Система электропитания космического аппарата

Использование: в области электротехники. Технический результат - повышение энергетической эффективности, расширение функциональных возможностей бортовых систем электропитания (СЭП), улучшение электромагнитной совместимости. Система электропитания космического аппарата состоит из солнечной батареи, подключенной своими плюсовой и минусовой шинами к регулятору напряжения, выполненному по мостовой схеме инвертора, аккумуляторной батареи, подключенной своими плюсовой и минусовой шинами к входам разрядного устройства, построенного по мостовой схеме инвертора, и выходу зарядного устройства, причем регулятор напряжения и разрядное устройство подключены к разным согласующим трансформаторам, выходы регулятора напряжения соединены с первичной обмоткой первого силового трансформатора, а выходы разрядного устройства - с первичной обмоткой второго силового трансформатора, информационные выходы аккумуляторной батареи соединены с устройством контроля степени заряженности аккумуляторной батареи, управляющие входы зарядного устройства и инверторов регулятора напряжения солнечной батареи и разрядного устройства аккумуляторной батареи подключены к выходам устройства управления с экстремальным регулированием мощности солнечной батареи, первый вход которого соединен с управляющим выходом устройства контроля степени заряженности аккумуляторной батареи. В системе электропитания космического аппарата зарядное устройство входами подключено к солнечной батарее, второй и третий входы устройства управления подключены соответственно к выходу дополнительно введенного датчика мощности и к одному из выходов для подключения нагрузки, выходные обмотки первого и второго силовых трансформаторов через индивидуальные выпрямители подключены параллельно к выходам для подключения нагрузки. 2 ил.

 

Изобретение относится к электротехнике, а именно - к бортовым системам электропитания (СЭП) космических аппаратов (КА) и может быть использовано при проектировании и создании СЭП автоматических КА с первичными источниками питания солнечными батареями (СБ) и накопителями энергии - аккумуляторными батареями (АБ).

Известны СЭП КА, которые обеспечивают стабилизацию постоянного напряжения на нагрузке, поддержание такого напряжения на СБ, при котором обеспечивается съем мощности с нее в оптимальной рабочей точке вольтамперной характеристики (ВАХ), т.е. режим экстремального регулирования мощности (ЭРМ), а также реализуются оптимальные алгоритмы управления режимами эксплуатации АБ (Патент РФ №2101831, H02J 7/35; Соустин Б.П., Иванчура В.И., Чернышев А.И., Исляев Ш.Н. Системы электропитания космических аппаратов. - Новосибирск: ВО «Наука». Сибирская издательская фирма, 1994).

Недостатками данных СЭП КА являются низкая помехозащищенность бортовых потребителей, что связано с наличием гальванической связи между шинами питания нагрузки и источниками тока, сложность формирования нескольких шин питания бортовой аппаратуры с различными номиналами напряжений, сложность перехода с одного номинала выходного напряжения на другой при создании новых модификаций СЭП КА.

Наиболее близкой по технической сущности является СЭП (Патент РФ №2560720, H02J7/34), структурная схема которой представлена на фиг. 1, содержащая СБ 1, АБ 2, регулятор напряжения 3, выполненный в виде мостового инвертора на транзисторах 11-14, разрядное устройство 4, выполненное в виде мостового инвертора на транзисторах 15-18, зарядное устройство 5, трансформатор 6 с первичной обмоткой 20 и вторичными обмотками 21-231…n, трансформатор 7 с первичной обмоткой 25 и вторичными обмотками 24, 261…n, выпрямители 81…n, систему управления (СУ) с ЭРМ 9, устройство контроля степени заряженности (УКЗБ) АБ 10, датчик мощности 19, нагрузки 271…n.

СЭП работает следующим образом.

При превышении мощности СБ 1 РСБ над суммарной, потребляемой нагрузками 271-27n, мощностью Рн, регулятор напряжения 3 стабилизирует напряжение на нагрузках. Если АБ заряжена, зарядное устройство 5 отключено сигналом УКЗБ 10.

При получении сигнала с УКЗБ 10 о необходимости заряда АБ 2 зарядное устройство 5 включается и осуществляет заряд АБ 2 через вторичную обмотку 22 трансформатора 6. То есть, зарядное устройство 5 может работать только при прохождении через регулятор напряжения 3 дополнительной мощности, равной мощности заряда АБ 2.

При увеличении мощности нагрузки до уровня, когда Рн больше РСБ, зарядное устройство (ЗУ) 5 отключается. Недостаток мощности на нагрузках восполняется инвертором разрядного устройства 4.

Вторичные обмотки 23 трансформатора 6 и 261 трансформатора 7 соединены последовательно в общий контур, формирующий суммарное переменное напряжение и, соответственно, переменный ток, который после выпрямления выпрямителем 8 питает нагрузку 271. Вследствие ключевого режима работы силовых транзисторов 11-18 регулятора напряжения (РН) 3 и разрядного устройства 4, напряжение и ток выходных обмоток трансформаторов 6, 7 имеют прямоугольную форму.

Аналогичным образом формируются другие каналы питания нагрузок 211…n.

Недостатками известной СЭП являются:

- низкая энергетическую эффективность, так как энергия, используемая для заряда АБ, последовательно преобразуется в двух силовых устройствах РН и ЗУ;

- недостаточная функциональность - не обеспечивается работа СЭП в режиме работы только ЗУ, который требуется реализовать, например, после аварийной ситуации, связанной с потерей ориентации СБ на Солнце и полным разрядом АБ. В этом случае необходимо запретить питание бортовых потребителей, чтобы исключить попадание на борт напряжения, отличающегося от номинального, и всю располагаемую мощность СБ использовать для восполнения емкости АБ. То есть, требуется вначале зарядить АБ до некоторого уровня заряженности, и только потом включить питание бортовых потребителей. Известная СЭП может работать в режиме заряда АБ только при работе РН и, соответственно, питании бортовых потребителей;

- сложность обеспечения электромагнитной совместимости (ЭМС) бортовой аппаратуры КА, поскольку вторичные обмотки силовых трансформаторов 6 и 7 соединены последовательно. При работе силовых устройств РН и РУ в режиме широтно-импульсной модуляции по вторичным обмоткам силовых трансформаторов протекают переменные токи большой величины прямоугольной формы, что приводит к высокому уровню электромагнитных помех (ЭМП). Необходимы сложные схемотехнические и конструктивные решения для обеспечения ЭМС бортовой аппаратуры КА. Если в СЭП КА для увеличения энергетических возможностей применяются несколько АБ, то при таком принципе суммирования напряжений источников проблема ЭМС еще более усложнится;

- наличие паразитных потерь мощности в режиме работы от СБ. При РСБ больше или равно Рн, когда разряда АБ не требуется, для питания нагрузки используется мощность СБ. Работают транзисторы инвертора РН 3, транзисторы инвертора РУ 4 не работают. При этом ток, протекающий по вторичной обмотке трансформатора РН, протекает также через вторичные обмотки трансформатора РУ и наводит напряжение на его первичной обмотке, зависящее от величины тока. При определенных соотношениях напряжения АБ, которое в общем случае может изменяться от 0 до Uмакс, и тока нагрузки, это может вызвать появление тока заряда АБ через диоды, параллельные транзисторам инвертора РУ, причем ничем не регулируемого и не ограниченного.

Задачей предлагаемого изобретения является повышение энергетической эффективности, расширение функциональных возможностей СЭП, улучшение ЭМС.

Поставленная задача решается за счет того, что в системе электропитания космического аппарата, состоящей из солнечной батареи, подключенной своими плюсовой и минусовой шинами к регулятору напряжения, выполненному по мостовой схеме инвертора, аккумуляторной батареи, подключенной своими плюсовой и минусовой шинами к входам разрядного устройства, построенного по мостовой схеме инвертора, и выходу зарядного устройства, причем регулятор напряжения и разрядное устройство подключены к разным согласующим трансформаторам, выходы регулятора напряжения соединены с первичной обмоткой первого силового трансформатора, а выходы разрядного устройства - с первичной обмоткой второго силового трансформатора, информационные выходы аккумуляторной батареи соединены с устройством контроля степени заряженности аккумуляторной батареи, управляющие входы зарядного устройства и инверторов регулятора напряжения солнечной батареи и разрядного устройства аккумуляторной батареи подключены к выходам устройства управления с экстремальным регулированием мощности солнечной батареи, первый вход которого соединен с управляющим выходом устройства контроля степени заряженности аккумуляторной батареи, зарядное устройство входами подключено к солнечной батарее, второй и третий входы устройства управления подключены соответственно к выходу дополнительно введенного датчика мощности и к одному из выходов для подключения нагрузки, выходные обмотки первого и второго силовых трансформаторов через индивидуальные выпрямители подключены параллельно к выходам для подключения нагрузки.

На фиг. 1, 2 представлены функциональные схемы заявленной СЭП, которая содержит солнечную батарею 1, аккумуляторную батарею 2, регулятор напряжения солнечной батареи 3, выполненный в виде мостового инвертора на транзисторах 11-14, разрядное устройство аккумуляторной батареи 4, выполненное в виде мостового инвертора на транзисторах 15-18, зарядное устройство аккумуляторной батареи 5, первый силовой трансформатор 6 с входной обмоткой 20 и выходными обмотками 211-21n, второй силовой трансформатор 7 с входной обмоткой 22 и выходными обмотками 231 -23„, выпрямители 811-8n для напряжений выходных обмоток первого силового трансформатора, выпрямители 821-8n для напряжений выходных обмоток второго силового трансформатора, устройство управления 9, устройство контроля степени заряженности АБ 10, датчик мощности (ДМ) 19 и выходы для подключения бортовых потребителей 241-24n.

Заявленная СЭП работает следующим образом.

Управление мостовыми инверторами регулятора напряжения 3, разрядного устройства 4 и зарядным устройством 5 осуществляет устройство управления 9, с которым соединены выходы ДМ 19 и УКЗБ 10, а также один из выходов для подключения бортовых потребителей 241.

УКЗБ 10 по информации от датчиков АБ 2 разрешает или запрещает работу зарядного 5 и разрядного 4 устройств.

ДМ 19 измеряет текущую мощность СБ 1 для реализации экстремального регулирования мощности.

Ниже рассмотрена работа заявленной СЭП в пяти возможных режимах.

1. Мощность нагрузки меньше мощности генерируемой СБ, РСБ больше Рн, АБ заряжена.

Напряжение на выходах СЭП 241-24n стабилизирует РН 3 с помощью обратной связи с одного из выходов 241. Напряжение на всех выходах 241-24n обеспечивается напряжениями на соответствующих обмотках 211-21n первого силового трансформатора 6 через индивидуальные выпрямители 81-81n.

ЗУ5 и РУ4 не работают. Напряжения на выходных обмотках трансформаторов 6 и 7 развязаны индивидуальными выпрямителями 811-81n и 821-82n, поэтому работа РН 3 никак не влияет на режим работы РУ 4 и состояние АБ 2.

2. Мощность нагрузки меньше мощности генерируемой СБ, РСБ больше Рн, АБ разряжена.

УКЗБ 10 по информации с датчиков АБ разрешает заряд АБ. Избыток мощности СБ (РСБн=Рзу) используется для заряда АБ зарядным устройством 5. Поскольку ЗУ 5 подключено непосредственно к шинам СБ, заряд АБ осуществляется с максимально возможным КПД. Стабилизацию напряжения на выходе СЭП производит РН 3. РУ 4 не работает. ЗУ 5 поддерживает напряжение на СБ, соответствующее оптимальной рабочей точке ВАХ СБ.

3. Мощность нагрузки больше мощности, генерируемой СБ (Рн больше РСБ).

Питание бортовых потребителей осуществляется от СБ и АБ. ЗУ 5 отключено. РН 3 обеспечивает поддержание напряжения на СБ1, соответствующее оптимальной рабочей точке ВАХ СБ.

Максимально возможная мощность генерируется СБ и через РН 3 поступает в нагрузку 241-24n. Стабилизацию напряжения на выходе СЭП обеспечивает РУ 4 за счет разряда АБ. Поскольку все выходные обмотки силовых трансформаторов 6 и 7 развязаны индивидуальными выпрямителями совместная параллельная работа РН 3 и РУ 4 на общие нагрузки легко обеспечивается. Кроме того, поскольку суммирование мощностей РН3 и РУ4 происходит на постоянном токе, отсутствуют общие контуры переменного тока. За счет этого улучшается электромагнитная обстановка и упрощается обеспечение ЭМС КА.

4. Солнечная батарея не генерирует мощность. РСБ равна 0.

Питание нагрузки осуществляется от АБ. Стабилизацию выходного напряжения осуществляет РУ 4. ЗУ 5 и РН 3 не работают.

5. Автономный режим заряда АБ.

Может быть реализован при выходе КА из аварийной ситуации, когда после потери ориентации СБ на Солнце произошло полное израсходование емкости АБ. Первоначальное восстановление ориентации СБ на Солнце может быть не полным, мощности СБ может быть недостаточно для питания даже дежурной не отключаемой нагрузки СЭП (все бортовые потребители, которые могут быть отключены, в этом случае обычно отключаются системой управления КА). В этом режиме вся генерируемая мощность СБ используется для заряда АБ 2 с помощью ЗУ 5. РН 3 и РУ 4 отключены сигналами УУ 9. После заряда АБ 2 до заданного уровня заряженности УКЗБ 10 выдает сигнал УУ 9 на разрешение работы РН 3 и РУ 4. Питание бортовых потребителей 241-24n восстанавливается в штатном режиме.

Таким образом, в предлагаемом изобретении повышается энергетическая эффективность СЭП за счет снижения потерь мощности при заряде АБ, исключения паразитных потерь мощности при работе от СБ, расширяются ее функциональные возможности за счет реализации режима автономного заряда АБ при аварийных ситуациях, улучшается ЭМС за счет исключения общих конструктивных контуров для различных силовых устройств с переменным силовым выходным током.

Система электропитания космического аппарата, состоящая из солнечной батареи, подключенной своими плюсовой и минусовой шинами к регулятору напряжения, выполненному по мостовой схеме инвертора, аккумуляторной батареи, подключенной своими плюсовой и минусовой шинами к входам разрядного устройства, построенного по мостовой схеме инвертора, и выходу зарядного устройства, причем регулятор напряжения и разрядное устройство подключены к разным согласующим трансформаторам, выходы регулятора напряжения соединены с первичной обмоткой первого силового трансформатора, а выходы разрядного устройства - с первичной обмоткой второго силового трансформатора, информационные выходы аккумуляторной батареи соединены с устройством контроля степени заряженности аккумуляторной батареи, управляющие входы зарядного устройства и инверторов регулятора напряжения солнечной батареи и разрядного устройства аккумуляторной батареи подключены к выходам устройства управления с экстремальным регулированием мощности солнечной батареи, первый вход которого соединен с управляющим выходом устройства контроля степени заряженности аккумуляторной батареи, отличающаяся тем, что зарядное устройство входами подключено к солнечной батарее, второй и третий входы устройства управления подключены соответственно к выходу дополнительно введенного датчика мощности и к одному из выходов для подключения нагрузки, выходные обмотки первого и второго силовых трансформаторов через индивидуальные выпрямители подключены параллельно к выходам для подключения нагрузки.



 

Похожие патенты:

Изобретение относится к области электротехники и силовой электроники, может быть использовано в системах бесперебойного электропитания автономных объектов постоянным током с двумя источниками электрической энергии, один из которых может накапливать электрическую энергию.

Изобретение относится к области электротехники и может быть использовано в системах бесперебойного электропитания постоянного тока без гальванической развязки нагрузки и двух источников, один из которых может накапливать электрическую энергию.

Использование: в области электротехники. Технический результат - уменьшение вероятности возникновения аварийной ситуации из-за нарушения энергобаланса системы электропитания (СЭП).

Использование: в области электротехники. Технический результат - повышение надежности системы автономного электроснабжения.

Изобретение относится к медицинской технике, а именно к спинальной хирургии, и может использоваться для лечения травм и заболеваний позвоночника, при его транспедикулярной фиксации (например, при грыже дисков, сколиозе и т.д.).

Изобретение относится к медицинской технике, а именно к спинальной хирургии, и может использоваться для лечения травм и заболеваний позвоночника, при его транспедикулярной фиксации (например, при грыже дисков, сколиозе и т.д.).

Использование: в области электротехники. Технический результат - повышение эффективности и надежности эксплуатации установки в неблагоприятных, отдаленных и/или высокоширотных условиях с одновременным сохранением и улучшением функциональных возможностей при эксплуатации и значительным снижением вмешательства оператора во время развертывания и эксплуатации.

Изобретение относится к области промышленной электроники и предназначено для построения системы гарантированного бесперебойного электропитания потребителей переменного и постоянного тока.

Изобретение относится к электротехнике. Технический результат - обеспечение непрерывности питания автономной системы беспроводной передачи данных.

Использование: в области электротехники. Технический результат - исключение возможности возникновения электростатических разрядов между цепочками фотодиодов солнечной батареи, уменьшение напряжения на вторичных обмотках трансформаторов и уменьшение габаритной мощности силовых элементов энергопреобразующих устройств, а также минимизация массогабаритных параметров системы электропитания автоматического космического аппарата в целом.

Группа изобретений относится к системе электропитания космического аппарата (КА). В способе питания нагрузки постоянным током в автономной системе электропитания КА от первичного источника, например солнечной батареи (СБ), и вторичного источника электроэнергии, например аккумуляторной батареи (АБ), стабилизируют «n» номиналов напряжения нагрузки и согласовывают работу первичного и вторичного источников электроэнергии на первом уровне стабилизации напряжения.

Изобретение относится к транспортным средствам. Способ управления гибридной силовой установкой транспортного средства, имеющего двигатель и избирательно подключаемые при помощи преобразователя постоянного тока в постоянный высоковольтную и низковольтную системы электроснабжения, содержит этапы, на которых определяют, целесообразно ли выполнить автоматическую остановку двигателя для уменьшения расхода топлива.

Изобретение относится к подаче электроэнергии к вспомогательному оборудованию транспортных средств. Система электропитания включает в себя первую схему, вторую схему и контроллер напряжения.

Использование: в области электротехники. Технический результат - уменьшение вероятности возникновения аварийной ситуации из-за нарушения энергобаланса системы электропитания (СЭП).

Использование: в области электротехники. Технический результат - повышение надежности системы автономного электроснабжения.

Группа изобретений относится к серверу и системе зарядки-разрядки, а также к способу управления сервером. Система содержит сервер и множество зарегистрированных транспортных средств, каждое из которых оснащено заряжаемым-разряжаемым аккумулятором и соединено с сервером с возможностью информационного обмена.

Группа изобретений относится к электротехнике и представляет собой трансформатор постоянного тока электродинамического типа. Технический результат состоит в расширении эксплуатационных возможностей.

Изобретение относится к зарядке транспортных средств. В способе зарядки транспортного средства управляют выходным напряжением преобразователя постоянного тока посредством устройства управления при подключении к внешнему источнику электроэнергии, так что нулевой ток течет в и из вспомогательной аккумуляторной батареи в ответ на состояние заряда вспомогательной аккумуляторной батареи, превышающее пороговое значение.

Использование: в области электротехники. Технический результат - повышение эффективности и надежности эксплуатации установки в неблагоприятных, отдаленных и/или высокоширотных условиях с одновременным сохранением и улучшением функциональных возможностей при эксплуатации и значительным снижением вмешательства оператора во время развертывания и эксплуатации.

Изобретение относится к электротехнике, а именно к системам электропитания (СЭП) автономных объектов, использующих в качестве накопителей энергии аккумуляторные батареи.

Использование: в области электротехники. Технический результат - повышение энергетической эффективности, расширение функциональных возможностей бортовых систем электропитания, улучшение электромагнитной совместимости. Система электропитания космического аппарата состоит из солнечной батареи, подключенной своими плюсовой и минусовой шинами к регулятору напряжения, выполненному по мостовой схеме инвертора, аккумуляторной батареи, подключенной своими плюсовой и минусовой шинами к входам разрядного устройства, построенного по мостовой схеме инвертора, и выходу зарядного устройства, причем регулятор напряжения и разрядное устройство подключены к разным согласующим трансформаторам, выходы регулятора напряжения соединены с первичной обмоткой первого силового трансформатора, а выходы разрядного устройства - с первичной обмоткой второго силового трансформатора, информационные выходы аккумуляторной батареи соединены с устройством контроля степени заряженности аккумуляторной батареи, управляющие входы зарядного устройства и инверторов регулятора напряжения солнечной батареи и разрядного устройства аккумуляторной батареи подключены к выходам устройства управления с экстремальным регулированием мощности солнечной батареи, первый вход которого соединен с управляющим выходом устройства контроля степени заряженности аккумуляторной батареи. В системе электропитания космического аппарата зарядное устройство входами подключено к солнечной батарее, второй и третий входы устройства управления подключены соответственно к выходу дополнительно введенного датчика мощности и к одному из выходов для подключения нагрузки, выходные обмотки первого и второго силовых трансформаторов через индивидуальные выпрямители подключены параллельно к выходам для подключения нагрузки. 2 ил.

Наверх