Способ определения коэффициента проницаемости при изменении термобарических условий на образцах керна

Изобретение относится к области исследования физических свойств горных пород и может быть использовано при разработке нефтяных месторождений. Способ заключается в том, что образцы керна, насыщенные керосином с остаточной водой, устанавливают в кернодержатель фильтрационной системы, создают заданные термобарические условия, прокачивают керосин в объеме 3–4 объемов пор образца, в передвижной обогревательной системе с помещенным в нее пробоотборником с пробой нефти создают термобарические условия, аналогичные установленным в кернодержателе, замещают керосин на нефть посредством подключения передвижной обогревательной системы в гидравлическую схему фильтрационной установки, определяют коэффициент проницаемости, устанавливают пластовую температуру, пластовое давление и горное давление, установку модернизируют путем подключения пробоотборника с передвижной обогревательной системой, в которую помещают пластовую пробу нефти, перед подключением в гидравлическую схему фильтрационной установки перемешивают её качанием в ручном режиме с контролем температуры и давления в пробоотборнике для максимальной гомогенизации флюида, начало процесса формирования твердых фаз парафинов и асфальтенов регистрируют по резкому уменьшению коэффициента проницаемости. Достигается повышение надежности определения при возможности приближения к реальным условиям разработки месторождений. 2 з.п. ф-лы, 3 ил.

 

Изобретение относится к области исследования физических свойств горных пород, в частности, к определению фильтрационных свойств пористых коллекторов нефти, и может быть использовано при разработке нефтяных месторождений.

Изменение давления и температуры, состава нефти, происходящие в процессе добычи, могут вызвать выпадение и формирование асфальтосмолопарафиновых отложений (АСПО). Парафины и асфальтены могут скапливаться на различных участках системы добычи, начиная с пор пласта и заканчивая насосами, колонной НКТ, устьевой арматурой, выкидными линиями и наземным оборудованием. Осаждение и выпадение данных компонентов пластовых флюидов потенциально может привести к кольматации порового пространства пласта, изменению его смачиваемости, стабилизации водонефтяных эмульсий, образованию АСПО, закупорке внутрискважинного и наземного оборудования и др., что значительно осложняет работу скважины и снижает ее производительность.

Как известно, борьба с данными явлениями в процессах добычи нефти ведётся по следующим направлениям: предотвращение фазовых переходов, предотвращение образования АСПО и удаление уже образовавшихся отложений. Выбор оптимальных способов борьбы и их эффективность зависит от многих факторов, в частности, от способа добычи, термобарического режима течения, состава и свойств добываемой продукции. Таким образом, исследование процесса осаждения АСПО на металлических поверхностях нефтепромыслового оборудования, серьезно осложняющего его эксплуатацию, является весьма важной и наукоемкой задачей.

На данный момент, основными методами для термобарических исследований служат фотометрические, визуальные, фильтрационные, ультразвуковые методы, метод дифференциальной калориметрии, реализованные в оборудовании различных фирм. Исследования в данной области ведутся, в основном, на дегазированных нефтях или на модельных жидкостях.

Известен способ (ОСТ 39-235-89. Нефть. Метод определения фазовых проницаемостей в лабораторных условиях при совместной стационарной фильтрации.- 35 с.), позволяющий определять фазовые проницаемости коллекторов нефти и газа.

Процесс испытания по способу заключается в осуществлении совместной стационарной фильтрации 2-х фаз (нефти и воды, нефти и газа) или нефти, газа и воды через исследуемый образец при условиях, максимально приближенных к пластовым. В качестве исследуемого образца выступает образец породы-коллектора порового типа, отобранный из продуктивных пластов. Условия испытания должны обеспечивать сохранение или воспроизведение естественных физико-химических характеристик системы «порода – пластовые флюиды», а также поддержание в процессе эксперимента значений температуры и давления, соответствующих пластовым.

Недостатком существующего способа является использование моделей нефти для определения коэффициентов проницаемости на керновых образцах. Для приготовления модели нефти используется дегазированная безводная нефть, разбавленная растворителем. Кроме того, в существующем способе, контейнеры жидкостные, предназначенные для рабочих жидкостей и газа, не рассчитаны на использование пластовых нефтей при пластовом давлении и температуре.

Задачей изобретения является определение коэффициента проницаемости на образцах керна в процессе фильтрации пластовой(газированной) пробы нефти при моделировании изменений термобарических условий с учетом выпадения и формирования АСПО в поровом пространстве породы-коллектора, то есть в условиях, максимально приближенных к условиям естественного залегания пород.

Фильтрационные исследования выпадения и формирования парафинов проводят на образцах керна в режиме ступенчатого снижения пластовой температуры с поддержанием постоянного горного давления и пластового давления. Температуру ступенчато снижают от пластовой температуры до температуры на 5-10 градусов ниже температуры выпадения парафинов. На каждой ступени температуры пластовую (газированную) пробу нефти продолжительное время перемешивают для максимальной гомогенизации флюида и прокачивают через керновую модель.

Строят график зависимости коэффициента проницаемости от температуры на образце керна (фиг.1).

Фильтрационные исследования выпадения и формирования асфальтенов проводят на образцах керна в режиме ступенчатого снижения пластового давления с поддержанием постоянного горного давления и пластовой температуры. Давление ступенчато снижают от пластового давления до давления насыщения растворенных газов. На каждой ступени давления пластовую (газированную) пробу нефти также продолжительное время перемешивают.

Строят график зависимости коэффициента проницаемости от давления на образце керна (фиг.2).

Начало процесса выпадения и формирования АСПО определяют по резкому изменению кривой проницаемости на графиках.

Исследования выпадения и формирования парафинов производят раздельно с исследованиями выпадения и формирования асфальтенов. Для каждого фильтрационного эксперимента необходимо использовать различные образцы керна и глубинные пробоотборники в силу того, что после проведения экспериментов возможна закупорка пор и пустот образцов керна АСПО и нарушение естественных условий залегания нефти в пласте. В связи с этим целесообразным является проводить только фильтрационные исследования выпадения и формирования парафинов (например, при отсутствии или ничтожно малом количестве асфальтенов в исследуемых нефтях) или только фильтрационные исследования выпадения и формирования асфальтенов (например, при отсутствии или ничтожно малом количестве парафинов).

Исследования проводились на лабораторной установке УИК-5. Для обеспечения возможности проводить фильтрацию глубинной (газированной) пробы нефти установка модернизировалась путем подключения пробоотборника с передвижной обогревательной системой. Принципиальная схема фильтрационной установки представлена на фиг.3.

Способ осуществляется следующим образом. Для обеспечения возможности проводить фильтрацию глубинной (газированной) пробы нефти установка модернизировалась путем подключения пробоотборника с передвижной обогревательной системой.

Передвижная обогревательная система предназначена для нагрева и перемешивания пробы для гомогенизации флюида. Система обеспечивает перемешивание проб качанием в ручном режиме на регулируемый угол наклона с поддержанием температуры и контролем давления в пробоотборнике. Контроль давления осуществляется масляными насосами высокого давления 1 фильтрационной системы. Контроль температуры осуществляется регулятором - измерителем температуры 2.

Перед экспериментом образцы керна, насыщенные керосином с остаточной водой, устанавливают в кернодержатель 3 фильтрационной системы, создают заданные термобарические условия пласта, т.е. давление и температура. После поднятия давления в фильтрационной системе керосин прокачивают в объеме 3–4 объемов пор образца. После этого в передвижной обогревательной системе 4 создают термобарические условия, аналогичные тем, которые установлены в кернодержателе 3. Керосин замещается на пластовую (газированную) нефть посредством подключения передвижной обогревательной системы 4 совместно с находящимся в ней пробоотборником 5 в гидравлическую схему фильтрационной установки.

Всю систему термостатируют, выдерживают при поддержании заданного давления и температуры. Пластовую нефть прокачивают в объеме не менее 3–4 объемов пор образца, создавая начальную нефтенасыщенность в модели. Определяют коэффициент проницаемости согласно ОСТ 39-235-89. «Нефть. Метод определения фазовых проницаемостей в лабораторных условиях при совместной стационарной фильтрации». Контроль горного давления в кернодержателе 3 при этом осуществляется масляными насосами высокого давления 6.

После этого фильтрационная система и передвижная обогревательная система 4совместно с находящимся в ней пробоотборником 5 изолируются друг от друга.

В фильтрационной системе и установке для подготовки и передвижной обогревательной системе 4 меняют значение температуры при проведении фильтрационных исследований необходимых для определения влияния процесса выпадения парафинов в сторону понижения до одинакового значения, подключают передвижную обогревательную систему 4 совместно с находящимся в ней пробоотборником 5 в гидравлическую схему фильтрационной системы. Система термостатируется. Определяется проницаемость согласно ОСТ 39-235-89. «Нефть. Метод определения фазовых проницаемостей в лабораторных условиях при совместной стационарной фильтрации».

При проведении фильтрационных исследований необходимых для определения влияния процесса выпадения асфальтенов в фильтрационной системе и передвижной обогревательной системе 2 меняют значение пластового давления при проведении фильтрационных исследования необходимых для определения влияния процесса выпадения асфальтенов в сторону понижения до одинакового значения, подключают передвижную обогревательную систему 4 совместно с находящимся в ней пробоотборником 5 в гидравлическую схему фильтрационной системы. Определяется проницаемость согласно ОСТ 39-235-89. «Нефть. Метод определения фазовых проницаемостей в лабораторных условиях при совместной стационарной фильтрации».

Операция повторяется до ступенчатого достижения необходимых значений пластового давления или пластовой температуры.

Компоновка всех необходимых узлов в единой гидравлической схеме в фильтрационной установке позволяет проводить потоковые исследования на керновом материале с применением глубинных (газированных) проб нефти, что значительно повышает достоверность и представительность результатов исследований.

Эти данные могут быть использованы при построении уточненныхгеолого-гидродинамических моделей, которые будут приближены к реальным условиям разработки месторождений, в течение всего планируемого времени её эксплуатации.

Это приводит к изменению технико-экономического обоснования коэффициентов извлечения нефти и делает его более достоверным.

1. Способ определения коэффициента проницаемости при изменении термобарических условий на образцах керна, заключающийся в том, что образцы керна, насыщенные керосином с остаточной водой, устанавливают в кернодержатель фильтрационной системы, создают заданные термобарические условия, прокачивают керосин в объеме 3-4 объемов пор образца, замещают керосин на нефть, в условиях эксперимента определяют коэффициент проницаемости, отличающийся тем, что для обеспечения возможности проводить фильтрацию глубинной газированной пробы нефти в фильтрационной установке устанавливают пластовую температуру, пластовое давление и горное давление, установку модернизируют путем подключения пробоотборника с передвижной обогревательной системой, в пробоотборник помещают пластовую газированную пробу нефти, перед подключением в гидравлическую схему фильтрационной установки пробу нефти перемешивают качанием в ручном режиме с контролем температуры и давления для максимальной гомогенизации флюида, проводят фильтрационные исследования выпадения и формирования парафинов и асфальтенов, начало процесса формирования твердых фаз парафинов и асфальтенов регистрируют по резкому уменьшению коэффициента проницаемости.

2. Способ по п. 1, отличающийся тем, что фильтрационные исследования выпадения и формирования парафинов проводят на образцах керна в режиме ступенчатого снижения пластовой температуры с поддержанием постоянного горного давления и пластового давления, температуру снижают от пластовой температуры до температуры на 5-10 градусов ниже температуры выпадения парафинов.

3. Способ по п. 1, отличающийся тем, что фильтрационные исследования выпадения и формирования асфальтенов проводят на образцах керна в режиме ступенчатого снижения пластового давления с поддержанием постоянного горного давления и пластовой температуры, давление снижают от пластового давления до давления насыщения растворенных газов.



 

Похожие патенты:

Изобретение относится к испытательной технике и предназначено для исследования физико-механических свойств образцов искусственных материалов типа бетонов, грунтов, дорожных покрытий, эквивалентных материалов и т.п.

Изобретение относится к материаловедению, а именно к определению устойчивости материалов к биодеградации. Для этого подготавливают образцы с тестируемыми материалами, стерильную жидкую питательную среду (СЖПС) и питательную среду с тестовыми микроорганизмами (МЖПС).

Изобретение относится к области сортировки различных пород полезных ископаемых по их теплофизическим свойствам и может быть использовано при разделении минеральных частиц, в том числе алмазосодержащей породы.

Изобретение относится к почвоведению, а именно к изучению формирования микрорусла на склонах пахотного горизонта методом точечного источника. Для этого образцы сухие почвогрунта просеивают через сито и укладывают в съемный наклонный лоток с шероховатой поверхностью и перфорированным дном для отделения воды, просочившейся через образец в мерную емкость для сбора воды и смытой почвы.

Изобретение относится к почвоведению, а именно к изучению формирования микрорусла на склонах пахотного горизонта методом точечного источника. Для этого образцы сухие почвогрунта просеивают через сито и укладывают в съемный наклонный лоток с шероховатой поверхностью и перфорированным дном для отделения воды, просочившейся через образец в мерную емкость для сбора воды и смытой почвы.

Изобретение относится к экологии и может быть использовано при комплексном определении экологической безопасности и биологической эффективности почвогрунтов, создаваемых на основе осадка городских сточных вод в полевых условиях.

Изобретение относится к области сельского хозяйства. Предложен способ биохимического контроля эффективности рекультивации нарушенных и/или загрязненных тундровых почв, включающий отбор проб и анализ активности фермента дегидрогеназы спектрофотометрическим методом.

Изобретение относится к исследованию водосодержащих геологических структур. Представлен способ определения индексов структурного различия верхних зон заполнения Ордовикского известняка, согласно которому: сначала определяют три типа структур зоны заполнения, а именно структуру с непрерывным заполнением, структуру с прерывистым заполнением и структуру, свободную от заполнения; затем определяют индексы различия в соответствии с тремя типами структур зоны заполнения, включающие: величину q прорыва воды к скважине, величину расхода Q подземной воды и коэффициент K проницаемости участка Ордовикского известняка; затем соответственно определяют пороговые значения для каждого индекса в соответствии с различными водоупорными свойствами, соответствующими указанным трем структурам; причем индексы получают посредством нескольких этапов на основании расчета из заданных соотношений величин прорыва воды и коэффициента проницаемости для подземной скважины.

Изобретение относится к области инженерно-геологических изысканий и может быть использовано для определения фильтрационных свойств пород, что очень важно при проектировании и эксплуатации оросительных каналов.
Изобретение относится к области спектроскопических измерений и касается способа определения тяжелых металлов в почве. При осуществлении способа исследуемый образец почвы наносят слоем толщиной 5-10 микрон на атомно-гладкую поверхность кристалла меди, отжигают при температуре 150°С в течение 5 минут и помещают в вакуумную камеру с давлением остаточных газов на уровне 10-8 миллибар.

Изобретение относится к установкам для определения зависимости физических свойств горных пород от форм и видов связи насыщающей их воды и может быть использовано в нефтяной геологии.

Изобретение относится к установкам для определения зависимости физических свойств горных пород от форм и видов связи насыщающей их воды и может быть использовано в нефтяной геологии.

Изобретение относится к способу и системе определения величины пористости, связанной с органическим веществом, в скважине или в продуктивных пластах. Техническим результатом является создание усовершенствованного способа оценки величины пористости, связанной с органическим веществом геологического материала.

Изобретение относится к способу и системе определения величины пористости, связанной с органическим веществом, в скважине или в продуктивных пластах. Техническим результатом является создание усовершенствованного способа оценки величины пористости, связанной с органическим веществом геологического материала.

Изобретение относится к нефтяной промышленности и может быть использовано для определения газового фактора нефти, а также дебитов нефти и воды нефтяных скважин. Технической задачей предлагаемого способа является обеспечение возможности измерения дебитов нефти, воды и газа при различных содержаниях свободного газа в измеряемой продукции, в том числе при его полном отсутствии.

Изобретение относится к измерительной технике и может быть использовано при исследовании процессов массопереноса и для определения коэффициентов диффузии растворителей в ортотропных капиллярно-пористых материалов в бумажной, легкой, строительной и других отраслях промышленности.

Изобретение относится к измерительной технике и может быть использовано при исследовании процессов массопереноса и для определения коэффициентов диффузии растворителей в ортотропных капиллярно-пористых материалов в бумажной, легкой, строительной и других отраслях промышленности.

Изобретение относится к измерительной технике, а именно может быть использовано для определения остаточной водонасыщенности порового пространства в образцах горных пород методом десатурации с использованием полупроницаемых керамических мембран в компьютеризированных станциях геолого-технологических исследований скважин и в петрофизических лабораториях.

Изобретение относится к измерительной технике, а именно может быть использовано для определения остаточной водонасыщенности порового пространства в образцах горных пород методом десатурации с использованием полупроницаемых керамических мембран в компьютеризированных станциях геолого-технологических исследований скважин и в петрофизических лабораториях.

Изобретение относится к нефтегазодобывающей отрасли и может быть использовано для оперативного учета дебитов продукции газовых, нефтяных и газоконденсатных скважин в режиме реального времени, в том числе в условиях высоких давлений скважинной продукции.

Изобретение относится к нефтедобывающей промышленности. Технический результат - повышение эффективности разработки неоднородного пласта сверхвязкой нефти в уплотненных и заглинизированных коллекторах, исключение неравномерности прогрева и прорыва теплоносителя в добывающую скважину.

Изобретение относится к области исследования физических свойств горных пород и может быть использовано при разработке нефтяных месторождений. Способ заключается в том, что образцы керна, насыщенные керосином с остаточной водой, устанавливают в кернодержатель фильтрационной системы, создают заданные термобарические условия, прокачивают керосин в объеме 3–4 объемов пор образца, в передвижной обогревательной системе с помещенным в нее пробоотборником с пробой нефти создают термобарические условия, аналогичные установленным в кернодержателе, замещают керосин на нефть посредством подключения передвижной обогревательной системы в гидравлическую схему фильтрационной установки, определяют коэффициент проницаемости, устанавливают пластовую температуру, пластовое давление и горное давление, установку модернизируют путем подключения пробоотборника с передвижной обогревательной системой, в которую помещают пластовую пробу нефти, перед подключением в гидравлическую схему фильтрационной установки перемешивают её качанием в ручном режиме с контролем температуры и давления в пробоотборнике для максимальной гомогенизации флюида, начало процесса формирования твердых фаз парафинов и асфальтенов регистрируют по резкому уменьшению коэффициента проницаемости. Достигается повышение надежности определения при возможности приближения к реальным условиям разработки месторождений. 2 з.п. ф-лы, 3 ил.

Наверх