Телескопическая оптическая система типа галилея

Изобретение может быть использовано, например, в лазерных дальномерах. Телескопическая оптическая система типа Галилея состоит из объектива и окуляра. Объектив выполнен в виде двух положительных компонентов, первый из которых по ходу лучей - склеенный из двояковыпуклой и двояковогнутой линз, второй - мениск, обращенный вогнутостью к изображению. Окуляр - одиночная двояковогнутая линза с равными по модулю радиусами оптических поверхностей. Показатель преломления материала окуляра для линии е более 1,74 и менее 2,3, коэффициент дисперсии материала окуляра для линии е более 14 и менее 29,5, а коэффициент дисперсии материала второго компонента объектива для линии е более 47 и менее 64. Технический результат - повышение видимого увеличения и технологичности при высоком качестве изображения, увеличение диаметра входного зрачка и угла поля в пространстве предметов. 2 з.п. ф-лы, 1 ил., 4 табл.

 

Изобретение относится к оптическому приборостроению и может быть использовано в оптических системах, работающих с лазерами, например, в лазерных дальномерах.

Известна телескопическая оптическая система типа Галилея, описанная в патенте РФ №2209455, МПК G02B 23/00, опубл. 27.07.2003 г. Оптическая система содержит объектив и окуляр. Объектив выполнен в виде двух положительных компонентов, первый из которых по ходу лучей - склеенный из двояковыпуклой и двояковогнутой линз, второй - одиночная плосковыпуклая линза, обращенная плоскостью к изображению, а окуляр -одиночная двояковогнутая линза с равными по модулю радиусами оптических поверхностей. Телескопическая оптическая система при юстировке выставляется визуально на ноль диоптрий для длины волны 589 нм путем изменения второго воздушного промежутка. Так как оптическая система ахроматизована для длин волн 589 нм и 1540 нм, то и для рабочей длины волны лазера 1540 нм телескопическая оптическая система при юстировке автоматически устанавливается на ноль диоптрий. Данная оптическая система обеспечивает недостаточное видимое увеличение 5,5 крат, имеет недостаточный диаметр входного зрачка 22,5 мм и малый угол поля в пространстве предметов 2'30''.

Наиболее близкой к заявляемому техническому решению является телескопическая оптическая система типа Галилея, описанная в патенте РФ №2562930, МПК G02B 23/00, опубл. 10.09.2015 г. Оптическая система содержит объектив и окуляр. Объектив выполнен в виде двух положительных компонентов, первый из которых по ходу лучей - склеенный из двояковыпуклой и двояковогнутой линз, второй - одиночная двояковыпуклая линза, а окуляр - одиночная двояковогнутая линза с равными по модулю радиусами оптических поверхностей. В данной оптической системе отношение радиуса первой оптической поверхности по ходу лучей второго компонента объектива к радиусу второй оптической поверхности этого компонента по модулю равно 0,0091. Телескопическая оптическая система при юстировке выставляется визуально на ноль диоптрий для длины волны 589 нм путем изменения второго воздушного промежутка. Так как оптическая система ахроматизована для длин волн 589 нм и 1540 нм, то и для рабочей длины волны лазера 1540 нм телескопическая оптическая система при юстировке автоматически устанавливается на ноль диоптрий. Данная оптическая система обеспечивает недостаточное видимое увеличение 10 крат, имеет недостаточный диаметр входного зрачка 24 мм и малый угол поля в пространстве предметов 4'30''. Кроме того, данная оптическая система при юстировке выставляется визуально для длины волны 589 нм, что не оптимально, так как максимум чувствительности человеческого глаза приходится на длину волны 555,5 нм, что недостаточно близко к длине волны 589 нм, следовательно, данная телескопическая оптическая система недостаточно технологична при сборке.

Задачей заявляемого изобретения является создание телескопической оптической системы с повышенными эксплуатационными характеристиками и повышенной технологичностью.

Технический результат - повышение видимого увеличения, увеличение диаметра входного зрачка, увеличение угла поля в пространстве предметов и повышение технологичности при высоком качестве изображения.

Это достигается тем, что в телескопической оптической системе типа Галилея, состоящей из объектива и окуляра, объектив выполнен в виде двух положительных компонентов, первый из которых по ходу лучей - склеенный из двояковыпуклой и двояковогнутой линз, второй - одиночная линза, а окуляр - одиночная двояковогнутая линза с равными по модулю радиусами оптических поверхностей, при этом, показатель преломления материала окуляра для линии е более 1,74 и менее 2,3, коэффициент дисперсии материала окуляра для линии е более 14 и менее 29,5, а коэффициент дисперсии материала второго компонента объектива для линии е более 47 и менее 64, в отличие от известного, второй компонент объектива выполнен в виде мениска, обращенного вогнутостью к изображению.

Кроме того, показатель преломления материала второго компонента объектива для линии е может быть более 1,6 и менее 1,7, а отношение радиуса первой оптической поверхности по ходу лучей второго компонента объектива к радиусу второй оптической поверхности этого компонента по модулю может быть более 0,04 и менее 0,1.

На фигуре представлена оптическая схема предложенной телескопической системы.

Телескопическая оптическая система типа Галилея (фиг.) состоит по ходу лучей из объектива, содержащего два положительных компонента и окуляра. Первый компонент объектива - склеенный из двояковыпуклой линзы 1 и двояковогнутой линзы 2, второй компонент - одиночный мениск 3, обращенный вогнутостью к изображению. Окуляр выполнен в виде одиночной двояковогнутой линзы 4 с равными по модулю радиусами оптических поверхностей.

Телескопическая оптическая система типа Галилея работает следующим образом. Объектив, состоящий из двух компонентов, включающий в себя линзы 1,2,3, создает мнимое прямое промежуточное изображение объекта вблизи фокальной плоскости окуляра (на фиг. не показана), а окуляр, выполненный в виде одиночной двояковогнутой линзы 4, переносит изображение в бесконечность. Предлагаемая телескопическая оптическая система может работать и в обратном ходе лучей (с уменьшением).

Использование предлагаемой телескопической оптической системы в составе лазерного дальномера позволяет существенно увеличить дальность измерения дальномера пропорционально увеличению кратности телескопа. Телескопическая оптическая система при юстировке выставляется визуально на ноль диоптрий для длины волны 546 нм путем изменения второго воздушного промежутка. Так как оптическая система ахроматизована для длин волн 546 нм и 1540 нм, то и для рабочей длины волны лазера 1540 нм телескопическая оптическая система при юстировке автоматически устанавливается на ноль диоптрий.

В соответствии с предложенным решением рассчитаны три варианта конкретного исполнения телескопической оптической системы для длины волны 1540 нм, ахроматизованные для длин волн 1540 нм и 546 нм.

Характеристики рассчитанной телескопической системы по первому варианту исполнения:

видимое увеличение, крат 11,04
диаметр входного зрачка, мм 25
диаметр выходного зрачка, мм 2,27
угол поля зрения 5'
удаление выходного зрачка, мм 8
длина, мм 49,87

Показатель преломления материала окуляра для линии е равен 1,761712; коэффициент дисперсии материала окуляра для линии е равен 27,32.

Показатель преломления материала второго компонента объектива для линии е равен 1,615506.

Коэффициент дисперсии материала второго компонента объектива для линии е равен 60,34.

Отношение радиуса первой оптической поверхности по ходу лучей второго компонента объектива к радиусу второй оптической поверхности этого компонента по модулю равно 0,05395.

Конструктивные параметры оптической системы для первого варианта исполнения приведены в табл. 1.

Характеристики рассчитанной телескопической системы по второму варианту исполнения:

видимое увеличение, крат 11,04
диаметр входного зрачка, мм 25
диаметр выходного зрачка, мм 2,26
угол поля зрения 5'
удаление выходного зрачка, мм 8
длина, мм 49,3

Показатель преломления материала окуляра для линии е равен 1,761712; коэффициент дисперсии материала окуляра для линии е равен 27,32.

Показатель преломления материала второго компонента объектива для линии е равен 1,606263.

Коэффициент дисперсии материала второго компонента объектива для линии е равен 60,38.

Отношение радиуса первой оптической поверхности по ходу лучей второго компонента объектива к радиусу второй оптической поверхности этого компонента по модулю равно 0,05835.

Конструктивные параметры оптической системы для второго варианта исполнения приведены в табл. 2.

Характеристики рассчитанной телескопической системы по третьему варианту исполнения:

видимое увеличение, крат 11
диаметр входного зрачка, мм 25
диаметр выходного зрачка, мм 2,27
угол поля зрения 5'
удаление выходного зрачка, мм 8
длина, мм 49,43

Показатель преломления материала окуляра для линии е равен 1,761712; коэффициент дисперсии материала окуляра для линии е равен 27,32.

Показатель преломления материала второго компонента объектива для линии е равен 1,659961.

Коэффициент дисперсии материала второго компонента объектива для линии е равен 50,81.

Отношение радиуса первой оптической поверхности по ходу лучей второго компонента объектива к радиусу второй оптической поверхности этого компонента по модулю равен 0,07674.

Конструктивные параметры оптической системы для третьего варианта исполнения приведены в табл. 3.

В табл. 4 приведены аберрации трех рассчитанных вариантов предложенной телескопической оптической системы для длины волны 1540 нм.

Предлагаемая телескопическая оптическая система имеет повышенное видимое увеличение - 11 крат, увеличенный диаметр входного зрачка - 25 мм, повышенное поле зрения 2W=5'. Кроме того, предлагаемая телескопическая оптическая система выставляется на ноль диоптрий для длины волны 546 нм, что более технологично по сравнению с ближайшим аналогом, в котором оптическая система выставляется для длины волны 589 нм. Таким образом, в результате предложенного решения обеспечено получение технического результата - создана телескопическая оптическая система типа Галилея с повышенным видимым увеличением, увеличенными диаметром входного зрачка и углом поля в пространстве предметов при повышенной технологичности при высоком качестве изображения.

1. Телескопическая оптическая система типа Галилея, состоящая из объектива и окуляра, объектив выполнен в виде двух положительных компонентов, первый из которых по ходу лучей - склеенный из двояковыпуклой и двояковогнутой линз, второй - одиночная линза, а окуляр - одиночная двояковогнутая линза с равными по модулю радиусами оптических поверхностей, показатель преломления материала окуляра для линии е более 1,74 и менее 2,3, коэффициент дисперсии материала окуляра для линии е более 14 и менее 29,5, а коэффициент дисперсии материала второго компонента объектива для линии е более 47 и менее 64, отличающаяся тем, что второй компонент объектива выполнен в виде мениска, обращенного вогнутостью к изображению.

2. Телескопическая оптическая система типа Галилея по п. 1, отличающаяся тем, что показатель преломления материала второго компонента объектива для линии е более 1,6 и менее 1,7.

3. Телескопическая оптическая система типа Галилея по п. 1, отличающаяся тем, что отношение радиуса первой оптической поверхности по ходу лучей второго компонента объектива к радиусу второй оптической поверхности этого компонента по модулю более 0,04 и менее 0,1.



 

Похожие патенты:

Узел для крепления и расфиксации подвижных элементов конструкции космического аппарата относится к оптическому приборостроению, космической технике и астрономии и может быть использован при разработке узлов крепления, в частности, крышек телескопов, предназначенных для наблюдения астрономических объектов в рентгеновском диапазоне спектра электромагнитного излучения.

Оптический прицел может быть использован в охотничьих и спортивных оптических прицелах постоянного увеличения с увеличенным полем зрения. Оптический прицел состоит из двухкомпонентного объектива, оборачивающей системы, состоящий из двух положительных компонентов, двухкомпонентного окуляра, плоскопараллельной пластинки с прицельной маркой и шкалами, перемещаемой перпендикулярно оптической оси и размещенной в плоскости действительного изображения оборачивающей системы, полевой диафрагмы, Между фокусными расстояниями объектива, окуляра, первого и второго компонентов объектива и оборачивающей системы, первого компонента окуляра, удалением выходного зрачка прицела от последней поверхности окуляра выполняются соотношения, приведенные в формуле изобретения.

Зеркально-линзовый объектив содержит установленные последовательно по ходу луча главное вогнутое с центральным отверстием гиперболоидальное зеркало, вторичное выпуклое гиперболоидальное зеркало и линзовую систему с оптической силой ϕл.с., выполненную из одиночных линзовых компонентов и установленную позади главного зеркала.

Способ борьбы с засветкой астрономических приборов светом уличных осветительных приборов включает разделение периодов работы осветительных приборов и астрономических приборов по времени.
Катадиоптрический телескоп может быть использован для обнаружения и каталогизации космических объектов в области спектра 400-850 нм. Катадиоптрический телескоп содержит главное вогнутое сферическое зеркало 1, корректирующий элемент 2 и установленный перед фокальной плоскостью телескопа линзовый компенсатор внеосевых аберраций 3, состоящий из афокальной 3(1) и силовой 3(2) частей.

Комплекс может быть использован для наблюдения небесных тел в ясную, пасмурную и дождливую погоду. Комплекс содержит наземный телескоп с блоком управления, его защитное укрытие с его блоком управления, наземный пункт управления комплексом.

Голографический коллиматорный прицел с синтезированным зрачком содержит лазерный диод, коллимирующий объектив, дифракционную решетку пропускающего типа, голографический формирователь неподвижной метки в виде объемной пропускающей голограммы, стеклянную пластинку, выполняющую роль световода.

Оптическая система прицела состоит из расположенных по ходу лучей объектива, плоскопараллельной пластинки с прицельной маркой и шкалами, оборачивающей системы, полевой диафрагмы и окуляра.

Оптическое устройство относится к оптическому приборостроению и может быть использовано в устройствах, предназначенных для внешнетраекторных измерений в космической геодезии и полигонных измерениях.

Телескоп // 2603820
Предлагаемое изобретение относится к области контрольно-измерительной техники, а именно к телескопическим оптическим системам, используемым для измерения параллельности визирных осей двух или более контролируемых оптических систем в видимом диапазоне спектра.

Изобретение может быть использовано, например, в лазерных дальномерах. Телескопическая оптическая система типа Галилея состоит из объектива и окуляра. Объектив выполнен в виде двух положительных компонентов, первый из которых по ходу лучей - склеенный из двояковыпуклой и двояковогнутой линз, второй - мениск, обращенный вогнутостью к изображению. Окуляр - одиночная двояковогнутая линза с равными по модулю радиусами оптических поверхностей. Показатель преломления материала окуляра для линии е более 1,74 и менее 2,3, коэффициент дисперсии материала окуляра для линии е более 14 и менее 29,5, а коэффициент дисперсии материала второго компонента объектива для линии е более 47 и менее 64. Технический результат - повышение видимого увеличения и технологичности при высоком качестве изображения, увеличение диаметра входного зрачка и угла поля в пространстве предметов. 2 з.п. ф-лы, 1 ил., 4 табл.

Наверх