со второй длиной волны (λ2), отличной от первой длины волны (λ1), устройство фокусировки пучков, выполненное с возможностью объединения первого светового пучка и второго светового пучка таким образом, что первый световой пучок и второй световой пучок распространяются вдоль одной и той же оптической траектории относительно роговицы, и устройство направления и фокусировки пучков, выполненное с возможностью фокусировки первого светового пучка и второго светового пучка вместе в заранее заданном положении (x,y,z) на или в роговице, устройство контроля и анализа для сканирования направляющей ориентации (kx,ky,kz) первого светового пучка и второго светового пучка таким образом, что первый световой пучок и второй световой пучок фокусируются (x,y,z) на или в роговице.

Способ формирования сигнала, используемого при генерации изображений, включает получение сенсорной системой фотонных лучей, исходящих от сцены; при этом первая апертура получает первый фотонный луч из указанных фотонных лучей, а вторая апертура получает второй фотонный луч из указанных фотонных лучей, причем первая апертура физически отстоит от второй апертуры, интерференцию каждого из первого и второго фотонных лучей с соответствующим одним из фотонных лучей источника с образованием интерференционных лучей, причем каждый фотонный луч источника имеет неклассическое состояние, в котором флуктуации количества фотонов в каждом фотонном луче источника уменьшены до выбранных допусков, а способ дополнительно включает формирование на основе указанных интерференционных лучей выходного сигнала, приспособленного для использования при генерации изображения указанной сцены.

Изобретение относится к области инженерной геодезии и может быть использовано при геодезическом контроле с помощью электромагнитного излучения геометрии поверхности вращающихся промышленных агрегатов и их узлов в процессе функционирования без остановки производства.

Изобретение относится к области оптических измерительных приборов и может быть использовано в оптических интерферометрических датчиках с полупроводниковыми источниками оптического излучения для формирования оптических импульсов и частотной модуляции оптической несущей без использования дополнительных амплитудных, частотных и фазовых модуляторов.

Лазерный интерферометр включает источник когерентного монохроматического излучения, коллиматор, светоделитель, разделяющий луч на объектный и опорный пучки. В опорном и объектном пучках установлены акустооптические модуляторы.

Изобретение относится к измерительной технике, в частности к способам управления фазовым сдвигом между двумя когерентными монохроматическими световыми волнами в лазерных измерительных информационных системах.

Изобретение относится к области неразрушающего контроля и касается способа диагностирования состояния конструкции. Способ включает в себя формирование на участке вероятного возникновения дефекта конструкции датчика.

Изобретение относится к медицинской технике, а именно к диагностическим системам и способам визуализации с помощью оптической когерентной томографии. .

Группа изобретений относится к области медицины, а именно к стоматологии, и может быть использована для 3D планирования стоматологического лечения и его последующей реализации с применением цифровых 3D технологий.

Изобретение относится к медицинской технике, а именно к средствам усиления или восстановления изображений в эндоскопической оптической когерентной томографии. Способ получения структурных изображений в эндоскопической оптической когерентной томографии включает получение группы А-сканов, характеризующих структуру исследуемого биологического объекта или его части в предопределенном направлении, предварительное снижение шумов для группы А-сканов, преобразование группы А-сканов в один или группу В-сканов, при этом предварительно снижают шумы для группы А-сканов посредством порогового ограничения с заданным порогом интенсивности интерференционного сигнала и полосовой фильтрации с заданными верхней и нижней частотами среза полосового фильтра, после преобразования группы А-сканов в один или группу В-сканов проводят фильтрацию одного или группы В-сканов посредством свертки с заданным ядром свертки, затем выполняют морфологическую обработку получившихся после фильтрации одного или группы В-сканов путем последовательного выполнения для них операции морфологической эрозии и операции морфологического расширения, при этом количество итераций для операции морфологической эрозии и маски для каждой итерации этой операции подбирают так, чтобы обеспечить обнуление при выполнении операции морфологической эрозии значений всех или части пикселей, соответствующих спекл-шумам, а количество итераций и маски для каждой итерации операции морфологического расширения подбираются так, чтобы обеспечить заполнение всех или части обнуленных при выполнении операции морфологической эрозии пикселей, затем выполняют сглаживание полученных в результате морфологической обработки одного или группы В-сканов медианным фильтром с заданным рангом и один или группу сглаженных медианным фильтром В-сканов визуализируют посредством пользовательского интерфейса. Использование изобретения позволяет повысить качество структурных изображений в эндоскопической оптической когерентной томографии за счет снижения уровня спекл-шумов с учетом их морфологических особенностей. 4 ил.

Наверх