Способ инъекционного закрепления валунно-галечникового грунта с незаполненными пустотами и высокими скоростями фильтрационного потока в них

Изобретение относится к области строительства, в частности к способам инъекционного закрепления грунтов, например валунно-галечниковых, с незаполненными пустотами и скоростью фильтрационного потока в них более 2400 м/сут. Способ инъекционного закрепления валунно-галечникового грунта с незаполненными пустотами и высокими скоростями фильтрационного потока в них включает бурение скважины, после ее проходки установку в скважину перфорированной трубы, оборудование обоймы, установку инъектора с надетой на него резиновой манжетой. Для создания инъекционной завесы высокой плотности и водонепроницаемости в пространство между обсадной 1 и перфорированной 2 трубами отсыпают гравийную обойму из сортированного промытого гравия с размером фракций 4-10 мм, получая при этом инъекционную камеру, ограниченную стенкой перфорированной трубы, гравийной обоймой и резиновой манжетой. Затем извлекают обсадную трубу, опускают инъектор-трубу с открытым торцом в перфорированную трубу, обеспечивая в инъекционной камере оптимальное давление и равномерное распределение расхода инъекционного раствора через стенки перфорированной трубы и слоя гравийной обоймы в зоне инъекции. Технический результат состоит в обеспечении равномерного распределения расхода инъекционного раствора по всей зоне инъекции, создании оптимального давления в инъекционной камере для получения экономичного профиля инъекционной завесы за счет уменьшения радиуса распространения раствора. 1 ил.

 

Изобретение относится к области строительства, в частности к способам инъекционного закрепления грунтов, например, валунно-галечниковых, с незаполненными пустотами и скоростью фильтрационного потока в них более 2400 м/сут.

Приведенные выше условия закрепления валунно-галечниковых грунтов являются граничными, при которых их цементация становится практически невозможной из-за выноса частиц раствора фильтрационным потоком.

Известен способ закрепления крупнозернистых песчано-гравелистых грунтов с коэффициентом фильтрации 290-309 м/сут, путем бурения скважин, позонным нагнетанием цементно-глинистого инъекционного раствора под давлением 30-60 атм. через перфорированную трубу с резиновыми манжетами, работающими как клапаны - открывающие отверстия при нагнетании раствора, пропуская его в грунт, и закрывающие перфорацию трубы после снятия давления (журнал Гидротехническое строительство, №9, 1959 г., С. 5).

Недостатком аналога является то, что по указанной технологии невозможно закрепить крупнообломочные валунно-галечниковые грунты с незаполненными пустотами, в которых скорости фильтрационного потока могут достигать более 2400 м/сут. Так как инъекционный раствор, под высоким давлением 30-60 атм., подаваемый через манжетную колонку в зоне инъекции разрывает цементно-глинистую обойму, благодаря этому он распространяется на большие расстояния в инъектируемой зоне, заполняя наиболее крупные сообщающиеся пустоты закрепляемого грунта, и образует несколько сосредоточенных выходов, закрепляя при этом лишь часть объема инъектируемого грунта. Закрепление крупнообломочного грунта по указанной технологии не дает возможности получить проектную плотность и водонепроницаемость инъекционной противофильтрационной завесы. Возникает необходимость бурения дополнительных скважин, тем самым значительно удорожая стоимость работ.

Известен способ инъекционного закрепления крупнообломочных грунтов с незаполненными пустотами и скоростью фильтрационного потока более 2400 м/сут., включающем предварительный замыв песчаной пульпой с введением добавок, например, песчаной пульпы с добавкой опилок, шлака, волокнистого материала, быстросхватывающих смесей или резиновой крошки в инъекционный раствор при замыве межвалунных пустот, с помощью которых резко снижается скорость фильтрационного потока, после окончания замыва пустот инъекцию закрепляющих растворов производят через пробуренные скважины под обсадной трубой, методом их сближения, с дальнейшей установкой в скважину манжетной колонки с резиновыми манжетами и пластичной обоймой (ВСН 34-83 Цементация скальных оснований гидротехнических сооружений. - Ленинград, Министерство энергетики и электрификации СССР, 1984 г., С. 30, п. 14-17).

По наибольшему количеству сходных признаков и достигаемому при использовании способа результату данное техническое решение выбрано в качестве прототипа.

Недостатками прототипа является высокая стоимость способа и значительное увеличение сроков реализации проекта, связанное с необходимостью бурения скважин большого диаметра при песковании; бурение дополнительных скважин для неоднократного повторения технологии по пескованию и последующего инъектирования растворов, а так же проведения двухэтапной технологии по пескованию и последующего закрепления грунта инъекцией раствора для полной реализации проекта.

Приведенные недостатки прототипа указывают на то, что предварительное заполнение пустот пескованием и использование манжетных колонок с глиноцементной обоймой для гидрогеологических условий, которые представлены валунно-галечниковыми грунтами с незаполненными пустотами, как показала практика, возможно, но со значительным перерасходом материалов и увеличением сроков ввода объекта. В целом же указанный способ экономически нерентабельный.

Для указанных гидрогеологических условий нагнетание раствора в межвалунные пустоты производится без давления или с давлением, соответствующим потерям напора в коммуникациях (А.Н. Адамович. Закрепление грунтов и противофильтрационные завесы в гидроэнергетическом строительстве. - М: Энергия, 1980 г., С. 96). Поэтому указанные выше гидрогеологические условия являются граничными для перехода от цементационного способа закрепления грунтов (при высоких давлениях подачи раствора через нагнетатели с глиноцементной обоймой) к инъекционному способу нагнетания специальных растворов при низких давлениях.

Технический результат, на достижение которого направлено изобретение состоит в равномерном распределении расхода инъекционного раствора по всей зоне инъекции, создании оптимального давления в инъекционной камере для получения экономичного профиля инъекционной завесы за счет уменьшения радиуса распространения раствора, тем самым обеспечивая ее проектную плотность и водонепроницаемость.

Для достижения указанного технического результата в способе инъекционного закрепления валунно-галечникового грунта с незаполненными пустотами и высокими скоростями фильтрационного потока в них, включающем бурение скважины, после ее проходки установку в скважину перфорированной трубы, оборудование обоймы, установку инъектора с надетой на него резиновой манжетой, для создания инъекционной завесы высокой плотности и водонепроницаемости в пространство между обсадной и перфорированной трубами отсыпают гравийную обойму из сортированного промытого гравия с размером фракций 4-10 мм, получая при этом инъекционную камеру ограниченную стенкой перфорированной трубы, гравийной обоймой и резиновой манжетой, извлекают обсадную трубу, опускают инъектор-трубу с открытым торцом в перфорированную трубу, обеспечивая в инъекционной камере оптимальное давление и равномерное распределение расхода инъекционного раствора через стенки перфорированной трубы и слоя гравийной обоймы в зоне инъекции.

Отличительными признаками предложенного способа является отсыпка гравийной обоймы сортированным промытым гравием в пространстве между обсадной и перфорированной трубами, установка инъектор-трубы с открытым торцом и одетой на него резиновой манжетой, образуя таким образом инъекционную камеру ограниченную стенкой перфорированной трубы, гравийной обоймой и резиновой манжетой в верхней ее части, извлекают обсадную трубу.

Благодаря наличию этих признаков и, в частности, созданию обоймы вокруг перфорированной трубы из сортированного промытого гравия с размером фракций 4-10 мм и инъекционной камеры высотой, например, 0,5-1,5 м, появляется возможность создать в инъекционной камере оптимальное давление раствора и равномерно распределить его по всему объему камеры через обойму в окружающий валунно-галечниковый грунт, исключая сосредоточенный выход раствора через крупные пустоты этих грунтов, обеспечивая необходимую плотность инъекционной завесы, достигая заданную проектом водонепроницаемость.

Кроме того, заявленный способ позволяет создать экономичный профиль завесы за счет уменьшения радиуса распространения инъекционного раствора, а, следовательно, снижения его расхода.

Предлагаемый способ поясняется чертежом, на котором показано оснащение цементационных скважин, с помощью которого осуществляют способ закрепления валунно-галечниковых грунтов.

На чертеже позициями обозначены:

1 - обсадная труба

2 - перфорированная труба

3 - гравийная обойма из сортированного промытого гравия

4 - инъектор-труба с открытым торцом

5 - резиновая манжета

6 - инъекционная камера

7 - винтовой домкрат

8 - нижняя муфта на нижнем конце инъектор-трубы 4

9 - верхняя подвижная муфта

10 - зона инъекции

11 - опорная труба винтового домкрата 7.

Способ осуществляется следующим образом.

Производство инъекционных работ начинают с проходки скважин под обсадной трубой 1 диаметром ∅150-200 мм, например ударно-канатным способом. После проходки скважины до проектной отметки в нее опускают перфорированную трубу 2 диаметром, например, ∅50-75 мм, перфорация которой выполнена в виде щелей размером, например, длиной 80-120 мм, шириной 3-5 мм, которые расположены в шахматном порядке в количестве не менее 10-15 щелей на 1 пог. метр длины трубы. В образованную пазуху между обсадной трубой 1 и перфорированной трубой 2 засыпают сортированный промытый гравий с фракциями 4-10 мм, получая в результате гравийную обойму 3. После заполнения пазух сортированным промытым гравием обсадную трубу 1 вынимают. Толщина слоя гравийной обоймы 3 вокруг обсадной трубы 1 должна быть не менее 5 см.

После засыпки сортированного промытого гравия в пазуху и образования гравийной обоймы 3 вокруг перфорированной трубы 2 в нее опускают инъектор-трубу с открытым торцом 4 диаметром, например, ∅25 мм, через которую подают инъекционный раствор.

На инъектр-трубу 4 надевают резиновую манжету 5, с помощью которой изолируют инъекционную камеру 6 в верхней ее части. Нижнюю часть камеры 6 изолируют слоем инъекционного раствора, нанесенного на поверхность забоя. В инъекционной камере 6, благодаря гравийной обойме 3 вокруг перфорированной трубы 2, создается оптимальное давление для инъекции раствора в зону закрепления валунно-галечникового грунта с оптимальным радиусом распространения инъекционного раствора, который обеспечивает обжатый профиль завесы, ее плотность и водонепроницаемость.

Верхнюю часть инъекционной скважины оборудуют винтовым домкратом 7, состоящим из нижней неподвижно закрепленной на нижнем конце инъектор-трубы 4 нижней муфты 8 и верхней подвижной муфты 9, с помощью которой разжимается резиновая манжета 5. Опорная труба 11 соединена с винтовым домкратом 7 с помощью резьбового соединения, обеспечивающего поступательное движение верхней подвижной муфты 9, которая разжимает резиновую манжету 5, обеспечивая изоляцию инъекционной камеры 6 в верхней ее части.

Далее после отсыпки гравийной обоймы 3 между обсадной 1 и перфорированной 2 трубами и последующим изъятием обсадной трубы 1, в инъекционную камеру 6 через инъектор-трубу 4 подают инъекционный раствор.

Из инъекционной камеры 6, в которой создается оптимальное давление, инъекционный раствор через перфорированную трубу 2 и гравийную обойму 3 подают в зону инъекции 10, заполняя все поры инъектируемого грунта создавая завесу с минимальным радиусом распространения инъекционного раствора.

Затем инъектор 4 поднимают на высоту 0,5-1 м, и через инъекционную камеру 6 продолжают процесс инъекционного закрепления валунно-галечникового грунта.

Способ инъекционного закрепления валунно-галечникового грунта с незаполненными пустотами и высокими скоростями фильтрационного потока в них, включающий бурение скважины, после ее проходки установку в скважину перфорированной трубы 2, оборудование обоймы 3, установку инъектора 4 с надетой на него резиновой манжетой 5, отличающийся тем, что для создания инъекционной завесы высокой плотности и водонепроницаемости в пространство между обсадной 1 и перфорированной 2 трубами отсыпают гравийную обойму 3 из сортированного промытого гравия с размером фракций 4-10 мм, получая при этом инъекционную камеру 6, ограниченную стенкой перфорированной трубы 2, гравийной обоймой 3 и резиновой манжетой 5, затем извлекают обсадную трубу 1, опускают инъектор-трубу с открытым торцом 4 в перфорированную трубу 2, обеспечивая в инъекционной камере 6 оптимальное давление и равномерное распределение расхода инъекционного раствора через стенки перфорированной трубы 2 и слоя гравийной обоймы 3 в зоне инъекции 10.



 

Похожие патенты:

Изобретение относится к способу упрочнения гидрозакладочного массива и может быть использовано при добыче минерального сырья при отработке устойчивых руд камерными системами с гидрозакладкой выработанного пространства.

Изобретение относится к дорожному и аэродромному строительству и может быть использовано для стабилизации и укрепления грунтов при реконструкциях, ремонтах, для устройства дополнительных слоев оснований, оснований и покрытий со слоем износа всех типов дорожных одежд для районов со среднемесячной температурой воздуха наиболее холодного месяца до -30°C.

Изобретение относится к области строительных материалов и может быть использовано для укрепления грунтов оснований дорог и фундаментов, жилых и гражданских сооружений в условиях переувлажнения и пучинообразования, для получения грунтобетона, пригодного для домостроения.

Изобретение относится к дорожному строительству и может быть использовано для стабилизации грунтов при создании оснований автомобильных и железных дорог, вертолетных площадок, взлетно-посадочных полос, площадок различного назначения, а так же дорожек в парках и садах.

Изобретение относится к области дорожного и аэродромного строительства и может быть использовано для устройства оснований и покрытий автомобильных дорог и аэродромов.

Изобретение относится к области строительства и может быть применено при инженерной подготовке строительных площадок для нового строительства. В способе объемной цементации песчаных, супесчаных, суглинистых грунтов и легких глин, включающем приготовление водной суспензии портландцемента с водопоглощающим минеральным компонентом и введение в грунт приготовленной суспензии, предварительно осуществляют удаление грунта, содержащего органические примеси, в образовавшемся котловане осуществляют приготовление водной суспензии равномерным перемешиванием портландцемента и воды в соотношении 1:1,2, введение в указанную суспензию при перемешивании супеси или суглинка с получением пасты, введение в нее водопоглощающего минерального компонента – сталеплавильного, или доменного, или фосфорного шлака, причем состав жесткой твердеющей смеси содержит указанные компоненты в следующем соотношении, мас.%: портландцемент 5-20, шлак не более 40, вода 6-20, супесь или суглинок - остальное, при этом при объемной цементации указанных грунтов используют одноковшовые экскаваторы.

Изобретение относится к строительству и может быть использовано для устройства оснований и покрытий автомобильных дорог, а также для закрепления грунтов оснований зданий и сооружений.

Группа изобретений относится к области грунтоведения и инженерной геологии, в частности к улучшению механических свойств несвязных грунтов за счет микробиологического образования кальцитового цемента.

Изобретение относится к строительству и может быть использовано для сооружения земляного полотна и устройства укрепленных дорожных оснований на дорогах I-V категорий.

Группа изобретений относится к дорожному строительству, а именно к укреплению грунта с помощью органических и неорганических составов, используемых в строительстве дорог для стабилизации и укрепления пластичных, переувлажненных, засоленных грунтов, и способам укрепления грунтов.
Наверх