Способ определения ударного объема сердца



Способ определения ударного объема сердца
Способ определения ударного объема сердца
Способ определения ударного объема сердца
Способ определения ударного объема сердца
Способ определения ударного объема сердца
Способ определения ударного объема сердца
Способ определения ударного объема сердца
Способ определения ударного объема сердца
Способ определения ударного объема сердца
Способ определения ударного объема сердца
Способ определения ударного объема сердца
Способ определения ударного объема сердца
Способ определения ударного объема сердца
Способ определения ударного объема сердца
Способ определения ударного объема сердца
Способ определения ударного объема сердца
Способ определения ударного объема сердца
Способ определения ударного объема сердца
Способ определения ударного объема сердца
Способ определения ударного объема сердца
Способ определения ударного объема сердца
Способ определения ударного объема сердца
Способ определения ударного объема сердца
Способ определения ударного объема сердца

Владельцы патента RU 2679948:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Тамбовский государственный технический университет" (ФГБОУ ВО "ТГТУ") (RU)

Изобретение относится к области медицины, а именно к кардиологии, кардиохирургии, функциональной диагностике. Для определения ударного объема сердца выполняют наложение двух электродов на участки тела и регистрируют сопротивление между электродами. Ударный объем сердца определяют по исследуемой характеристике отношения сопротивлений регистрируемого к предельному с калибровочной функцией нормированного объема от сопротивления, компенсирующей неизвестное значение предельного сопротивления, выбранного произвольно. Значения предельного сопротивления и нормированного объема калибруют априори по нормированным мерам сопротивлений известных пациентов верхней и нижней границ диапазона и нормированным объемам от сопротивления с различной калибровкой для мужчин и женщин. Действительные значения предельного сопротивления и нормированного объема калибруют по границам диапазона согласно алгоритмам, по которым последовательно восстанавливают калибровочную функцию и действительную функцию, тождественную эквивалентной. Способ повышает точность определения ударного объема сердца на адаптивном диапазоне за счет применения нормированных мер сопротивлений. 2 ил., 1 табл.

 

Предполагаемое изобретение относится к медицине и может быть использовано в кардиологии, кардиохирургии, функциональной диагностике.

Известен способ определения ударного объема сердца [Stringer W.W., Hansen J.E., Wasserman К. Cardiac output estimated noninvasivelly from oxygen uptake during exercise // J. Appl. Physiol. 1997. - V. 82. - No 3. - PP. 908-912], заключающийся в измерении потребления кислорода организмом в течение одной минуты, измерении содержания связанного кислорода в литре артериальной и литре, смешанной венозной крови, вычислении артериовенозной разности по кислороду, делении величины потребленного кислорода за одну минуту на артериовенозную разность по кислороду, а полученную величину минутного объема кровообращения делят на частоту сердечных сокращений и получают усредненную величину ударного объема сердца при условии, что были посчитаны все сердечные сокращения в течение минуты, когда измерялось потребления кислорода организмом.

Это классический принцип измерения A. Fick, известный с 1870 г. Он безупречен по замыслу, но имеет существенный недостаток, не преодоленный до нашего времени, - это необходимость отбирать образцы артериальной и смешанной венозной крови для определения в них количества связанного газообразного кислорода или углекислого газа.

Известен способ определения ударного объема сердца [Патент РФ №2134059, А61В 5/04, 1996], заключающийся в измерении ударного объема сердца, посредством определения площади между изолинией и кривой реограммы слева и справа от точки реограммы, соответствующей началу диастолы левого желудочка сердца. Измеряют гемоглобин крови. При этом ударный объем сердца определяют по градуировочной характеристике отношения площадей между кривой реограммы, массы тела, базового сопротивления, амплитуды реограммы комплекса и гемоглобина крови.

Недостатком способа является низкая точность из-за статистической градуировочной характеристики, аппроксимирующей большое количество измеряемых неоднородных величин, вносящих методическую погрешность.

За прототип принимается способ определения ударного объема сердца [Glinkin E.I., Kuroedova O.S. Patent RU 2515534 July 04, 2012], заключающийся в измерении ударного объема сердца, по средством определения площади между изолинией и кривой реограммы слева и справа от точки реограммы, соответствующей началу диастолы левого желудочка сердца. Измеряется гемоглобин крови. При этом ударный объем сердца определяется по калибровочной характеристике отношения площадей между кривой реограммы с функцией нормированного объема от гемоглобина крови.

Технической задачей является повышение точности определения ударного объема сердца на адаптивном диапазоне, априори регламентируемым нормируемыми значениями сопротивления с известными значениями ударного объема сердца.

Техническая задача достигается тем, что:

В способе определения ударного объема сердца, включающем наложение двух электродов на определенные участки тела, регистрацию сопротивления R между электродами, в отличие от прототипа, ударный объем сердца определяют по исследуемой характеристике Q отношения сопротивлений регистрируемого R к предельному R0

с калибровочной функцией Q0i нормированного объема от сопротивления

компенсирующей неизвестное значение предельного сопротивления R0, выбранного произвольно R*, значения предельного R0 сопротивления и нормированного объема Q0 калибруют априори по i - тым (i = 1, 2) нормированным мерам сопротивлений Ri известных пациентов верхней и нижней границ диапазона и нормированным объемам Q0i от сопротивления, с различной калибровкой для мужчин и женщин, а действительные значения предельного сопротивления R0 и нормированного объема Q0 калибруют по границам диапазона согласно алгоритмам:

по которым последовательно восстанавливают калибровочную функцию Q0i (фиг. 1, 4) и действительную функцию Qd (фиг. 1, 3), тождественную эквивалентной Qd = Qэ.

За эталон принимается метод Фика.

Предлагаемый способ предполагает: определение ударного объема сердца по сопротивлению кожи пациента между электродами и адаптацию предельного значения сопротивления R0 и нормированного объема Q0 по границам диапазона.

Способ определения ударного объема сердца, включает наложение двух электродов на определенные участки тела, регистрацию сопротивления R между электродами. Ударный объем сердца определяют по исследуемой характеристике Q (фиг. 1, 2) отношения сопротивлений регистрируемого R к предельному R0 (фиг. 1, 5а) с калибровочной функцией Q0i (фиг. 1, 4) объема от сопротивления

Предельное значение сопротивления R0 (фиг. 1, 5а) калибруют априори по i - тым (i = 1, 2) нормированным мерам сопротивлений Ri (фиг. 1) известных пациентов верхней и нижней границ диапазона, нормированным объемам сердца Q0i (фиг. 1)и значением сопротивления R* (фиг. 1, 5) калибровки, с различной калибровкой для мужчин и женщин

При калибровке измеряют сопротивления R1 и R2 (фиг. 1) границ нормируемого диапазона ударного объема Q01, Q02 (фиг. 1) пациентов.

Калибровочную характеристику Q0i (фиг.1, 4) находят в виде функции из системы эталонного Qэ (фиг. 1, 1) уравнения и исследуемого Qi (фиг. 1, 2):

Калибровочная характеристика Q0i компенсирует неизвестное значение предельного сопротивления R0 (см. фиг. 1, 5а), выбранного произвольно R* (фиг. 1, 5) из-за незнания параметров эталонной характеристики Qэ (фиг. 1, 1).

При тождественности Qэi=Qi получаем калибровочную характеристику (фиг. 1, 4)

Составляем систему уравнений из двух уравнений для первого (i = 1) и второго (i = 2) измерения:

Делят первое уравнение системы на второе и логарифмируют обе части полученного уравнения

выражают предельное сопротивление R0:

Алгоритм калибровки (3) диктует последовательность измерения сопротивлений Ri границ диапазона R2 - R1 (фиг. 1) известных пациентов с нормированными объемами Q01, Q02 от сопротивления, расчет их диапазонов прямого и приведенного к R* (фиг. 1, 5) сопротивлений, логарифмического нормированных объемов, из отношения которых определяют предельное сопротивление R0 (фиг. 1, 5а) эквивалентной характеристики Qэ (фиг. 1, 1).

Нормированный объем Q0 находят из системы эталонного Qэi уравнения и исследуемого Qi:

При Qэi=Qi приравнивают уравнения и приводят его к виду, удобному для логарифмирования:

логарифмируют обе части полученного уравнения и выражают Ri:

Составляют систему уравнений из двух уравнений для первого (i = 1) и второго (i = 2) измерения:

Делят первое уравнение системы на второе:

экспоненцируют обе части уравнения:

и выражают нормированный объем Q0:

Алгоритм калибровки (4) регламентирует последовательность измерения сопротивлений Ri границ диапазона R2 - R1 известных пациентов с нормированными объемами Q01, Q02 от сопротивления, расчет их диапазонов (фиг. 1) сопротивлений и в их степени нормированных объемов, из отношения которых определяют нормированный объем Q0 (фиг. 1, 4а) эквивалентной характеристики Qэ (фиг. 1, 1).

В результате экспериментов и моделирования получены следующие значения нормированного объема Q0=43, а предельного сопротивления для мужчин R0=150 и женщин R0=170, для выбранных произвольно значений сопротивления R* калибровки для мужчин R*=240 и для женщин R*=72. Мы их задаем произвольно, можете проверить для любых заданных R*.

Полученные меры R0 и Q0 однозначно определяют эквивалентную характеристику Qэ. (фиг. 1, 1), поэтому их принимают за информативные параметры (фиг. 1, 4а, 5а). По параметрам R0 и Q0 последовательно восстанавливают калибровочную функцию Q0i (фиг. 1, 4) и действительную функцию Qd, тождественную эквивалентной Qd=Qэ. (фиг. 1, 1 и 1. 3). Тождество следует при подстановке в (1) калибровочной характеристики (2)

Относительное отклонение ударного объема сердца от эталона QЭ прототипа Qi градуировки и действительного Qd калибровки рассчитывается по формуле:

Оценку метрологической эффективности методов определяют по методической погрешности εn и εd, которые систематизированы в таблице.

Оценка методической погрешности

Из таблицы видно, что предлагаемый способ калибровки точнее градуировки прототипа не менее чем на два порядка и превосходит его по методической погрешности на 10-20% за счет нормированных мер сопротивлений и объема известных пациентов границ адаптивного диапазона.

Таким образом, определение действительного объема сердца по калибровочной характеристике нормированного объема, компенсирующей неизвестное значение предельного сопротивления, выбранного произвольно, в отличие от известных решений, в адаптивном диапазоне повышает точность на два порядка и превосходит их по методической погрешности на 10-20%.

Способ определения ударного объема сердца, включающий наложение двух электродов на участки тела, регистрацию сопротивления R между электродами, отличающийся тем, что ударный объем сердца определяют по исследуемой характеристике Q отношения сопротивлений регистрируемого R к предельному R0

с калибровочной функцией Q0i нормированного объема от сопротивления

компенсирующей неизвестное значение предельного сопротивления R0, выбранного произвольно R*, значения предельного R0 сопротивления и нормированного объема Q0 калибруют априори по i-м (i=1, 2) нормированным мерам сопротивлений Ri известных пациентов верхней и нижней границ диапазона и нормированным объемам Q0i от сопротивления с различной калибровкой для мужчин и женщин, а действительные значения предельного сопротивления R0 и нормированного объема Q0 калибруют по границам диапазона согласно алгоритмам:

по которым последовательно восстанавливают калибровочную функцию Q0i и действительную функцию Q, тождественную эквивалентной Qэ.



 

Похожие патенты:

Изобретение относится к медицинской технике. Система для мониторинга субъекта в кровати содержит камеру для получения изображений субъекта в кровати, средство оценки векторов движения для определения векторов движения в зависимости от местоположения на каждом последовательном изображении из набора изображений, полученного во временном интервале, и систему обработки сигналов.

Изобретение относится к медицине, а именно к хирургии, и может быть использовано при прогнозировании ранних послеоперационных осложнений после симультанных оперативных вмешательств по поводу сочетанной хирургической патологии органов брюшной полости.

Группа изобретений относится к области медицины. Предложено гидрофильное покрытие, нанесенное по меньшей мере на часть поверхности вспомогательного средства, используемого в устройстве для целей отбора и/или анализа пробы биологической жидкости, где указанное покрытие содержит наночастицы с кремнеземной структурой и средним размером 1-500 нм, включающие группы структуры (I).

Изобретение относится к медицинской диагностике и может быть использовано для установления изменений и особенностей легколетучих метаболитов, выделяемых кожей и детектируемых набором химических газовых сенсоров.

Группа изобретений относится к медицинской технике. Сейсмокардиоблок содержит корпус с размещенными в нем трехосным блоком микромеханических акселерометров, трехосным блоком микромеханических гироскопов и схемой обработки и передачи данных.

Изобретение относится к медицине, педиатрии, коррекционной педагогике, может быть использовано для оценки сенсорных функций у детей первого года жизни. Оценивают состояние сенсорных функций (зрительной, слуховой, вестибулярной) как хорошее, удовлетворительное и неудовлетворительное по показателям времени (с помощью секундомера) зрительного и слухового сосредоточения, зрительного слежения, зрительно-моторной координации, слуховой ориентировочной реакции, вестибулярной устойчивости в соответствии с таблицами 1-4, приведенными в описании, для детей различных месяцев первого года жизни.

Изобретение относится к медицине, акушерству, гинекологии и может использоваться для прогнозирования риска развития преэклампсии. Проводят определение экскреции с мочой нефрина и подокаликсина.
Изобретение относится к медицине, а именно к онкологии и гинекологии, и может быть использовано для диагностики рака вульвы у женщин. Оценивают микроциркуляцию кровотока кожи вульвы методом лазерной допплеровской флоуметрии.

Изобретение относится к области измерительной техники и может быть использовано для измерения температуры в магниторезонансной среде. Зонд 130 для измерения температуры для использования в магниторезонансной среде содержит удлиненную подложку 202, по меньшей мере одну электропроводящую трассу 200, 200a, 200b, 200a', 200b' с высоким сопротивлением, напечатанную по меньшей мере на одном термисторе 204, который расположен на подложке и электрически соединен с трассой.

Группа изобретений относится к медицинской технике, а именно к средствам наблюдения за состоянием пациента. Монитор пациента для наблюдения за состоянием пациента, содержащий интерфейс датчиков, выполненный с возможностью приема сигналов датчика, полученных одним или более датчиками, для измерения параметра пациента, интерфейс связи, выполненный с возможностью передачи информации центральной системе администрирования и приема информации от центральной системы администрирования и/или других мониторов пациента посредством сети, причем интерфейс связи выполнен с возможностью передачи относящихся к пациенту данных, полученных во время отсутствия соединения указанного монитора пациента с указанной центральной системой администрирования, указанной центральной системе администрирования после соединения монитора пациента с указанной центральной системой администрирования, пользовательский интерфейс, выполненный с возможностью приема вводимых пользователем данных и вывода одного или более из принятых сигналов датчика, информации, принятой от указанной центральной системы администрирования и/или других мониторов пациента, и относящихся к пациенту данных, выведенных из сигналов датчика, принятой информации и/или вводимых пользователем данных, блок идентификации пациента, выполненный с возможностью идентификации пациента, за которым необходимо установить наблюдение, процессор, выполненный с возможностью обработки сигналов датчика, принятой информации и/или вводимых пользователем данных для получения относящихся к пациенту данных, причем процессор выполнен с возможностью синхронизации и обновления своих относящихся к пациенту данных после приема контекстных сведений о пациенте, и управляющее устройство, выполненное с возможностью управления интерфейсом связи для извлечения контекстных сведений о пациенте, включая относящуюся к пациенту информацию, которые после идентификации пациента блоком идентификации пациента доступны в указанной центральной системе администрирования и других мониторах пациента, из указанной центральной системы администрирования и других мониторов пациента, и с возможностью управления процессором для учета извлеченных контекстных сведений о пациенте и контекстных сведений о пациенте, выведенных из самого монитора пациента, при обработке для получения относящихся к пациенту данных, причем контекстные сведения о пациенте содержат одно или более из следующего: жизненно важные показатели, хронология жизненно важных показателей, предупреждающие сигналы, хронология предупреждающих сигналов, оценки, уведомления, хронология уведомлений, консультации, хронология консультаций, предписания, хронология предписаний, рабочие элементы, хронология рабочих элементов, отчеты о состоянии, изменения атрибута пациента, протоколы, информация о выборе протоколов, жизненно важные тенденции, предупреждающий сигнал, запросы данных датчика, управляющие данные для управления устройствами, относящимися к пациенту, схемы оценки выбранных параметров введения препаратов, состояние протокола оценки.

Группа изобретений относится к области медицины, а именно к функциональной диагностике, и может быть использована для оценки эффективности лечения заболеваний сердечно-сосудистой системы.

Изобретение относится к медицинской технике, конкретнее - к технике спортивной медицины, а именно к системам и устройствам для дистанционного мониторинга физиологических параметров организма человека.

Изобретение относится к медицинской технике, а именно к спинальной хирургии, и может использоваться для лечения травм и заболеваний позвоночника, при его транспедикулярной фиксации (например, при грыже дисков, сколиозе и т.д.).

Изобретение относится к медицинской технике, а именно к спинальной хирургии, и может использоваться для лечения травм и заболеваний позвоночника, при его транспедикулярной фиксации (например, при грыже дисков, сколиозе и т.д.).

Изобретение относится к биофизике и медицинской технике и может быть использовано для управления специальными техническими устройствами. Формируют управляющее воздействие посредством регистрации сигнала электрического импеданса при пропускании через произвольно сокращающуюся мышцу переменного электрического тока и одновременной регистрации сигнала электромиограммы сокращающейся мышцы.

Группа изобретений относится к медицинской технике. Медицинское устройство для определения надежности анализа сердечного ритма во время выполнения сердечно-легочной реанимации (СЛР) содержит адаптер сбора данных, соединенный с электродами и выполненный с возможностью получения двух или более последовательных по времени наборов данных ЭКГ.

Изобретение относится к медицинской технике, а именно к диагностическим аппаратам измерения параметров точек акупунктуры. Устройство детекторной головки для емкостного измерения частоты точки акупунктуры на теле человека содержит контактную головку, которая содержит два вывода и контактирует с точкой акупунктуры на теле человека, чтобы получить значение CH емкости точки акупунктуры, причем один из двух выводов заземлен.

Изобретение относится к медицинской технике, а именно к системе контроля состава и объемов тела для формирования оздоровительных мероприятий и программ питания. Система включает в себя электронный модуль.

Изобретение относится к медицинской технике, а именно к системе контроля состава и объемов тела для формирования оздоровительных мероприятий и программ питания. Система включает в себя электронный модуль.

Изобретение относится к медицине, может быть использовано для оценки функционального состояния организма. В качестве составляющих импеданса биологического объекта определяют активное сопротивление R и эквивалентную емкость С тканей биообъекта.

Изобретение относится к медицине, а именно к рентгенохирургическим методам диагностики сердечной недостаточности (СН), и может быть использовано для ранней диагностики сердечной недостаточности.

Изобретение относится к области медицины, а именно к кардиологии, кардиохирургии, функциональной диагностике. Для определения ударного объема сердца выполняют наложение двух электродов на участки тела и регистрируют сопротивление между электродами. Ударный объем сердца определяют по исследуемой характеристике отношения сопротивлений регистрируемого к предельному с калибровочной функцией нормированного объема от сопротивления, компенсирующей неизвестное значение предельного сопротивления, выбранного произвольно. Значения предельного сопротивления и нормированного объема калибруют априори по нормированным мерам сопротивлений известных пациентов верхней и нижней границ диапазона и нормированным объемам от сопротивления с различной калибровкой для мужчин и женщин. Действительные значения предельного сопротивления и нормированного объема калибруют по границам диапазона согласно алгоритмам, по которым последовательно восстанавливают калибровочную функцию и действительную функцию, тождественную эквивалентной. Способ повышает точность определения ударного объема сердца на адаптивном диапазоне за счет применения нормированных мер сопротивлений. 2 ил., 1 табл.

Наверх