Теплообменник

Изобретение относится к области теплоэнергетики и может быть использовано в конструкциях емкостных рекуперативных теплообменных аппаратов поверхностного типа – преимущественно водоводяных подогревателей в системах теплоснабжения и горячего водоснабжения. Теплообменник содержит кожух с подводящим и отводящим патрубками нагреваемого контура, трубчатую систему в виде змеевика с подводящим и отводящим патрубками греющего контура, соединенными с кожухом, и ударный узел. Змеевик выполнен в виде конуса, расположенного вертикально по центру в шарнирных опорах, закрепленных жестко на кожухе. Ударный узел установлен после отводящего патрубка греющего контура и соединен с электроприводом. Изобретение позволяет повысить коэффициент теплопередачи в теплообменнике между греющей и нагреваемой средами, снизить металлоемкость конструкции, упростить конструкцию и повысить эффект самоочищения теплопередающей поверхности. 1 ил.

 

Изобретение относится к области теплоэнергетики и может быть использовано в конструкциях емкостных рекуперативных теплообменных аппаратов поверхностного типа – преимущественно водоводяных подогревателей в системах теплоснабжения и горячего водоснабжения.

Известно, что в конвективных теплообменниках каналы для прохода горячего и холодного рабочих тел чаще всего выполнены в виде гладкостенных труб (RU 2150644, МПК F28D 7/00, опубл. 10.06.2000).

Недостатком известного устройства является то, что при течении загрязненной жидкости на теплообменной поверхности оседают взвешенные вещества, что ухудшает теплообмен.

Известны теплообменники, в каналах которых для интенсификации теплообмена размещены сложные поверхности – турболизаторы (SU 1383083, МПК F28F1/40, F28F 13/02,опубл. 23.03.1988).

Недостатком известного устройства является сложность изготовления.

Известны теплообменники которые, которые содержат резиновые поршни, полимерные щетки, металлические ерши, специально вращающееся турбинки или сверла для очистки теплопередающих поверхностей (RU 2130155, МПК F28D 7/02, F28G 7/00, опубл. 10.05.1999).

Недостатком известных теплообменников является то, что при механической очистке возможно частное повреждение теплопередающих поверхностей, что ускоряет коррозию, а кроме того для очистки необходима остановка и разборка теплообменника.

Наиболее близким техническим решением к заявленному изобретению является теплообменник, включающий кожух с подводящими и отводящими патрубками у греющего и нагреваемого контуров, внутри которого расположена трубчатая система. Трубчатая система содержит змеевик, жестко установленный на гидромеханическом преобразователе, имеющем боковой отвод, соединенный с нижним фланцем и с отводящим патрубком греющего контура с помощью трубы или шланга, при этом концы змеевика посредством шлангов соединены с подводящим и отводящим патрубками греющего контура. Ударный узел импульсной системы теплоснабжения генерирует гидравлический удар в греющем контуре (RU 136551, МПК F28F 1/00, опубл. 10.01.2014).

Недостатком известного устройства является сложность в изготовлении и низкий срок службы.

Технический результат заключается в повышении коэффициента теплопередачи в теплообменнике между греющей и нагреваемой средой, снижении металлоемкости и упрощении конструкции, а так же наличии эффекта самоочищения теплопередающей поверхности.

Технический результат достигается за счет того, что теплообменник содержит кожух с подводящим и отводящим патрубками нагреваемого контура, трубчатую систему в виде змеевика, с подводящим и отводящим патрубком греющего контура, соединенным с кожухом, ударный узел. Змеевик выполнен в виде конуса, расположенного вертикально по центру в шарнирных опорах, закрепленных жестко на кожухе. Ударный узел установлен после отводящего патрубка греющего контура и соединен с электроприводом.

На чертеже показан общий вид теплообменника.

Теплообменник содержит кожух 1 с подводящим 2 и отводящим 3 патрубком нагреваемого контура, внутри которого расположена трубчатая система в виде конусного змеевика 4 с подводящим 5 и отводящим патрубком 6 греющего контура, расположенного вертикально по центру в шарнирных опорах 7, закрепленных жестко на кожухе 1. Конусный змеевик 4 совершает колебательное движение при резких прерываниях потока перед отводящим патрубком 6 греющего контура, за счет электропривода 8, связанного с ударным узлом 9, установленного после отводящего патрубка 6 греющего контура. Шарнирные опоры 7 представляют полноценную сборочную единицу, благодаря которым становится возможным поворот конусного змеевика 4, при гидроударе генерируемого ударным узлом 9.

Теплообменник работает следующим образом. Перед началом работы кожух теплообменника 1 через подводящий патрубок 2 заполняется подогреваемой жидкостью, через отводящий патрубок 3 будет сливаться, нагретая до определенной температуры подогреваемая жидкость. Конусный змеевик 4, установленный в шарнирных опорах 7 в отводящем патрубке 6 греющего контура, заполняется греющей жидкостью и находится неподвижно. При осуществлении пуска электропривода 8 клапан ударного узла 9 открывается. При открытом клапане ударного узла 9 поток греющей жидкости проходит через подводящий патрубок 5 греющего контура, конусный змеевик 4, нижнюю шарнирную опору 7, в отводящий патрубок 6 греющего контура, ударный узел 9 и далее в систему теплоснабжения. Дальнейшее вращение электропривода 8 приводит к резкому закрытию клапана ударного узла 9. Резкое закрытие клапана ударного узла 9 создает гидроудар, волна которого приводит к многократному росту ускорения потока, что вызовет в конусном змеевике 4 центробежную силу, тангенциальная составляющая которой создает вращающий момент, под действием которого конусный змеевик 4 поворачивается на некоторый угол вокруг своей оси. Периодическое открытие и закрытие клапана ударного узла 9 под действием электропривода 8 с определенной частотой будет создает пульсирующее вращение змеевика 4. Вращательное пульсирующее движение конусного змеевика 4 создается только в определенной полосе частот (0,5-3,0 Гц). Наибольшая эффективность (2 раза) теплопередачи наблюдают при частоте 2-3 Гц.

По сравнению с известным решением предполагаемое позволяет повысить коэффициент теплопередачи в теплообменнике между греющей и нагреваемой средой, снизить металлоемкость конструкции, упростить конструкцию и повысить эффект самоочищения теплопередающей поверхности.

Теплообменник, содержащий кожух с подводящим и отводящим патрубками нагреваемого контура, трубчатую систему в виде змеевика с подводящим и отводящим патрубками греющего контура, соединенными с кожухом, ударный узел, отличающийся тем, что змеевик выполнен в виде конуса, расположенного вертикально по центру в шарнирных опорах, закрепленных жестко на кожухе, а ударный узел установлен после отводящего патрубка греющего контура и соединен с электроприводом.



 

Похожие патенты:

Изобретение относится к химической защите котельного оборудования. Способ химической защиты котельного оборудования заключается в том, что в состав котельного оборудования, а именно в топку котла, вводится емкость с природным известняком, состоящим из карбоната кальция, который в результате воздействия высокой температуры разлагается на оксид кальция, двуокись углерода и кристаллогидраты, которые далее с отводящими газами на всем пути газового тракта, оседая на внутренних стенках оборудования котельного агрегата, образуют стеклообразную пленку, которая в дальнейшем является естественной защитой от любой агрессивной среды, образующейся при сгорании высокосернистого топочного мазута.

Изобретение относится к поворачиваемому теплообменнику. Рабочее транспортное средство имеет основание, опору, шарнирно прикрепленную к основанию для поворота относительно основания вокруг первой оси поворота между первым опорным положением и вторым опорным положением, и теплообменник.

Описан концентрат очистителя для системы теплопередачи транспортного средства, включающий алюминиевый компонент, изготовленный способом высокотемпературной пайки в защитной атмосфере, содержащий более чем 15 мас.

Изобретение относится к теплоэнергетике, а конкретно к способам гидродинамической внутренней очистки от загрязнений пластинчатых теплообменников, и может быть использовано в энергетической, химической, металлургической и др.

Изобретение относится к энергетике, а именно к установке для газоимпульсной очистки поверхностей нагрева, и может применяться в нефтеперерабатывающей, химической, металлургической и других отраслях промышленности.

Изобретение относится к вспомогательному оборудованию тепловых электростанций для промывки конденсаторов на сниженной мощности турбогенератора. .

Изобретение относится к теплоэнергетике и может быть использовано для послемонтажной и эксплуатационной очистки и пассивации тракта рабочей среды прямоточных котлов.

Холодильная установка содержит компрессор, конденсатор, регулирующий вентиль и теплообменник. Последний содержит сосуд для холодильного агента, содержащий внутреннее пространство, ограниченное замкнутой поверхностью стенок сосуда, а также содержащий впускной патрубок и выпускной патрубок для транспортировки холодильного агента во внутреннее пространство и наружу через стенку сосуда.

Изобретение относится к теплообменной технике и может быть использовано при создании теплообменных аппаратов. Теплообменник содержит корпус, в котором выполнены цилиндрические каналы одного из теплоносителей, расположенные по вершинам и сторонам правильных шестиугольников, при этом каждый канал другого теплоносителя образован тремя поверхностями, эквидистантными внутренним поверхностям соседних цилиндрических каналов, внутренние днища, закрепленные на торцах корпуса и на наружных поверхностях которых установлены коллекторы, наружные днища, закрепленные на торцах внутренних днищ, причем полости одного из теплоносителей, образованные наружными и внутренними днищами, соединены с цилиндрическими каналами с помощью трубок.

Изобретение относится к кожухотрубным теплообменникам, в частности, для химической или нефтехимической промышленности. Теплообменник (1), содержащий первый наружный кожух (2) и трубный пучок (3), входные и выходные стыковочные узлы, сообщающиеся с межтрубным пространством и внутритрубным пространством для подачи первой текучей среды и второй текучей среды соответственно, при этом теплообменник содержит второй кожух (4), расположенный внутри первого кожуха (2) и охватывающий трубный пучок (3).

Предложен теплообменник (52), который может быть использован в двигателе, таком как двигатель летательного аппарата для воздушного летательного аппарата или орбитальной ракеты - носителя.

Изобретение относится к периодически действующему десублиматору для разделения продуктов из газовых смесей. Десублиматор содержит цилиндрический корпус для прохождения в его продольном направлении газовой смеси, стенку 10 корпуса и расположенные на ее внутренней стороне направленные внутрь пластины 7, 7', которые для десублимации продукта предназначены для охлаждения с помощью охлаждающего средства, направляемого через каналы 12 на стенке 10 корпуса, при этом в цилиндрическом корпусе расположен по меньшей мере один внутренний охлаждающий трубопровод, который пронизывает корпус в продольном направлении по всей его длине и который имеет несколько отдельных направленных наружу пластин 8, которые в окружном направлении охлаждающего трубопровода на расстоянии друг от друга распределены по периметру охлаждающего трубопровода, и которые закреплены на охлаждающем трубопроводе с ориентацией в продольном направлении корпуса, причем количество направленных внутрь и/или направленных наружу пластин 7, 7', 8 увеличивается от входного конца корпуса к его выходному концу, а высота Н1, Н2 пластин 7, 8 варьируется между соседними продольными участками L1-L6 с целью предотвращения образования газовых коридоров между свободными концами пластин 7, 8.

Изобретение относится к области теплотехники, а именно к теплообменным аппаратам с трубами с развитой поверхностью теплообмена, и может быть использовано в аппаратах воздушного охлаждения, теплообменниках, холодильниках, рекуператорах, печах, которые применяются в различных отраслях промышленности.

Кожухотрубчатый теплообменный аппарат относится к области теплотехники, а именно к теплообменному оборудованию, и может использоваться в химической, пищевой и других отраслях промышленности.

Изобретение относится к теплообменной технике и может быть использовано при создании теплообменных аппаратов. Теплообменник содержит цилиндрический корпус, во внутренней полости которого установлены концентрически соединенные между собой втулки, на наружной поверхности которых выполнены кольцевые каналы, соединенные с подводящим и отводящим коллекторами одного из теплоносителей, расположенными в одной из крышек, установленных на торце корпуса, с помощью двух диаметрально расположенных продольных каналов, при этом втулки одного теплоносителя и втулки другого теплоносителя чередуются между собой.

Теплообменный аппарат содержит корпус с патрубками подвода и отвода теплоносителей трубной и межтрубной полостей и пучок непрямых трубок. Погиб каждой трубки пучка имеет стохастический характер.

Изобретение относится к области теплотехники и может быть использовано в конденсаторах. Вертикальный кожухотрубный прямотрубный противоточный конденсатор, в котором конденсирующийся пар протекает по межтрубному пространству конденсатора, а охлаждающая вода в трубном пространстве, является двухходовым как в межтрубном пространстве, так и в трубном пространстве, при этом поверхность нагрева первого хода в межтрубном пространстве образована из труб (9) поверхности нагрева в паровом пространстве (14) этого хода, прикрепленных своими верхними концами к верхней трубной доске (5) и нижними концами к нижней трубной доске (7), через эти трубы протекает охлаждающая вода второго хода трубного пространства, при этом поверхность нагрева второго хода межтрубного пространства образована трубами (10) поверхности нагрева в паровом пространстве (15) второго хода, прикрепленными своими верхними концами к верхней трубной доске (5) и нижними концами к другой нижней трубной доске, через эти трубы протекает охлаждающая вода первого хода трубного пространства, таким образом, упомянутые паровые пространства (14, 15) соединены посредством отверстия (12) между верхним концом (11) разделительной стенки (4, 50), разделяющей пространство оболочки, и верхней трубной доской (5), при этом направление потока пара в паровом пространстве (14) первого хода межтрубного пространства направлено вверх, а в другом паровом пространстве (15) направлено вниз, при этом направление потока охлаждающей воды в трубах (9 и 10) поверхности нагрева обоих ходов является противоточным потоку пара, протекающему снаружи упомянутых труб.

Раскрывается способ изготовления набора теплообменных блоков (1a-1d), имеющих тепловую мощность в пределах заданного диапазона от минимального до максимального значения, причем каждый теплообменный блок (1а-1d) содержит по меньшей мере один теплообменник (2), установленный в соответствующую оболочку (5), при этом множество теплообменников (2) набора имеет внутренний диаметр, по существу, постоянный при изменении тепловой мощности теплообменника (2) в пределах указанного диапазона значений тепловой мощности; и по меньшей мере один трубопровод (3) теплообменника (2) имеет радиальную протяженность витков, пропорциональную тепловой мощности теплообменника (2), так что при изменении его тепловой мощности аксиальная протяженность теплообменника (2) является, по существу, постоянной и равной аксиальной протяженности теплообменника (2), имеющего минимальную тепловую мощность в пределах диапазона значений тепловой мощности набора.

Изобретение относится к теплообменнику (1), содержащему множество входов (30-36), которые соединены каждый по меньшей мере с одной согласованной трубой (20) теплообменника (1), так что по меньшей мере один поток (S) первой среды, а также один поток (S') второй среды можно направлять по меньшей мере через один согласованный вход (30, 32, 36, 33, 35) в соответствующую согласованную по меньшей мере одну трубу (20), при этом теплообменник (1) имеет кожух (10), который окружает пространство (11) кожуха, в котором расположены указанные трубы (20), так что, в частности, проходящий в пространстве (11) кожуха поток (S''') среды вступает в косвенный теплообмен с проходящим в соответствующей трубе (20) потоком (S, S') среды, и при этом указанные трубы (20) навиты вокруг центральной трубы (12) теплообменника (1).

Изобретение относится к теплотехнике и может быть использовано в теплообменниках для обработки жидкого продукта. Змеевиковый теплообменник, содержащий закрытую емкость (20), имеющую впуск (21) для приема теплопередающей среды и выпуск (22) для выпуска теплопередающей среды, трубчатый трубопровод (30), продолжающийся по спирали внутри указанной емкости (20) от нижней части (23) к верхней части (24) указанной емкости (20) для перемещения жидких продуктов, нагреваемых указанной теплопередающей средой, и внутренний корпус (40), заключенный между витками (32) указанного трубчатого трубопровода (30) и уплотненный относительно теплопередающей среды, причем указанный внутренний корпус (40) содержит открытый канал (42) в окружающую среду снаружи указанного змеевикового теплообменника (10).
Наверх