Носитель катализатора на металлической основе



Владельцы патента RU 2680144:

Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт конструкционных материалов "Прометей" имени И.В. Горынина Национального исследовательского центра "Курчатовский институт" (НИЦ "Курчатовский институт" - ЦНИИ КМ "Прометей") (RU)

Изобретение относится к области нефтехимии, а именно к носителям катализаторов, которые могут быть использованы для процессов паровой конверсии. Описан носитель катализатора, включающий металлическую основу и нанесенную на него многослойную композицию, в которой по крайней мере один слой является пористым. Многослойная композиция состоит из трех слоев, при этом внутренний слой, улучшающий адгезию, содержит никель, промежуточный слой содержит интерметаллиды системы «никель-алюминий», внешний пористый слой содержит каталитически активные соединения на основе одного или нескольких элементов Периодической системы, а именно Ni, Се, La, Са, Al. Технический результат заключается в получении носителя, обладающего высокой прочностью сцепления слоев, высокой планарностью и незначительным допуском к толщине слоя, с величиной адгезии нанесенных слоев с металлической основой не менее 60 МПа и стабильностью структуры носителя до температуры 1000 °C. 2 з.п. ф-лы, 2 пр.

 

Изобретение относится к области нефтехимии, а именно к носителям катализаторов, которые могут быть использованы для процессов паровой конверсии.

Известен носитель для катализатора, состоящий из металлической основы и покрытия, образованного оксидом алюминия и флагопитом толуольных суспензий полиметилфенилсилоксана (ПМФС). Способ приготовления носителя включает нанесение покрытия путем пневматического напыления суспензии, состоящей из порошка оксида алюминия и ПМФС. Далее проводили сушку на воздухе при температуре 600-800°C в течение 2 ч. [пат. RU 2032463, 10.04.1995].

Недостатком известного носителя является низкая величина сцепления покрытия с материалом основы.

Известен носитель катализатора на металлической основе, представляющий собой слоистый керамоматричный композит, содержащий непористое или малопористое оксидное покрытие и высокопористый оксидный слой, в котором, в качестве металлической основы, используют ленту фольги. Описан способ приготовления носителя, состоящего из двух слоев. Внутренний, непористый, слой получают методом детонационного напыления порошка оксида алюминия высокотемпературных модификаций на металлическую фольгу. Внешний пористый слой, содержащий смесь оксидов алюминия, лантана, церия и циркония, получают методом пропитки в суспензиях или растворах солей с последующей термообработкой [пат. RU 2234978, 13.10.2003]. Недостатком известного носителя является неконтролируемая структура пористости в наружном слое и низкая величина сцепления покрытия с материалом основы.

Известен носитель для катализатора, представляющий собой покрытие на основе алюминия и/или оксида алюминия, нанесенное на металлический усилитель. Носитель содержит, по крайней мере, один модификатор на основе соединений металлов Мо, Се, В, Zr, Fe, Si, Ni, La, предпочтительно Ni, Mg и La. Способ приготовления носителя предусматривает нанесение покрытия с использованием газодетонационного или холодного газодинамического методов и последующую термообработку при температуре 500-700°C. [заявка RU 99126902, 10.09.2001].

Недостатком известного носителя является низкая величина сцепления каталитического слоя с материалом основы.

Наиболее близким к заявляемому решению по технической сущности и достигаемому эффекту (прототипом) является носитель с каталитическим покрытием, включающий внешний пористый слой. Описан способ получения носителя, включающий получение субстрата носителя и слоя, улучшающего сцепление и напыление суспензии, содержащей частицы каталитически активного вещества. Способ напыление суспензии предполагает использование пневматической распылительной технологии [пат. RU 2424849 С2, 18.04.2006].

По максимальному количеству существенных сходных признаков этот способ принимается за прототип.

Недостатком известного носителя является использование в содержащем полости слое дополнительного инертного связующего. Так же недостатком известного носителя является проведение операции термообработки каждого напыленного слоя.

Техническим результатам предлагаемого изобретения является создание носителя обладающего высокой прочностью сцепления слоев, термической стабильностью, высокой планарностью и незначительным допуском к толщине слоя, величина адгезии нанесенных слоев с металлической основой составляет не менее 60 МПа, стабильность структуры носителя обеспечивается до температуры 1000°C, что позволяет использовать его в различных каталитических процессах, в частности, в процессе паровой конверсии.

Технический результат достигается тем, что носитель с каталитическим покрытием, включает металлическую основу и нанесенную на него многослойную композицию, при этом многослойная композиция состоит из трех слоев, внутренний слой содержит никель, промежуточный слой носителя содержит интерметаллические соединения системы «никель-алюминий», внешний пористый слой содержит алюмооксидную пористую керамику и каталитически активные элементы на основе соединений одного или нескольких элементов Периодической системы, в том числе Ni, Се, La, Mg, Са, Al.

Способ приготовления указанного носителя, включает нанесение на ленточный металлическую основу из сплава Х15Ю5 или Х18Н10Т методом холодного газодинамического напыления трехслойной композиции, микродуговое оксидирование, термообработку при температуре 600-750°C, пропитку внешнего слоя активирующими добавками. Нанесение слоев производится при скорости гетерофазного потока 400-470 м/с и дистанции 10 мм. Температура процесса напыления не превышает 100°C.

С целью повышения сцепления слоев с материалом основы, производится нанесение внутреннего слоя на основе никеля. Величина адгезии внутреннего слоя к материалу основы составляет не менее 60 МПа.

Способ приготовления носителя включает следующие стадии:

а) нанесение слоя улучшающего адгезию к металлической основе;

б) нанесение промежуточного слоя;

в) нанесение внешнего пористого слоя;

г) микродуговое оксидирование внешнего слоя;

д) термическая обработка носителя;

е) пропитка внешнего пористого слоя носителя активирующими добавками

В отличие от прототипа, носитель состоит из трехслойной композиции, нанесенной на металлическую основу.

В отличие от прототипа, для получения носителя используется технология холодного газодинамического напыления (ХГДН).

В отличие от прототипа, после микродугового оксидирования и пропитки, во внешнем слое формируется пористая алюмооксидная керамика и композиция каталитически активных соединений, обеспечивающие стабильность структуры и работоспособность носителя до температуры 1000°C.

В отличие от прототипа, проводится термообработка носителя при температуре 600-750°C в течение 1 часа.

В отличие от прототипа, производится химическая пропитка внешнего слоя носителя каталитически активными соединениями на основе соединений одного или нескольких элементов Периодической системы, в том числе Ni, Се, La, Mg, Са, Al.

В отличие от прототипа, химическая пропитка пористого слоя производится без использования инертного связующего.

Предлагаемый способ опробован на специализированном участке предприятия НИЦ Курчатовский институт - ЦНИИ КМ «Прометей».

ПРИМЕР 1

В качестве материала основы в использовалась, металлическая лента на основе сплава Х15Ю5. Размер образцов материала основы составлял 200×100 мм, толщина 120 мкм. На промышленной установке высокоскоростного холодного газодинамического напыления Димет-403 производилось напыление трехслойной композиции на металлическую ленту. Скорость гетерофазного потока составляла в первом примере 400 м/с, дистанция напыления составляла 10 мм.

Для получения внутреннего слоя использовалась порошок никеля марки ПНЭ-1. Толщина слоя составляла 30 мкм.

Для получения промежуточного слоя использовалась порошковая композиция, содержащая мас. %: алюминий 40, никель 50, оксид алюминия - остальное. Толщина промежуточного слоя составила 90 мкм.

Для получения внешнего слоя использовался порошок алюминия марки А-20-00. Толщина внешнего слоя составляла 30 мкм.

Суммарная толщина напыленных слоев носителя составила 150 мкм.

Далее проводился процесс формирования во внешнем слое носителя алюмооксидной керамики методом микродугового оксидирования в силикатно-щелочном растворе.

Далее производилась термообработка носителя. Термообработка носителя осуществлялась в первом примере при температуре 600°C, в течение 1 часа.

Далее проводилась пропитка внешнего слоя носителя каталитически активными соединениями Ni(NO3), Ce(SO4)2, La2(CO3)3, Al(NO3)3.

После нанесения трехслойной композиции и последующего микродугового оксидирования во внешнем слое сформировалась пористая алюмооксидная керамика, обеспечивающая стабильность структуры носителя до температуры 900°C. Величина адгезии нанесенных слоев с металлической основой составила 60 МПа.

ПРИМЕР 2

В качестве материала основы металлическая лента на основе сплава Х18Н10Т. Размер образцов материала основы составлял 200×100 мм, толщина 120 мкм. На промышленной установке высокоскоростного холодного газодинамического напыления Димет-403 производилось напыление трехслойной композиции на металлическую ленту. Скорость гетерофазного потока составляла 470 м/с, дистанция напыления составляла 10 мм.

Для получения внутреннего слоя использовалась порошок никеля марки ПНЭ-1. Толщина слоя составляла 30 мкм.

Для получения промежуточного слоя использовалась порошковая композиция, содержащая мас. %: алюминий 40, никель 50, оксид алюминия - остальное. Толщина промежуточного слоя составила 90 мкм.

Для получения внешнего слоя использовался порошок алюминия марки А-20-00. Толщина внешнего слоя составляла 30 мкм.

Суммарная толщина напыленных слоев носителя составила 150 мкм.

Далее проводился процесс формирования во внешнем слое носителя алюмооксидной керамики методом микродугового оксидирования в силикатно-щелочном растворе.

Далее производилась термообработка носителя. Термообработка носителя осуществлялась. Термообработка носителя осуществлялась при температуре 750°C, в течение 1 часа.

Далее проводилась пропитка внешнего слоя носителя каталитически активными соединениями Ni(NO3), Ce(SO4)2, La2(CO3)3, Са(ОН)2, Al(NO3)3

После нанесения трехслойной композиции и последующего микродугового оксидирования во внешнем слое сформировалась пористая алюмооксидная керамика, обеспечивающая стабильность структуры носителя до температуры 900°C. Величина адгезии нанесенных слоев с металлической основой составила 62 МПа.

Источники информации

1. RU 2553457 С1 «Катализатор паровой конверсии углеводородов и способ его получения», заявка 2013149917/04, приоритет 08.11.2013, опубл. 20.06.2015 г.

2. RU 2259879 С1 «Способ изготовления каталитического элемента», заявка 2003126816/15, приоритет 01.09.2003, опубл. 27.02.2005 г.

3. RU 2335339 С1 «Способ изготовления каталитического элемента», заявка 2006145488/04, приоритет 20.12.2006, опубл. 10.10.2008 г.

1. Носитель с каталитическим покрытием для процессов паровой конверсии, включающий металлическую основу и нанесенную на него многослойную композицию, в которой по крайней мере один слой является пористым, отличающийся тем, что многослойная композиция состоит из трех слоев, при этом внутренний слой, улучшающий адгезию, содержит никель, промежуточный слой содержит интерметаллиды системы «никель-алюминий», внешний пористый слой содержит каталитически активные соединения на основе одного или нескольких элементов Периодической системы, а именно Ni, Се, La, Са, Al.

2. Носитель по п. 1, отличающийся тем, что в качестве металлической основы используется сталь марки Х15Ю5.

3. Носитель по п. 1, отличающийся тем, что в качестве металлической основы используется сталь марки Х18Н10Т.



 

Похожие патенты:

Предложена композитная подложка катализатора гидрирования, содержащая полукоксовый порорасширяющий материал, молекулярное сито и отработанный катализатор каталитического крекинга.

Описан катализатор для получения α,β-ненасыщенной карбоновой кислоты путем газофазного окисления α,β-ненасыщенного альдегида, причем катализатор включает формованное изделие-носитель с нанесенной на него активной массой, отличающейся тем, что степень покрытия активной массой q, где, составляет самое большее 0,26 мг/мм2, причем Q - это доля активной массы катализатора в мас.%, a Sm - удельная геометрическая поверхность формованного изделия-носителя в мм2/мг, а активная масса включает мультиэлементный оксид общей формулы (II) где X4 означает один или несколько щелочных и/или щелочно-земельных металлов, X5 означает один или несколько элементов из группы Si, Al, Ti и Zr, а означает число в пределах от 2 до 4, b означает число в пределах от 0 до 3, с означает число в пределах от 0,5 до 3, е означает число в пределах от 0 до 2, f означает число в пределах от 0 до 40 и n означает стехиометрический коэффициент элемента кислорода, который определяется стехиометрическими коэффициентами отличных от кислорода элементов, а также их валентностью в (II).

Изобретение относится к способу получения катализатора для очистки выхлопных газов двигателей внутреннего сгорания и газовых промышленных выбросов, согласно которому пористую основу покрывают каталитическим покровным слоем, причем в качестве пористой основы используют пористую керамическую заготовку, которую вначале прокаливают в вакуумной муфельной печи при температуре 630-632°С в течение 13-15 минут с последующим остыванием до 30°С, погружают в жидкость со взвешенными в ней мелкими частицами гидрата окиси алюминия в концентрации 7-9% с высокотемпературным связующим и удерживают в ней в течение 3 минут, а затем высушивают при температуре до 75°С, после чего прокаливают в течение 10-12 минут в муфельной печи при температуре 780-783°С с последующим остыванием до 30°С и помещают на 3 минуты в смесь в равных частях органических растворителей (мас.% бутиловый спирт - 20 ацетон - 10 сольвент - 33, бензин - 10 и изопропанол - 27), солей недрагоценных металлов (мас.%: вольфрама - 9, молибдена - 23, титана - 7 и аллюминия - 61) и взвешенных в ней смеси мелких частиц (мас.%: двуокиси титана - 50 и двуокиси бемита - 50) и далее извлекают из смеси и после удаления стекающего ее остатка высушивают в безвоздушной камере при температуре 32-36°С и производят термообработку для перевода солей металлов в оксиды, которую проводят при температуре 633-987°С в течение двух минут.

Изобретение относится к процессам каталитического крекинга тяжелых углеводородов с движущимся слоем катализатора и способу его приготовления. Описан гранулированный катализатор крекинга, включающий цеолит ReHY или HY, каолин, источники оксида алюминия и оксида кремния, при следующем содержании активного компонента: 5-30% масс.

Изобретение относится к способу приготовления катализаторов для среднетемпературной конверсии оксида углерода водяным паром, которые могут быть использованы в химической промышленности при получении азотоводородной смеси для синтеза аммиака.

Изобретение относится к способам механохимического получения катализатора реакций гидрогенизации на основе никеля для применения в реакциях восстановления основных классов промышленно важных органических соединений: получении капролактама, анилина, спиртов и жиров.
Изобретение относится к способам получения катализаторов на основе активированных углей и каталитических добавок в виде водных растворов переходных металлов и может быть использовано в индивидуальных и коллективных устройствах защиты органов дыхания для удаления из отходящих газов токсичных химических веществ, преимущественно фосфина (РН3).

Настоящее изобретение относится к композитному катализатору, включающему углерод в качестве непрерывной фазы и частицы сплава Ренея в качестве дисперсной фазы. Описан композитный катализатор, применяемый после активации в качестве катализатора Ренея, включающий углерод в качестве непрерывной фазы и частицы сплава Ренея в качестве дисперсной фазы, в котором частицы сплава Ренея диспергированы в непрерывной фазе углерода и в котором углерод в качестве непрерывной фазы получен в результате карбонизации, по меньшей мере, одного способного к карбонизации органического вещества, которое представляет собой органический полимер, и сплав Ренея включает по меньшей мере один металл Ренея, выбранный из группы, состоящей из никеля, кобальта, меди и железа и по меньшей мере одного выщелачиваемого элемента, выбранного из группы, состоящей из алюминия, цинка и кремния.

Предложено три варианта способа приготовления катализатора гидроочистки нефтяных фракций в сульфидной форме. Один из вариантов способа приготовления катализатора гидроочистки нефтяных фракций в сульфидной форме осуществляется формованием соэкструзией смеси гидроксида алюминия, оксида молибдена и основного карбоната никеля или кобальта в цилиндрические гранулы, просушивание и прокаливание с последующей пропиткой водным раствором тиомочевины с концентрацией 42-55 масс.% или водным раствором роданида аммония с концентрацией 42-55 масс.%, термообработку при температуре 250-320°С в токе водорода в течение 30-60 мин, при этом получают катализатор, содержащий, масс.%: сульфид никеля или сульфид кобальта 3,0-8,5, сульфид молибдена 8,9-22, оксид алюминия остальное.

Изобретение относится к тестированию характеристик цеолитных материалов, в частности к оценке устойчивости к дезактивации в каталитических реакциях. Предварительно проводят нагрев цеолитного катализатора в реакторе в потоке газа-носителя, инертного в процессе олигомеризации, после чего осуществляют процесс каталитической олигомеризации под давлением в три стадии.

Изобретение относится к катализатору реакции восстановления кислорода (ORR) и способу изготовления такого катализатора. Катализатор реакции восстановления кислорода (ORR) содержит углеродную подложку; первый слой аморфного оксида металла, лежащий поверх поверхности подложки; первый слой платины, лежащий поверх первого слоя аморфного оксида металла; второй слой аморфного оксида металла, лежащий поверх первого слоя платины; и второй слой платины, лежащий поверх второго слоя аморфного оксида металла.

В данном изобретении предложены катализаторы на подложке, способ его получения, а также способ гидроочистки, гидродеазотирования и/или гидродесульфуризации с применением катализаторов на подложках.

Изобретение относится к области получения катализаторов очистки газовых смесей от оксида углерода в системах коллективной защиты органов дыхания, в каталитических нейтрализаторах выхлопных газов двигателей автотранспорта и может быть использовано в технологии производства катализаторов окисления СО.

Изобретение относится к области химической технологии, а именно к производству новых форм зерен каталитических материалов в виде слоистых полых сфер или других полых структур для процессов превращения углеводородов, в том числе парциального окисления алифатических углеводородов.

Предложен улучшенный катализатор по настоящему изобретению. Улучшенный катализатор включает сотовую структуру с по меньшей мере одной наночастицей на сотовой структуре.
Изобретение относится к износостойкому каталитически-активному термобарьерному керамическому покрытию деталей камеры двигателя внутреннего сгорания, нанесенному методом микродугового оксидирования.
Изобретение относится к катализируемому сажевому фильтру, а также способу его получения. При этом способ включает следующие стадии: a) обеспечения тела сажевого фильтра с продольными каналами, которые ограничены продольными пористыми стенками, определяющими сторону рассеивания и сторону проникновения; b) обеспечения первого каталитического покрытия типа «washcoat», содержащего первую катализаторную композицию, которая является активной в отношении селективного каталитического восстановления оксидов азота, c) обеспечения второго каталитического покрытия типа «washcoat», содержащего вторую комбинированную катализаторную композицию в форме смеси катализатора, который является активным в отношении селективного окисления аммиака в азот, и катализатора, который является активным в отношении окисления монооксида углерода и углеводородов; d) нанесения на тело сажевого фильтра первого каталитического покрытия типа «washcoat» на всю сторону рассеивания и внутрь разделительных стенок тела фильтра и нанесения на сажевый фильтр второго каталитического покрытия типа «washcoat» на всю сторону проникновения тела фильтра; и e) сушки и термической обработки покрытого фильтра с получением катализируемого сажевого фильтра, причем модальный размер частиц первого катализатора в первом покрытии типа «washcoat» меньше, чем средний диаметр пор продольных стенок, и в котором модальный размер частиц второго покрытия типа «washcoat» больше, чем средний диаметр пор продольных стенок.

Изобретение относится к способам изготовления оксидных композитных катализаторов на металлическом носителе-подложке, которые могут быть использованы в реакциях конверсии СО в СO2, при очистке технологических и выхлопных газов, в частности, в двигателях внутреннего сгорания.
Изобретение относится к способу получения катализируемого сажевого фильтра, который включает стадии: a) обеспечения пористого тела фильтра, имеющего распределяющую сторону и сторону фильтрата; b) обеспечения каталитического покрытия типа «washcoat», содержащего частицы первой катализаторной композиции, которая является активной в отношении селективного каталитического восстановления оксидов азота, вместе с частицами второй катализаторной композиции, которая является активной в отношении окисления монооксида углерода, углеводородов и аммиака, и частицами третьей катализаторной композиции, которая является активной в отношении селективного окисления аммиака в азот совместно со второй катализаторной композицией, где частицы первой катализаторной композиции имеют модальный размер частиц меньше, чем средний размер пор указанного сажевого фильтра, и где частицы второй и третьей катализаторной композиции имеют модальный размер частиц больше, чем средний размер пор указанного сажевого фильтра; с) нанесения на тело фильтра каталитического покрытия типа «washcoat» путем введения покрытия типа «washcoat» в выпускной конец стороны фильтрата; и d) сушки и термической обработки покрытого тела фильтра с получением катализируемого сажевого фильтра.

Изобретение относится к катализатору, способу его получения и к способу гидрообработки потоков исходного сырья. Катализатор содержит волокнистую подложку с кремнийсодержащими волокнами и цеолитом.

Описан катализатор для получения α,β-ненасыщенной карбоновой кислоты путем газофазного окисления α,β-ненасыщенного альдегида, причем катализатор включает формованное изделие-носитель с нанесенной на него активной массой, отличающейся тем, что степень покрытия активной массой q, где, составляет самое большее 0,26 мг/мм2, причем Q - это доля активной массы катализатора в мас.%, a Sm - удельная геометрическая поверхность формованного изделия-носителя в мм2/мг, а активная масса включает мультиэлементный оксид общей формулы (II) где X4 означает один или несколько щелочных и/или щелочно-земельных металлов, X5 означает один или несколько элементов из группы Si, Al, Ti и Zr, а означает число в пределах от 2 до 4, b означает число в пределах от 0 до 3, с означает число в пределах от 0,5 до 3, е означает число в пределах от 0 до 2, f означает число в пределах от 0 до 40 и n означает стехиометрический коэффициент элемента кислорода, который определяется стехиометрическими коэффициентами отличных от кислорода элементов, а также их валентностью в (II).
Наверх