Способ стабилизации диффузионного горения водорода в газовой микрогорелке

Изобретение относится к области энергетики. Изобретение может быть использовано для термообработки металлов, ремонта и изготовления ювелирных изделий, стоматологических протезов, пайки проводов, декоративного обжига столярных изделий, отжига старой краски. Способ стабилизации диффузионного горения водорода в газовой микрогорелке включает генерацию микроструи водорода в цилиндрическом сопле или сопле Лаваля со сверхзвуковой скоростью истечения на выходе среза цилиндрического сопла или в критическом сечении сопла Лаваля. Струю водорода генерируют в сопле со сверхзвуковой скоростью в цилиндрическом сопле с диаметром на выходе, равным от 0,1 до 3 мм, или в сопле Лаваля с диаметром в критическом сечении, равным от 0,1 до 3 мм, а поджиг струи водорода осуществляют на удалении от выхода сопла, где образуется устойчивая турбулентная зона перемешивания струи водорода с воздухом и горение в виде оторвавшегося от сопла пламени, переходящее в стабильное турбулентное горение во всей рабочей области факела. Технический результат - стабилизация диффузионного микроструйного горения водорода на сверхзвуковых скоростях истечения микроструи и обеспечение устойчивого горения водорода. 2 ил.

 

Изобретение относится к области сжигания топлива (газообразного водорода) при сверхзвуковых скоростях истечения микроструи при ее диффузионном горении.

Изобретение может быть использовано для термообработки металлов, декоративного обжига столярных изделий, отжига старой краски, ремонта и изготовления стоматологических протезов, пайки проводов, декоративного обжига столярных изделий, отжига старой краски.

Из уровня техники известен патент, в котором заявлены способ и горелка для сжигания водорода [1]. При диффузионном горении водород и окислитель подаются в горелку, причем, кроме того, основное направление протекания определяется направлением протекания окислителя, а водород в направленном в основном перпендикулярно к основному направлению протекания поперечном потоке распределяется по отдельным зонам горения. Изобретение заключается в том, что в качестве окислителя используется воздух и поперечный поток связан с мелкодисперсным распределением по большому количеству отдельных микрозон горения.

Недостатком является: значительные технологические затраты из-за увеличения количества зон горения.

За прототип выбран способ, описанный в статье [2] в которой раскрывается сценарий сверхзвукового диффузионного горения круглой микроструи водорода. Показаны основные признаки сверхзвукового диффузионного горения круглой микроструи водорода: исчезновение «области перетяжки пламени» это область устойчивого процесса горения в ситуации дозвукового горения микроструи водорода (в данной ситуации эта область исчезает по причине отрыва (или приподнятости пламени, как принято называть данное явление в научной литературе) пламени от среза сопла - см фиг. 1, 2), отрыв пламени от среза сопла и наличие сверхзвуковых ячеек в оторвавшемся пламени. Установлена основная причина данного сценария диффузионного горения, связанная с температурным фактором, т.е. с наличием тонкостенных микросопел с малой теплоемкостью и возможностью их быстрого охлаждения, что не дает возможности существовать «области перетяжки пламени» на больших скоростях истечения микроструи.

Задачей изобретения является создание условий для стабилизации диффузионного микроструйного горения водорода на сверхзвуковых скоростях истечения микроструи и обеспечения устойчивого горения водорода, связанного с наличием тонкостенных микросопел с малой теплоемкостью и возможностью их быстрого охлаждения, что не дает возможности существовать «области перетяжки пламени» на больших скоростях истечения микроструи, а стабилизирующим фактором при этом является приподнятость (или отрыв от среза сопла) пламени и наличие сверхзвуковых ячеек.

Поставленная задача реализуется благодаря способу стабилизации диффузионного горения водорода в газовой горелке, который включает генерацию струи водорода в цилиндрическом сопле или сопле Лаваля с трансзвуковой скоростью истечения на срезе сопла, для цилиндра или критического сечения, для сопла Лаваля. Согласно изобретению струю водорода генерируют со сверхзвуковой скоростью на выходе цилиндрического сопла с диаметром от 0,1 до 3 мм или в сопле Лаваля с диаметром в критическом сечении от 0,1 до 3 мм, при достижении струи водорода сверхзвуковой скорости осуществляют поджиг на удалении от среза сопла равное порядка 50, (где l - расстояние от среза сопла, d - диаметр на срезе сопла), где образуется устойчивая турбулентная зона перемешивания и горения в виде оторвавшегося от сопла пламени.

Использование изобретения позволяет повысить устойчивость (стабильность) факела к срыву на сверхзвуковой скорости истечения микроструи водорода и возможности сохранять неизменность направленности факела в независимости от пространственной ориентации микрогорелки.

Способ стабилизации диффузионного горения водорода реализуется в газовой микрогорелке, которая показана на фиг. 1.

Диффузионная газовая горелка состоит из корпуса 1 с набором детурбулизирующих сеток 2 и хонейкомба 3 для создания сверхзвукового течения на выходе микроструи из цилиндрического микросопла 4 или сопла Лаваля 5. Микросопло 4 имеет цилиндрическую форму, либо форму сопла Лаваля 5, с диаметром выходного отверстия (либо диаметром в критическом сечении) от 0,1 до 3 мм. Водород подается в газовую горелку из баллона 6 с регулятором расхода газа 7 через измерительный прибор 8 величины объемного расхода водорода. На выходе микроструи из сопла реализуется турбулентное пламя 9 с наличием сверхзвуковых «ячеек» 10.

На Фиг. 2 - для примера, представлены теневые картины диффузионного горения водорода, истекающего из круглого выходного отверстия микросопла 4 диаметром 450 мкм (Sсопла=πd2/4=3,14×0,045 см2/4=0,0016 см2; U=Q(см3/ceк)/Sсопла (см2)=U(м/сек) при различной скорости истечения микроструи U(м/сек) показаны на фиг. 2: а - 500, b - 562, с - 625, d - 656,e - 687.

При достижении струи водорода сверхзвуковой скорости в области «ячеек», осуществляют по джиг на удалении от среза сопла (равное порядка 50), где образуется устойчивая турбулентная зона перемешивания и горения в виде оторвавшегося от сопла пламени..

Использование предлагаемого способа стабилизации диффузионного горения водорода в газовой горелке с микросоплом при поджиге водорода на удалении от среза сопла образует устойчивую зону перемешивания и горения в виде удаленного от срезом сопла пламени, обеспечивающего турбулентное сверхзвуковое горение с наличием сверхзвуковых «ячеек» во всей рабочей области факела.

Источники информации

1. Патент RU 2152559, F23D 14/22,1996 г;

2. Козлов В.В., Грек Г.Р., Литвиненко М.В., Литвиненко Ю.А., Шмаков А.Г. Экспериментальное исследование диффузионного горения высокоскоростной круглой микроструи водорода. Часть 2. Приподнятое пламя, сверхзвуковое течение // Сибирский физический журнал. 2017. Т. 12, №2. С. 46-59. - прототип

Способ стабилизации диффузионного горения водорода в газовой микрогорелке, включающий генерацию микроструи водорода в цилиндрическом сопле или сопле Лаваля со сверхзвуковой скоростью истечения на выходе среза цилиндрического сопла или в критическом сечении сопла Лаваля, отличающийся тем, что струю водорода генерируют в сопле со сверхзвуковой скоростью в цилиндрическом сопле с диаметром на выходе, равным от 0,1 до 3 мм, или в сопле Лаваля с диаметром в критическом сечении, равным от 0,1 до 3 мм, а поджиг струи водорода осуществляют на удалении от выхода сопла, где образуется устойчивая турбулентная зона перемешивания струи водорода с воздухом и горение в виде оторвавшегося от сопла пламени, переходящее в стабильное турбулентное горение во всей рабочей области факела.



 

Похожие патенты:

Изобретение относится к области энергетики. Способ стабилизации диффузионного горения водорода в газовой микрогорелке включает генерацию микроструи водорода в коническом сопле горелки с дозвуковой скоростью истечения, струю водорода генерируют в сопле с диаметром на срезе от 0,02 до 0,06 мм, затем поджиг осуществляют непосредственно на срезе сопла, обеспечивая тем самым устойчивую зону перемешивания струи водорода с воздухом и горение в виде присоединенного факела, при этом временный прогрев среза сопла обеспечивает стабильное дозвуковое ламинарное горение как на срезе сопла, так и по всей длине рабочей области факела.

Изобретение относится к газогорелочным устройствам и может быть применено в газовой промышленности для сжигания попутных и продувочных газов, особенно содержащих конденсат и сероводородные соединения.

Изобретение относится к области энергетики. Блок горелки (100) для сжигания низкокалорийных газов, протекающих через первую цилиндрическую трубу, содержит трубу (102) горелки, расположенную вдоль по оси (104) трубы горелки, причем труба (102) горелки содержит расширительную трубу (112), соединенную с первой трубой, причем площадь поперечного сечения расширительной трубы, проходящая по существу перпендикулярно оси (104) трубы горелки, больше площади поперечного сечения первой трубы; распределительный узел (120), расположенный внутри нижней по потоку части расширительной трубы (112), распределительный узел (120) имеет верхний по потоку конец (122), обращенный к верхней по потоку части расширительной трубы (112) и нижний по потоку конец (124) распределительного узла, причем распределительный узел (120) определяет максимальную площадь поперечного сечения распределительного узла, проходящую по существу перпендикулярно к оси (104) трубы горелки, причем максимальная площадь поперечного сечения распределительного узла составляет приблизительно от 30% до 50% площади поперечного сечения расширительной трубы; множество направляющих лопаток (130), соединяющих расширительную трубу (112) и распределительный узел (120), каждая из множества направляющих лопаток (130) содержит верхнюю по потоку поверхность (132), обращенную к верхней по потоку части расширительной трубы (112), и ориентированную под углом направляющей лопатки, который составляет приблизительно от 20 до 45 градусов, относительно оси (104) трубы горелки; и дефлектор (140) соединенный с распределительным узлом (120), причем внешняя поверхность дефлектора (146) имеет по существу форму усеченного конуса, проходящую радиально наружу от оси (104) трубы горелки и в осевом направлении ниже по потоку от нижнего по потоку конца (124) распределительного узла, внешняя поверхность (146) дефлектора ориентирована под углом, который составляет приблизительно от 20 до 45 градусов, относительно оси (104) трубы горелки.

Изобретение относится к горелочным устройствам, предназначенным для сжигания топлива в печах и других теплотехнических устройствах различного назначения. Горелка факельная содержит цилиндрический корпус с патрубком для устройства розжига и контроля факела пилотной горелки, установленный в полости корпуса коаксиально и защищенный экраном кольцевой газовый коллектор со сменными соплами, оси каналов трубок которых направлены под острым углом к плоскости оси горелки, трубопровод подачи газа, регулируемый воздуховод, образованный центральным отверстием кольцевого газового коллектора и управляемым завихрителем в нем, в цилиндрическом корпусе, в месте расположения запального патрубка, установлен дополнительный патрубок, соединенный с контролирующим соплом, корпус которого соединен трубкой через игольчатый вентиль с кольцевым газовым коллектором и трубопроводом подачи газа, а на выходе из торцевого отверстия корпуса контролирующего сопла, размещенного в дополнительном патрубке, установлен датчик контроля пламени, не реагирующий на факел пилотной горелки, причем на боковой поверхности корпуса контролирующего сопла выполнены инжекционные отверстия для воздуха и установлена поворотная заслонка.

Изобретение относится к двухтрубным щелевым горелкам с принудительной подачей воздуха, предназначенным для сжигания газа. Щелевая горелка с принудительной подачей воздуха содержит воздухораспределительный короб с воздухоподающим патрубком, соединенным с дутьевым вентилятором, щелевой канал, образованный блоками из огнеупорного материала и соединенный с воздухоподводящим каналом, направляющие стенки, установленные в воздухоподводящем канале, и двухтрубный коллектор, расположенный в воздухоподводящем канале под блоками из огнеупорных материалов, каждая трубка которого содержит один ряд газовыпускных отверстий, каждый из которых повернут под углом 45° по отношению к поперечному потоку воздуха, дополнительно снабжена щелевым коробом с параллельными направляющими стенками, облицованными внутри монолитными плитами из огнеупорного материала, на выходе воздухораспределительного короба установлена стальная воздухораспределительная решетка, вставленная между двумя стальными пластинами, расстояние между которыми равно ширине щелевого канала, причем площадь живого сечения отверстий воздухораспределительной решетки больше площади сечения воздухоподающего патрубка воздухораспределительного короба в 0,4-0,7 раз, а боковые поверхности воздухораспределительного короба выполнены клиновидными.

Изобретение относится к области энергетики, в частности к агрегатам для увлажнения снежной массы при поточном строительстве снеголедовых дорог и грунтовых аэродромов в Северных районах.

Изобретение относится к устройствам, предназначенным для сжигания сбросных газов с целью их утилизации. Факельный оголовок содержит газоподводящий патрубок, установленный на входе в смеситель, представляющий собой полую обечайку с профилированным входом и выходом, при этом на смесителе закреплены два кольцевых коллектора, расположенных на одной оси и соединенных между собой с помощью пневматических форсунок, расположенных равномерно по окружности, причем один коллектор соединен с системой подачи сбросного газа, а другой коллектор соединен с системой подачи воды, в варианте исполнения пневматические форсунки расположены под углом к оси смесителя.

Изобретение относится к газогорелочным устройствам и может найти применение при сжигании попутных нефтяных газов. Труба факельная включает опору, корпус и штуцер ввода газа.

Изобретение относится к устройству факельных установок и может быть использовано в нефтегазовой, нефтехимической, химической, коксохимической и других отраслях промышленности для полного сжигания сбросов факельных горючих газов.

Изобретение относится к оголовкам факельной установки для сжигания аварийных выбросов газа и может быть использовано в нефтегазодобывающей и других отраслях промышленности, связанных с аварийным сжиганием газа.

Изобретение относится к области энергетики. Изобретение может быть использовано для термообработки металлов, ремонта и изготовления ювелирных изделий, стоматологических протезов, пайки проводов, декоративного обжига столярных изделий, отжига старой краски. Способ стабилизации диффузионного горения водорода в газовой микрогорелке включает генерацию микроструи водорода в цилиндрическом сопле или сопле Лаваля со сверхзвуковой скоростью истечения на выходе среза цилиндрического сопла или в критическом сечении сопла Лаваля. Струю водорода генерируют в сопле со сверхзвуковой скоростью в цилиндрическом сопле с диаметром на выходе, равным от 0,1 до 3 мм, или в сопле Лаваля с диаметром в критическом сечении, равным от 0,1 до 3 мм, а поджиг струи водорода осуществляют на удалении от выхода сопла, где образуется устойчивая турбулентная зона перемешивания струи водорода с воздухом и горение в виде оторвавшегося от сопла пламени, переходящее в стабильное турбулентное горение во всей рабочей области факела. Технический результат - стабилизация диффузионного микроструйного горения водорода на сверхзвуковых скоростях истечения микроструи и обеспечение устойчивого горения водорода. 2 ил.

Наверх